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ABSTRACT. - We prove that any Hunt process on a Hausdorff topological
space associated with a Dirichlet form can be approximated by a Markov
chain in a canonical way. This also gives a new proof for the existence
of Hunt processes associated with strictly quasi-regular Dirichlet forms on
general state spaces. © Elsevier, Paris
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RESUME. - Nous montrons que tout processus de Hunt sur un espace
de Hausdorff associe a une forme de Dirichlet peut etre approxime de
maniere cannonique par une chaine de Markov. Ceci fournit aussi une
nouvelle demonstration de 1’ existence d’un processus de Hunt associe a
une forme de Dirichlet strictement quasi-reguliere sur un espace d’ états

general, (c) Elsevier, Paris
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2 Z.-M. MA et al.

1. INTRODUCTION

In the last few years the theory of Dirichlet forms on general (topological)
state spaces has been used to construct and analyze a number of fundamental
processes on infinite-dimensional "manifold-like" state spaces which so

far could not be constructed by other means. Among these some of the
most important are: solutions to infinite-dimensional stochastic differential
equations with very singular drifts such as the stochastic quantization of
(infinite volume) time zero and space-time quantum fields in Euclidean field
theory (see e.g. [7], [26], [5]); diffusions on loop spaces (see [11], [6],
[13]); a class of interacting Fleming-Viot processes (see [23 in particular
Subsections 5.2, 5.3] and [22]); infinite particle systems with very singular
interactions (see e.g. [24], [30]); stochastic dynamics associated with Gibbs
states (see e.g. [1]). We also refer to the survey article [25]. All these

processes are diffusions (i.e., have continuous sample paths almost surely)
and all except for the one in [6] are conservative, hence, in particular, they
are Hunt processes.

In [3] (see also [19, Chap. V, Sect. 2]) Dirichlet forms (not necessarily
symmetric) on general state spaces which are associated with Hunt processes
have been characterized completely through an analytic property which is
checkable in examples and is called strict quasi-regularity. The construction
of the Hunt process was based on "Kolmogorov’s scheme" and a number of
(partly rather technical) tools from potential theory and the general theory
of Markov processes. It has been an open question for quite some time
whether the method of constructing Markov processes based on the Yoshida
approximation (for the transition semigroup) and tightness arguments (cf. the
beautiful exposition in [12]) can be extended to this case. This would be
desirable, since, in addition, this would yield an approximation of the Hunt
processes by Markov chains in a canonical w.ay and thus another tool for
its analysis.

We recall, however, that this approximation method was, so far, only
developed under some additional assumptions on the state space (i.e., it

was assumed to be a locally compact separable metric space) and on the
underlying transition semigroup (e.g. it was assumed to be Feller). It should
be emphasized that these conditions are not even fulfilled in the classical
case of regular Dirichlet forms on locally compact separable metric state
spaces for which the existence of an associated Hunt process was first

established by M. Fukushima in his famous work [14] (see also [28], [15],
[16] and [8], [18] for the non-symmetric case).

Annales de L’Institut Henri Poincaré - Probabilités et Statistiques



3APPROXIMATION OF DIRICHLET PROCESSES

The purpose of this paper is to prove that the above Markov chain

approximation scheme can be extended to any Hunt process associated
with a Dirichlet form on a general state space. By comparison with the
special case in [12] our analysis also makes more transparent why the above
mentioned finer techniques of Dirichlet space theory are really necessary to
handle the much more general situation of this paper. The proof is divided
into several steps and carried out in Sections 3 and 4 below (see Theorems
3.2, 3.3, 4.3, 4.4). Section 2 contains some background material and the
necessary terminology resp. definitions.

Finally, we want to emphasize that we also gain a new proof for the
existence of an associated Hunt process for the most general class of

Dirichlet forms possible (namely those which are strictly quasi-regular).
This proof is also new for the classical case in [14]. As usual in Dirichlet
form theory, the price we pay for this generality is that we only get the
approximation of the path space measures Px for quasi-every point x in
the state space. However, if we just want the approximation result and
assume that the limit process is already given, we can modify our method
to obtain an approximation for each Px . The details are contained in the
forthcoming paper [20].

2. PRELIMINARIES

In this section we recall some necessary notions and known facts

concerning quasi-regular and strictly quasi-regular Dirichlet forms. For
details we refer to [19]. 

’

Let E be a Hausdorff space such that its Borel a-algebra !3(E) is

generated by C(E) (:= the set of all continuous functions on E). Let
m be a a-finite (positive) measure on ( E,13 ( E ) ) where B(E) is the

Borel a-algebra of E. Let ( ~ , D ( E ) ) be a Dirichlet form on L2(E, m)
with associated semigroup resolvent and co-associated

semigroup (Tt)t>o, and resolvent respectively.
Define for a closed set F C E,

where F ~ . - E ~ F .

DEFINITION 2.1. - An increasing sequence of closed subsets of
E is called an ~-nest if ~k>1 D(~)Fk is dense in (w.r.t, the norm

Vol. 34, n° 1-1998.



4 Z.-M. MA et al.

A subset N ~ E is called ~-exceptional if N C for some £-nest

We say that a property of points in E holds [; -quasi-everywhere
(abbreviated ~-q. e. ), if the property holds outside some £-exceptional set.
Given an [-nest we define

An ~-q.e. defined function f on E is called ~-quasi-continuous if there

exists an £-nest such that f E C ( ~ F~ ~ ) .
DEFINITION 2.2. - A Dirichlet form (~, D (~) ) on L2(E; m) is called

quasi-regular if:

(i) There exits an £-nest consisting of compact sets.

(ii) There exits an ¿ -dense subset of D(~) whose elements have
£-quasi-continuous m-versions.

(iii) There exists Un G E N, having £-quasi-continuous versions
Un, n G .N, and an £-exceptional set N C E such that n E N}
separates the points of E B N.

It is known that the above quasi-regularity condition characterizes all the
Dirichlet forms which are associated to a pair of Borel right processes [19
Ch. IV]. Though not really necessary (see [4]), for convenience we shall
make use of the well-developed capacity theory of quasi-regular Dirichlet
forms below.

Let h E D(~) be a 1-excessive function (w.r.t. (Tt)t>o, i.e., 
h Vt > 0). Then the 1-reduced function hu of h on an open set U is the

unique function in D (~ ) satisfying

The I-coreduced function hu for a I-coexcessive function h is defined

correspondingly with the two entries of £ interchanged. Given a 1-excessive
function h in D(~~ and a I-coexcessive function g E D(~), define for an
open set U C E

and for arbitrary A c E

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



5APPROXIMATION OF DIRICHLET PROCESSES

For our purpose, another capacity is also needed. Let S (resp. ,5‘) denote
the family of all 1-excessive (resp. 1-coexcessive) functions in -D(f). Let
h G Sand g E ~’. We define for an open set U C E

and for arbitrary A c E

It has been shown in [19, 111.2 and V.2] that CaPh,l’ and Capl,g
are all countably subadditive Choquet capacities.
Here is a description of S-nests in terms of capacities:

PROPOSITION 2.3 ([19, 111.2.11]). - Let h = 1 for some
E L2 (E; m), cp, cp > 0. Then an increasing sequence of

closed subets of E is an ~-nest if and only if lim = 0.

In what follows we adjoin an extra point A (which serves as the

"cemetery" for Markov processes) to E and write Eo for E U ~ 0 ~ . If

E is locally compact, then A can be considered either as an isolated point
of E , or as a point "at infinity" of Eo with the topology of the one point
compactification. We select one of the above two topologies and fix it. If

E is not locally compact then we simply consider A as an isolated point
of E. denotes the Borel a-algebra of Eo . Any function on E
is considered as a function on Eo by putting f(A) = 0. m is extended
to by setting = 0. For a subset F of E, we still

write F~ for E B F, while the complement of F in Eo will be explicitly
denoted by -E~ B F. Given an increasing sequence (Fk)kEN of closed sets
of E, we define

. continuous for every 

Note that if 0 is an isolated point of ~o, then coincides with

Vol. 34, nO 
° 1-1998.



6 Z.-M. MA et al.

DEFINITION 2.4. - An increasing sequence of closed sets of E

is called a strict if

It has been shown that the above definition is independent of the particular
choice of cp (cf. [19 V.2.5]).
The concepts of strictly ~-exceptional sets and strictly ~-quasi-everywhere

(strictly ~-q. e. ) are now defined correspondingly, but with "strict ~-nests"
replacing "~-nests".
A strictly defined function f is called strictly ~-quasi-continuous

if there exists a strict £-nest such that f E 

DEFINITION 2.5. - A Dirichlet form (£, D(~)) on L2(E; m) is called

strictly quasi-regular if:

(i) There exits a strict £-nest such that Ek U ~ L~ ~ is compact
in Eo for each k.

-i

(ii) There exits an £/ -dense subset of D (~ ) whose elements have
strictly £-quasi-continuous m-versions.

(iii) There exist G D(~), n E N, having strictly £-quasi-continuous
m-versions E N, and a strictly £-exceptional set N C E
such that separates the points of N.

It is well-known that a Dirichlet form (?, D(~)) on L2 (E; m) is strictly
quasi-regular if and only if it is associated with a Hunt process (see [19
V.2] for details). It is also well-known that if 1 E D(~) and A is an

isolated point of Eo, then (~, D(~)) is quasi-regular if and only if it is
strictly quasi-regular (cf. [19 Proof of V.2.15]). For the rest of this section
we assume that our Dirichlet form (~, D (~) ) is strictly quasi-regular. Then,
in particular, each u G D (~ ) has a strictly £-quasi-continuous m-version
f (cf. [19, V.2.22 (iii)]).

Let be a strict £, -nest specified in Definition 2.5 (i). Set:

Yl :== UkEN Ek.

PROPOSITION 2.6 ([19, V. 2.23]). - Let ct > 0. There exits a kernel Ra(z, .)
from (E, B(E)) to (Yl, satisfying

(i) is a strictly ~-quasi-continuous version of Gaf for each
f E L2 (Yl ; m).

(ii) c~Ra (z, Y1 )  1, for all z E E.
The kernel is strictly unique in the sense that if K is another kernel

satisfying (i), then .K ( z, ~ ) = for strictly z E E.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



7APPROXIMATION OF DIRICHLET PROCESSES

Let Q+, ~+ denote the non-negative respectively the strictly positive
rational numbers. Adapting the argument of [ 19, IV. 3.4, 3.10 and 3.11 ] to
the strictly quasi-regular case, we have the following results.

LEMMA 2.7. - There exits a countable family Jo of bounded strictly ~-
quasi-continuous 1-exeessive functions in D(~) and a Borel set Y C Yl ( Yl
as specified in Proposition 2.6) satisfying:

We now define for a E Q+, A E (13(Y~) := nY~))

and set

Note that by our convention = 0 for all u E Jo. Hence the following
lemma is clear.

LEMMA 2.8. - Let and J be defined by (2.7) and (2. 8)
respectively. Then the properties ( i) and (iv) of Lemma (2.7) remain true
with Jo, Y, and Ra replaced by J, Yo and R~ respectively.

3. COMPOUND POISSON PROCESSES ASSOCIATED
WITH ~03B2 AND THEIR WEAK LIMIT

Throughout this section (~, D (~) ) is a strictly quasi-regular Dirichlet
form. Let J, Y, and as in Lemma (2.8).

Vol. 34, n° 1-1998.



8 Z.-M. MA et al.

For a fixed Q~_, let ~Y~~l~), k = 0, l, ...~ be a Markov chain in
Yo with some initial distribution v and the transition function and let

be a Poisson process with parameter /3, i.e.,

Assume that is independent of ~Y~ ~1~~, k = 0, 1 , ... ~ and define

then is a strong Markov process in Y~. Let denote the set

of all bounded Borel functions on Yo and define

It is known that is the transition semi group of i.e., for
all f E t, s > 0, we have

(see [12, IV. 2]). Note that is a strongly continuous contraction
semigroup on the Banach space (I3b(Y~), ~~’~~x;) 
and the corresponding generator is given by

for all u e B&#x26;(~A) .

On the other hand, if we define

(recall that (G,~)~~Q is the resolvent of (£, D(~~~, then ~~ is a Dirichlet
form on and the associated semigroup is given by

Comparing (3.6) with (3.3), we see that (Xf) is a process associated with
E~. More precisely, let D~o ~0, oo~ be the space of all cadlag

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



9APPROXIMATION OF DIRICHLET PROCESSES

functions from [0,oo) to E., equipped with the Prohorov metric (see
[12, Chap. III]). Let (Xt)t>o be the coordinate process on Let P~
be the law of (X03B2t) on 03A9E0394 with initial distribution 8x for x E Y.;
and for x E E B Yo let pff be the Dirac measure on such that

= x for all t > o ~ = 1. Finally, let be the natural filtration

of (Xt)t>o (completed w.r.t. cf. e.g. [19, IV. 1].) Then we have:

PROPOSITION 3.1. - 

Hunt process associated with ~~, i.e., for all t > 0 and any (m-version of)
U E m-version of Tfu.

Indeed, the fact that .I~t~l ~ is a Hunt process can be checked by a routine
argument following [17] (see e.g. Section 4 below). The association of ~e
and is an easy consequence of (3.2), (3.3) and (3.6).

Remark. - For a general Dirichlet form (~, D(~~) (not necessarily quasi-
regular) on L2 (E; m), and for an arbitrary j3 > 0 one can always construct
a kernel on (Eo, ,~3(Eo)~ sucht that is an m-version of 

for f E L2(E;m). Hence one can always construct a Hunt process 
associated with ?~ as above.

Now we want to prove the uniform tightness of (X~~, ~ ~ Q~.
To this end we need to embed Yo into another space E which is

quasi-homeomorphic to E, in the sense of [9].
Let J be as specified in Lemma 2.8 and let J We set

gn = n E N. Define for Yo

It is easy to check from Lemmas 2.7, 2.8 that N} separates the
points of Ya . Hence, p is a metric on Let E be the completion of Yo
with respect to p. Then E is a compact metric space. We extend the kernel

to the space E by setting for a E ~~, A E 

Let be defined by (3.1). Then can be regarded as a cadlag
process with state space E. We use the same notation as before: Pa denotes
the law of in oa) with initial distribution b~ . Each g~ in (3.7)
is uniformly continuous w.r.t. p and hence extends uniquely to a continuous
function on E which we denote again by gn .

Vol. 34, n° 1-1998.



10 Z.-M. MA et al.

THEOREM 3.2. - E ~+ ~ is tight on oo~ for any x E E.

Proof - (cf. [12, Proof of Theorem 2.5 in Chap. IV]) Since E N}
separates the points of E, we can apply [12, Ch. III, Theorem 9.1] (due
to the same arguments as in the proof of [12, Ch. III, Corollary 9.2])
to prove the assertion once we have shown that for any finite collection

 1~  N~, the laws of are

uniformly tight on f2RN. Here is constructed in the manner of (3.1)
but with extended by (3.8) and with initial distribution 8x. Since
gi E D(Lf3), it follows that for 1  ~  N

where is an (F03B2t)-martingale. Note that by (3.8), (3.4) and
Lemma 2.8 = Therefore for any T > 0,
using the contraction property of ~.I-~~ we have for all 1  z  N

This together with Theorem 9.4 in [12, Chap. III] gives the (uniform)
tightness of the laws of and the

proof is completed. D 

Below for a Borel subset S C Y, we shall write ~‘o for S U ~ ~ ~ .
Except otherwise stated the topology of ,~a is always meant to be the one
induced by the metric p. Note that the p-topology and the original topology
generate. the same Borel a-algebra on So.
The rest of this section is devoted to the following key theorem.

THEOREM 3.3. - There exists a Borel subset Z c Y and a Borel subset
with the following properties:

(i) strictly ~-exceptional.

(iii) If w E SZ, then ut , wt_ E Zo for all t > ~. Moreover, each w E SZ is
cadlag in the original topology of Y0394 and w° = 03C9t- for all t > 0, where
w°_ denotes the left limit in the original topology.

(iv) If x E ~o and Px is a weak limit of some sequence with

. ~~ E ~-~~-~ ~~ T ~~ then = 1.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



11APPROXIMATION OF DIRICHLET PROCESSES

The proof of Theorem 3.3 relies on several lemmas which may be of
their own interest.

LEMMA 3.4. - There exists a strictly ~-quasi-continuous I-excessive
function h E such that 0  h  1 pointwise on Y, where Y is as
speciefied in Lemma 2.7.

Proof - > 1 ~ be the countable family Jo specified in

Lemma 2.7. Since Jo separates the points of Yo and by our convention
h~ ( 0 ) _ ~ for all j, for each x E Y there exists at least one hj such that

0. We now define

Then h is as desired. 0

We now fix a function 03C6 E Ll (E; m) n L2 (E; > 0. Set g = 
It is known (cf. [19, V.2.4]) that for every open set U C E, there exists
a function eu e L°° (E; m) such that

LEMMA 3.5. - Let Un C E, n > 1 be a decreasing sequence of open
sets. If ~ 0, as n -~ oo, then we can find m-versions en of

such that

Proof - Let h be the 1-excessive function specified. in Lemma 3.4. In
what follows for simplicity we identify a function in D(~) with (one of) its
strictly £-quasi-continuous m-version(s). Let U C E open. We first prove
that there exists an m-version eu E L°°(E; m) satisfying (3.11) such that

and eu A h is strictly £-quasi-continuous. Set Su := E S, ~c  1},
where S is as defined in Section 2.

According to the proof of Lemma 2.4 in [19, Ch. V] and since S is upper
directed (cf. [19, p. 155]), we can take f n E S, f ~  1, n E 
such that eu can be choosen as

Vol. 34, n° 1-1998.



12 Z.-M. MA et al.

where un = (nh) A 1. We claim that eu is the desired function. Since

strictly ~-q.e. on U and 1, (3.12) follows.
Since ( f n is 1-excessive and strictly £-quasi-continuous, we have

Letting n -~ oo, we get (3.13).
Since (fn A h is 1-excessive, it follows from [19, III. 1.2(iii)] that

where K is the constant from the sector condition satisfied by (~, D{~~) (see
[19, I.(2.3)]). Since r eU 039B h in L2(E;m), we can apply [19,
I. 2.12 and III. 3.5] to conclude that eu A h is strictly £ -quasi-continuous
and eu A h E D{~) with

Now we can easily complete the proof of the lemma as follows.
For n E N let e~ be the m-version of eUn satisfying (3.11)-(3.13),

constructed above with U replaced by Un . By (3.11) and the fact that
0, we have that en 1 0 m-a.e. and hence, en A h 1 0 m-a.e.

On the other hand, from (3.15) we have that

Thus again by [19, III. 3.5], the Cesaro mean cvn = n ~3 1 en~ n h of some
subsequence converges to zero strictly ~-quasi-uniformly. But
(e~ l~ is strictly decreasing, thus e~ n h 1 0 strictly 
Hence, e~ 1 0 strictly This completes the proof. D

LEMMA 3.6. - In the situation of Lemma 3.5 there exists S E 
S C Y such that E ~ S is strictly ~-exceptional and the following holds:

Proof - The proof is just a modification of the proof of IV. 3.11
in [19]. Indeed, by Lemma 3.5, there exists a Borel set 81 C Y such that
assertions (ii)-(iv) hold pointwise on ~’~ and is strictly ~-exceptional.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



13APPROXIMATION OF DIRICHLET PROCESSES

Thus we can find a Borel set S2 C 51 such that Ra (x, Y - S’1 ) = 0 for
all x E 52, cx E Q+ and E B S2 is strictly £-exceptional. Repeating this
argument, we get a decreasing sequence ( ~’n ) n > 1 such that E ~ S~ is strictly
£-exceptional and Ra(x, Y - 5n) = 0 for all x E E ~+. Clearly,
S :== is the desired set. D

Proof. - Lemma 3.6 (i) implies that S.) = 0, E S.,
j3 E ~+, n > 1. Therefore, if Y~ (l~j, 1~ = 1,2,... is a Markov chain

starting from some x E ~’a with transition function then

Clearly, this implies

which in turn implies (3.16). D

Recall that by our convention any function f on E is extended to E.
by setting ~ ( ~ ~ = 0. In the next two lemmas we consider the situation
of Lemma 3.6.

Proof - By Lemma 3.6 (i) and (iii), (2.7), and induction it is easy to see
that ((/3 -  for all x E S~. Hence, for x E ,~o

This gives

Vol. 34, n° 1-1998.



14 Z.-M. MA et al.

But f (x) holds for all x E E and f E and

the proof is completed. D

Define for n E N the stopping time,

LEMMA 3.9. - Let 03B2 E Q*+, ,Q > 2, and M03B2 .-

oo), be the canonical realization of the
Markov process (X~). Then

where Ef denotes expectation w. r. t. P~.
Proof - Since by (3.16) So is an invariant set of M~, the restriction

of M~ to ~a is still a Hunt process. Applying Lemma 3.8 we get

Since obviously for every x (E ~S‘o

we have by Lemma 3.6 (ii) that for all x E ~S’o

Therefore, (3.17) follows from (3.18). D

Proof of Theorem. 3 . 3 . - Take a strict £-nest such that

Jo C G’~ (~F~l~ ~), ’ -F’~1~ U ~~~ is compact, and F~1~ C Y. Let
Uk := E ~ F~~~ and Tk :== inf{t > 0 I Xt E We can find a subset

8(1) E 3(E) satisfying Lemma 3.6 (i)-(iv). Without loss of generality we
may assume that 8(1) C F~l~. Fix any T > 0, ~ E ~+, ~3 ~ 2,
kEN, and x E By Lemma 3.9,

Since the trace topology of E on U ~ 0 ~ is the same as the original
one, B[ := {w E E U ~0~, for all t  T} is a

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



15APPROXIMATION OF DIRICHLET PROCESSES

closed subset of D~ [0, 00 ). Thus, if Px is a weak limit of some sequence
)jEN with /3j T oo, /3j E Q+, then

By Lemma 3.6 (iv) it follows that

Let SZ1 .- Then Px = 1 for x C and SZ1
satisfies Theorem 3.3 (iii) with Zo replaced by F~ 1 ~ U ~ ~ ~ . We now
take another strict £-nest ( F~ 2 ~ ) ~ > 1 such that F~ 2 ~ C for each k and

F~2~ C ~‘~1~. Repeating the above argument we get s~2~ C F~2~
and O2 C Hi, satisfying the same property as above. By continuing this
procedure we obtain the following sequences of objects: strict £-nests

Borel sets such that Theorem 3.3 (ii) holds with Zo
replaced by S(n)0394 and

and finally Borel sets SZn C DE ~0, oo~ such that

~ satisfies Theorem 3.3 (iii) with ~ replaced by U {A}
,and satisfies Theorem 3.3 (iv) with replaced by We now define
03A9 :=~n~1 03A9n, Z :- = F(n)k). Then Z and 03A9 satisfy
Theorem 3.3 (i) - (iv). 

- - 

D

4. HUNT PROCESSES ASSOCIATED WITH (~D(?))

All the assumptions and notations are the same as in the previous section.
Let e Q~} be as specified in Theorem 3.2.
LEMMA 4.1. - If we define for 03B1 e Q*+, /3 (E Q*+,

Vol. 34, n° 
° 1-1998.



16 Z.-M. MA et al.

then

Proof - Note that (3.2) and (3.4) hold also in the space Bb (E) . Therefore,
if Ra is given by (4.1), then one can directly check that

proving the lemma. D

LEMMA 4.2. - Let x E E and let Px be a weak limit of a subsequence
with ,~~ T oo, ,~~ E ~~. Define the kernel

Then

Ih particular, the kernels Pt, t > 0, are independent of the subsequence
)j>I

Proof - Since P03B2jx ~ Px weakly in DE[0, oo ), we have by [ 12,
Chap. III, Lemma 7.7 and Theorem 7.8]

for any f E Cb(E) and a > 0. But by Lemma 4.1.

for all f E (due to the resolvent equation). Hence, (4.3) holds for
all f e Cb(E). The usual monotone class argument implies that (4.3) holds
also for all f E Bb (E) . The last assertion is derived from (4.3) by the right
continuity of Pt f(x) in t for f E Cb (E) and the uniqueness of the Laplace
transform. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



17APPROXIMATION OF DIRICHLET PROCESSES

Let Z be as specified in Theorem 3.3.

THEOREM 4.3. - For every ~ . E z~ the uniformly tight family
E ~+ ~ has a unique limit Px for ,~ T oo. The process

~), (Xt)t>o, is a Markov process with the transition

semigroup (Pt)t>o determined by (4.3). Moreover, E za, Xt- E
Z0394 for all t > 0] = 1 for all x E zo.
Proof - The last assertion follows from Theorem 3.3. In view of the last

assertion and Lemma 4.2, we only need to show that if x E zo and Px is
a weak limit for some sequence for ,~~ ~’ oo, then

for any n > 1, t 1, t2 , ... , tn > 0 and f l , ~’~ , ... , ~n E ,t3b ( Zo ~ .
By induction, the above formula trivially follows from

So, it remains to prove (4.5). To this end, we assume first that

f~, ~2, ... , fn_1 E Cb(Z.) and fn = for some ex E Q!,_, c~ > 1,
u E J (cf. (2.8)). In this case

for 03B2 E Q+ and any T > 0, and for 03B22 ~ Q*+

By a simple calculation

Vol. 34, n° 1-1998.
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where w :== u) - (aRau - ~c). Consequently, by (4.7)

This together with (4.4) shows that

as {3 -~ +00.

In particular, Ptfn(x) is jointly continuous in (t, x). Since Px
weakly, by [12, Chap. III, Lemma 7.7 and Theorem 7.8] and Lebesgue’s
dominated convergence theorem we have that

Because of (4.10), it follows that
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where we used the Markov property of in the second to last step.
(4.11 ) and (4.12) yield

Since the above integrands are right continuous, (4.13) implies (4.5) for
such f1, ... , Applying the monotone convergence theorem in connection
with Lemma 2.8 twice and also the usual monotone class argument, we
conclude that (4.5) holds for all ~l , ... , ~ f n E D

In what follows let in Theorem 4.3 . Let !1 be specified
by Theorem 3.3. Since P~ (S~) = 1 for all x E Z~, we may restrict Px and
the coordinate process ( X t ) t > o to Let be the natural filtration

of (Xt)t>o.
THEOREM 4.4. - 84 := (S~, (Xt)t>o, is a Hunt process

with respect to both the p-topology and the original topology.

Proof - The p-topology and the original topology generate the same
Borel sets. Hence, by virtue of Theorem 3.3 (iii), ~I is a Hunt process
in the original topology if and only if so is it in the p-topology. Thus we
discuss only the p-topology case. In this case Ra f is uniformly continuous
on Z~ for each a E Q+ and f E J. Therefore, if we set

~-C : = {/ E ,~3b ( Zo ) : Px [t ~ Raf(Xt) is right continuous on [0, ]
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then H D J. Using [10, Theorem VI. 18] one can easily check that H
is a linear space such that f n E H, fn i f bounded, implies f E H.
Therefore, by a monotone class argument we see that H contains 
Now, the strong Markov property of 1M follows from [29, (7.4)]. It remains
to show the quasi-left-continuity of (Xt)t>o. To this end let be

an increasing sequence of (Ft)-stopping times with limit T. Assume T is
bounded. Define V(w) := Then following the argument
in the proof of [19, Ch. IV. 3.21] ] one can show that

for all g E and f E J. Consequently, using twice the monotone
class argument we obtain that

for all x Z~)-measurable bounded functions h. This fact is then

enough to derive the quasi-left-continuity of (Xt)t>o. (See e.g. the argument
in the proof of [19, Ch. IV. 3.21] for details.) Thus, the proof of Theorem
4.4 is complete. D

Final remarks 4 .5. - (i) Let llf be the trivial extension of IM to Eo
(i.e., each point x E E B Z~ is a trap for cf. [19, IV. 3.23]). Then
one can easily derive that 1M is a Hunt process which is unique up to the
usual equivalence (cf. e.g. [19, IV. 6.3]), and by (4.3) IM is associated
with (~, D(~)).

(ii) This paper has been written in the framework of Dirichlet forms in
order to be able to refer to [19]. But the results easily extend to the more
general case of semi-Dirichlet forms as defined in [21].

(iii) If (E’, D (~ ) ) is quasi-regular but not strictly quasi-regular, then

one cannot expect that converges weakly to a process associated with
(~, D (E ) ) because in this case the sample paths of the associated process of
(~, D(~~) may fail to be in ~~, oo) may not exist or may not be in

Nevertheless, one can always make use of the local compactification
method to obtain a regular Dirichlet form (~~, D (E# ) ) which is quasi-
homeomorphic to (~, D (~) ) (cf. [19, Chap. VI], [2], [9]). Thus the result
of this paper applies to (~~, D(~#~~ since any regular Dirichlet form is
strictly quasi-regular ([19, V. 2.12]). In particular, the approach given in
this paper gives a new way to construct the associated process of a quasi-
regular Dirichlet form. This new construction is completely different from
those described in [15], [28], [19] respectively. By comparison with the
construction in [12] it shows the significance of all the finer techniques
developed in general Dirichlet space theory, since they are necessary in
order to handle the much more general situation studied in this paper.
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