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ABSTRACT. - Spitzer’s condition holds for a random walk S if the

probabilities pn - P {Sn > 0} converge in Cesaro mean to p, and for a
Levy process X at oo (at 0, respectively) if t-1 .~0 t p ( s ) d s -~ p as t - oo(0),
where p ( s ) = > 0}. It has been shown in Doney [4] that if 0  p  1
then this happens for a random walk if and only if /~ converges to p. We
show here that this result extends to the cases p = 0 and p = 1, and also
that Spitze.r’s condition holds for a Levy process at oo(0) if and only if
p(t) - p oo(0).

Key words: Stable laws, ladder variables, arc-sine law, local limit theorems, Wiener-Hopf
factorisation.

RESUME. - Une marche aleatoire S verifie la condition de Spitzer si

Pn = P{Sn > 0} converge en moyenne de Cesaro vers p. Doney [4] a
etabli que pour 0  p  1, ceci a lieu si et seulement si pn converge vers p.
On montre ici que cette equivalence reste vraie pour p = 0 et p = 1. Pour
un processus de Levy X, l’analogue de la condition de Spitzer a l’infini
(respectivement a l’origine) est que t-1 fo p(s)ds - p quand t - oo (0),
ou p ( s ) = > 0}. On prouve que cette condition est satisfaite si et
seulement si p(t) - p quand t - oo (0).
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168 J. BERTOIN AND R. A. DONEY

1. INTRODUCTION AND RESULTS

Spitzer’s condition holds for a random walk S = (5~, 0) if

This condition plays a key role in fluctuation theory, particularly when
p E (0,1). It is then necessary and sufficient for the generalized Arc-sine
theorem to hold for the proportion of time spent in the positive half-line by
the random walk, and also for first upwards passage times Sn > .c}
(x > 0) to be in the domain of attraction of a stable law of index p. The
cases p = 0 and p = 1 can also arise in ( 1 ), but are of a somewhat different
nature; for example in these cases ( 1 ) is equivalent to the proportion of
time spent in the positive half-line having a limiting distribution which is
degenerate (at 0 and 1 respectively).
A question about Spitzer’s condition which has puzzled probabilists

since Spitzer’s original paper [8] is whether or not ( 1 ) is equivalent to the
apparently stronger statement

By exploiting a local limit theorem and an appropriate formula for
> 0~, Doney [4] has given an affirmative answer to this question

when p E (0,1). Harry Kesten has pointed out that the result is still valid
in the cases p = 0,1 and produced a proof of a quite different nature. He
has also kindly agreed to our giving his proof here, so that we can now
state the complete result:

THEOREM 1. - For any random walk S and for any 0  p  1, the
statements (3) and (4) are equivalent.
However the main purpose of this note is to discuss analogous questions

for a Levy process X = (Xt, t > 0). There are actually two questions,
because the obvious analogues of ( 1 ) and (2), which are

and

respectively, make sense both as t - oo and as t -~ 0+. The fact that (3)
is necessary and sufficient for the Arc-Sine theorem to hold is well-known
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169SPITZER’ S CONDITION FOR RANDOM WALKS AND LEVY PROCESSES

(recent proofs of this old result are available in Getoor and Sharpe [7] and
Theorem VI.14 in [1]; see also [2]). The importance of the "large t" version
of (3) for the tail behaviour of first passage times inf ~t : Xt > .r} (x > 0)
can be found in Theorem VI.18 of [ 1 ] . Again (4) looks obviously stronger
that (3); nonetheless the following analogue of Theorem 1 holds.

THEOREM 2. - For any Lévy process X and for any 0  p  1, the

statements (3) and (4) are equivalent (as t -~ oo, or as t --+ 0-~-).
This paper is organized as follows. Section 2 presents Kesten’s argument

to prove Theorem 1 in the case p = 0,1, and shows how Theorem 2 for
large times can be reduced to Theorem 1 by looking at the random walk
(Xn, n E N) (this trick is clearly not available for small times). Theorem 2
is established for small times in Section 3. We treat the case p = 0,1, and
then give two different proofs for 0  p  1. The first is the simplest; it is
based on a duality identity for the ladder time processes and does not use
any local limit theorem. The second is essentially an adaptation of Doney’s
method for random walks; in particular it requires a version of the local
limit theorem for small times. Though this is more involved than the first
argument, it relies on some not so well-known facts on Levy processes
which may be of independent interest.

2. LARGE TIMES

2.1. The case p = 0,1 in Theorem 1

Suppose that S = (5~~ > 0) is any random walk with 5o = 0. The
proof of Theorem 1 for p = 1 hinges on the following observation, which
may be of more general interest.

LEMMA 1. - (i) Suppose that n is such that pn = > 0~ E (0, 1),
and for any 0  E  1 write 03B4 = 8(E,n) = ( 1 - Then for any
fixed integer r > 2

(ii) If {ni, i > 1} is a subsequence of the integers such that p(ni)  l,
p(ni) -~ l, then

Proof. - (i) We define qn = qn (E) to be the conditional E-quantile of
In = given Sn > 0, so that 0 and
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170 J. BERTOIN AND R. A. DONEY

In particular,

Also, writing a(A) for the time that S first enters A, we have

Using (6), this gives

so there exists £ = £(E,n) ~ n such that > -q,L} > 1 - 6.
Now consider the event

On this event we clearly have Sm > 0 for n + ~ ~ m  rn + ~ and
recalling the estimate (5) follows.

(ii) Just observe that 6(e, ni ) -~ 0 as i - oo. D
It is now easy to establish Theorem 1 for p = 0,1. Suppose that

n-1 ~i p~.,.L -~ 1; then either pn = 1 for one (and then all) n > 0, or
pn  1 for all n. It is easy to see that in the latter case there exists a

subsequence > I} such that p(ni) -~ 1 and 2 for all i.
Now for all large n we can find i such that 4nz > n > 2ni, and by (ii) of
Lemma 1, it follows that p~ - 1. Of course if n-l ¿~ 0 the result
follows by considering - S, it being well known that = 0) - 0 (see
e.g. Equation (5) in Spitzer [9] on page 72).

2.2. The case t --~ oo in Theorem 2

Let X = ( X t , t > 0) be any real-valued Levy process and put
p(t) = P{Xt > 0~. The key result for the ’large t’ case is
LEMMA 2. - It holds that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



171SPITZER’S CONDITION FOR RANDOM WALKS AND LEVY PROCESSES

Proof - Let Mn = ] and, given c > 0, choose I~~
such that P{Mn >  e. Then for any t E [0, 1]

and hence

Now it is known that the second term on the left converges to zero

uniformly in t as n - oo (see e.g. Lemma 2.5 of Getoor and Sharpe [7]),
so we deduce that

The result follows by applying the same argument to -X. D
The "large t" case in Theorem 2 is now straightforward. More precisely,

consider the random walk S = (Sn = Xn, n e N). It is immediate from
Lemma 2 that (3) holds as t -~ oo if and only if ( 1 ) holds, and that (4) is
equivalent to (2). Hence Theorem 2 follows from Theorem 1, which was
proved for p E (0, 1) in Doney [4] and in Section 2.1 for p = 0, 1.

3. SMALL TIMES

The purpose of this section is to prove Theorem 2 when t - 0+. The
case when the Levy process X = (Xt, t > 0) is a compound Poisson
process with drift is degenerate from the viewpoint of Theorem 2 (because
we are working with small times), and will be implicitly excluded in the
sequel. In particular, this implies that P ~ X t = 0} = 0 for all t > 0, and
that the mapping t -a p(t) = P{Xt > 0~ is continuous on t E (0, oo)
(because X is continuous in probability).

3.1. The case p = 0,1

The argument relies on a simple measure theoretic fact.

LEMMA 3. - Let B C [0, OO) be measurable set such that

where m denotes Lebesgue measure. Then B + B ~ (0, E) for some E > 0.

Vol. 33, n ° 2-1997.
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Proof. - Pick T > 0 such that t-1m(B n [0, t] ) > 3/4 for all t  T. Then

Suppose now that there exists t  ~T such that 2t ~ B + B. Then for
every s E [0, t] n B, 2t - s E Be n ~t, 2t] and therefore

and this contradicts (7). D

We are now able to complete the proof of Theorem 2 (as t - 0+)
for p = 0,1. Obviously it suffices to consider the case p = 1, so assume

t-1 ; p(s)ds ~ 1, and for 8 E (0,1) consider B = {t : p(t) > 8}. Then
B satisfies the hypothesis of Lemma 3 and we have that B + B D (0, e)
for some e > 0. For any t E (0, e) choose s E (0, t) n B with t - s E B,
so that p(s) > b and p(t - s) > 8. But by the Markov property

Since 8 can be chosen arbitrarily close to 1, we conclude that
= 1.

3.2. A first proof for the case 0  p  1

Recall the ladder time process L -1 (that is the inverse local time at the
supremum), is a subordinator. According to a formula due to Fristedt [6],
its Laplace exponent ~ is given by

See for instance Corollary VI.10 in [ 1 ] . The Laplace exponent $
corresponding to the dual Levy process X = -X then satisfies

(this follows from the Frullani integral, see e.g. Equation VI.3 in [ 1 ] ). We
deduce from (8) that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Suppose now that (3) holds as t -~ 0+. By Theorem VI.14 in [ 1 ], this

implies that ~ is regularly varying at oo with index p, and also that
is regularly varying at oo with index 1 - p. Because 03A6 and  are

Laplace exponents of subordinators with zero drift, we obtain from the
Levy-Khintchine formula that

where T (respectively, T) is the tail of the Levy measure of the ladder time
process of X (respectively, of X). We now get from (9)

By a change of variables, the right-hand-side can be re-written as

Now, apply a Tauberian theorem, the monotone density theorem and the
uniform convergence theorem (see Theorems 1.7.1, 1.7.2 and 1.5.2 in [3]).
For every fixed E E (0, 1), we have uniformly on u E [~ 1 - c] as t - 0+:

Recall p(t) depends continuously on t > 0. We deduce from (10) that

and as ~ can be picked arbitrarily small, p. The same

argument for the dual process gives P ~Xt  0) > 1 - p,
which completes the proof.

3.3. A second proof for the case 0  p  1

A first goal is to invert Fristedt’s formula, in order to express the one-
dimensional distributions of the Levy process in terms of the ladder process
(L-l, H), where L-1 is the ladder time process (that is the inverse local

Vol. 33, n° 2-1997.
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time at the supremum), and H(t) = (t > 0) the ladder height
process. The random walk version of this result is an important fluctuation
identity in discrete time, which is known as the Baxter-Spitzer formula.
We refer to Feller [5], Lemma 1 on page 605, for a proof based on the
Wiener-Hopf factorization; see also Equation (9.3) on page 424.

LEMMA 4. - We have the following identity between measures on
(0,oo) x (0,oo);

Proof - We show that both sides have the same bivariate Laplace
transform. Specifically, if K(A, ~1) denotes the Laplace exponent of the
bivariate subordinator (L-l, H), put

Then for A > 1 the Frullani integral gives

Writing the right-hand-side in terms of L-1 and H gives

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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On the other hand, Fristedt’s formula for ~ is (see Fristedt [6] or

Corollary VI. 10 in [1])

Hence, for A > 1,

so that

Comparing ( 11 ) and ( 12 ), the result follows. D

We next give a local limit theorem which is more general than we need.

PROPOSITION 1. - Suppose that Y = (Yt, t > 0) is a real-valued Levy
process and there exists a measurable function r : ( 0, oo ) --+ ( 0, oo ) such
that Yt/r(t) converges in distribution to some law which is not degenerate
at a point as t -~ 0+. Then

(i) r is regularly varying of index 1/cx, 0  0152 ~ 2, and the limit
distribution is strictly stable of index a;

(ii) for each t > 0 Yt has an absolutely continuous distribution with
continuous density function pt ( ~ );

(iii) uniformly for x E R, r(t)pt(xr(t)) = p{~~ (x), where 
is the continuous density of the limiting stable law.

Proof - (i) This is proved in exactly the same way as the corresponding
result for t - 00.

(ii) denotes the characteristic exponent of Y, so that

then we have ~M(A) as t - 0+, where is the
characteristic exponent of a strictly stable law of index ~. Because we have
excluded the degenerate case, the real part of the characteristic

Vol. 33, n° 2-1997.
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exponent (which is an even function of A), is regularly varying of index
a at +00. It follows that for each t > 0, exp -~(-) is integrable over R.
Consequently (ii) follows by Fourier inversion, which also gives

and

(iii) In view of the above formulae, it suffices to show that

I = exp ~-tRe~(~/r(t))~ is dominated by an integrable
function for some K  oo and all small enough A. But this
follows easily from Potter’s bounds for regularly varying functions. (See
Bingham et al. [3], Theorem 1.5.6.) D

We assume from now on that (3) holds as t - 0+, and write

= ~(A,0) for the Laplace exponent of the subordinator L -1. Then
(see [ 1 ], Theorem is regularly varying at oo with index p. It

follows that if we denote by a the inverse function of 1/~(1/’), then a is
regularly varying with index 1/p and L-1(t)/a(t) converges in distribution
to a non-negative stable law of index p as t - 0+. In view of Proposition 1,

has a continuous density which we denote by gt ( ~ ), and a(t) gt (a(t) .)
converges uniformly to the continuous stable density, which we denote by
~~(-). Applying Lemma 4, we obtain the following expression for p(t)
that should be compared with (10).

We are now able to give an alternative proof of Theorem 2 for 0  p  1

and t -~ 0+. By a change of variable,

for any s > 0. We now choose s = 1/~(1/~), so that a ( s ) = t, and note that

When ~2014~0+,~~0+ and since a is regularly varying with index 1/p,
converges pointwise to It then follows from Proposition 1

that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Recall that p(t) depends continuously on t > 0, so that (13) and Fatou’s
lemma give

Replacing X by -X gives 0~  p, and the result
follows.

4. REMARKS

(i) It is easy to adapt the argument given in Section 3.2 to large times
(for a Levy process or a random walk).

(ii) Although we don’t actually need it in this paper, we would like to
point out that there is a local limit theorem for large t for Levy processes,
and that the following result can be established in exactly the same way
that the corresponding random walk result was in Stone [10].

PROPOSITION 2. - Let X by a Lévy process which is not a compound
Poisson process whose jump measure is lattice. Suppose there exists a(t)
and b(t) such that (X (t) - converges in distribution to a stable
law as t -~ oo. Then, uniformly for h in compact subsets of IR+ and x E IR,

where is the continuous density function of the limit law.
(iii) We would like to thank Harry Kesten for allowing his argument to

be given in Section 2.1, and would also like to point out that his argument
can be adapted to deal with the ’small t’ Levy process case. On the other
hand, the argument given in Section 3.1 for this case can also be adapted
to deal with the random walk case.

(iv) We would also like to thank Cindy Greenwood, who suggested to
one of us the usefulness of Lemma 4.
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