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Fast oscillating random perturbations
of dynamical systems with conservation laws

A. N. BORODIN (*) and M. I. FREIDLIN (**)

University of Maryland

Ann. Inst. Henri Poincaré,

Vol. 31, n° 3, 1995, p. 525. Probabilités et Statistiques

ABSTRACT. - We consider fast oscillating random perturbations of

dynamical systems with first integrals. We prove that if the dynamical
system is ergodic in the subset of the phase space where the first integrals
are constants, then the evolution of the first integrals in a proper time scale
is described by a diffusion process.

Key words: Averaging principle, random perturbations of dynamical systems, conservation
laws, diffusion approximation.

RÉSUMÉ. - On considère des systèmes dynamiques avec des intégrales
premières perturbés par des perturbations aléatoires à oscillation rapide. On
montre que si le système dynamique est ergodique sur Ie sous-ensemble
de 1’ espace de phase dans lequel les premières intégrales sont constantes
alors 1’ evolution de ces intégrales dans une escale de temps approprié est
decrite par un processus de diffusion.
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486 A. N. BORODIN AND M. I. FREIDLIN

1. INTRODUCTION

Consider the equation

Here (t is a stationary stochastic process, c is a small positive
parameter, and vector field b (x, z) suppose to be smooth enough. Denote
b (x) = Eb (x, (t). One can prove that under some mild assumptions
concerning the ergodicity of (t the averaging principle is hold. The processes
xe (t) converge in probability as e j 0 uniformly on any finite time interval
[0, T] to the solution of the averaged equation

This means that for any 8, T &#x3E; 0

(see, for example, [9], [5], Ch. 7), and we can look on (1.1) as a result of
small (in the mean sense) random perturbations of the dynamical system
(1.2). Moreover, one can prove that the processes c-1/2 (Xé (t) - X (t))
converge weakly, in the space of continuous functions COT, to a mean
zero Gaussian Markov process. The last statement holds if we make certain

assumptions about the mixing properties of the noise (t (see [8], [5], § 7.1).
Let system (1.2) have a conservation law H (x) : H (X (t)) = H (x),

t &#x3E; 0; and let H (x) be a smooth function with compact connected level
sets. Since XE (t) -~ X (t) as c 1 0, H (Xé (t)) - H (X (t)) = H (x) for
any t &#x3E; 0 independent of e. To observe the evolution of H (Xé (t)) let

us rescale the time: we denote XE (t) = XE (tic). It is clear, that XE (t)
is the solution of the problem.

Now we have:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



. 487FAST OSCILLATING RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS...

We used in the last equality the fact that (x), b (x)) - 0, x E I~T,
which holds since H (x) is a first integral for system (1.2). Taking into
account that E [b (x, (s) - b (~)] = 0, one can note that

converges to a Gaussian variable as ê 1 0, if the process (s has good enough
mixing properties. Of course, the characteristics of the limiting Gaussian
distribution depend on the point x.

Taking into account that the rates of changing X~ (t) and (S/ê2 have
different order, and that XE (t) converges weakly to X (t) as ~ ~ 0, one
can expect that if the dynamical system X (t) has some ergodic properties
on the level sets { ~ : H (x) = y ~, the characteristics for the limit of
dH (XE (t)) as 0 depend only on H (XE (t)). This means that the
limiting process for H (X~ (t)) as ê 1 0 will be a diffusion process

where Wt is a standard Wiener process. Thus, the convergence to a Markov
diffusion process is a result of averaging and a Gaussian approximation due
to mixing properties of (t and of ergodicity of the non-perturbed system
on the level sets.

The formulation and the proof of the rigorous results concerning this
convergence is the goal of this paper.

In the next section we introduce the conditions, formulate the main results
and consider some examples. We consider in Section 2 the two-dimensional
case. We prove these results in Section 3.

The last section contains some remarks and generalizations. In particular,
we formulate a result for systems in Rr, r &#x3E; 2, with 1 &#x3E; 1 conservation

laws.

Perturbations- of dynamical systems. which are not ergodic on the level
sets are considered shortly in Section 4 as well. Roughly speaking, if the
dynamical system is not ergodic on the intersection of the level sets of
all first integrals under consideration, then the limiting process will not be
Markovian one. One should extend the phase space to obtain a limiting
process with Markov property. Because of non-ergodicity on the level sets
the limiting process, for example, can have something like a hysteresis
effect.

If the level sets of a first integral H (x) have several connected

components then the limiting process should be considered on a graph

Vol. 31, n° 3-1995.



488 A. N. BORODIN AND M. I. FREIDLIN

defined by the function H (x). Only then the limiting process will be

Markovian. Here the situation is similar to one considered in [FW 2, 3]
for the white-noise-type perturbations of dynamical systems. We plan to
consider those questions in the case of fast oscillating noise elsewhere.

2. MAIN RESULTS. EXAMPLES

Consider the following equation in the plane

Here (t is a stationary process with values in We assume that the

trajectories (t have at most finite number of simple discontinuities on each
finite time interval with probability 1. Equation (2.1 ) is fulfilled at the

points t where ~t~~.2 is continuous. The vector field b (x, z) supposed to be
Lipschitz continuous and b (x, z) grows not too fast. Then there exists an
unique continuous for all t &#x3E; 0 with probability 1 solution of (2.1 ). Denote

and consider the non-perturbed equation

We introduce the following conditions.
1. Assume that there exists a real valued three times differentiable function

H (x), x E RZ which is the first integral for the non-perturbed system
(2.2), i.e. H (X (t)) = H (x) for any starting point x E R2 and t &#x3E; 0.

Suppose that the set C (~) _ ~ ~ E R2 : H (x) _ ~ ~ is a closed

connected curve in the plane without intersections for any y in the

range of values of the function H. It means that H has only one
extremum point, which is an equilibrium point of the field b (x). We
can assume without loss of generality that this point is the origin 0, and
that H ( 0 ) = 0, H (x) &#x3E; 0 for x ~ 0. The trajectory X ( t ) performs
periodic motion along the curve C7(~), ?/ = H (X (0)), with some period
T (y) . Assume that T (y)  C (1 + ~). Note, that if H (x) is a first integral
for systems (2.2) and f (y) is a real function, then f (H (x)) is also a

first integral.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



489FAST OSCILLATING RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS...

2. Let

here and in the sequalC denotes a constant, not necessarily always the same.
3. Let b (x, y) be a twice differentiable function with respect to x, and

let for some p &#x3E; 8, k, l = 1,2

Later we will weaken assumptions (2.3) and (2.4) to allow H (x) and
z) ] to grow as oo .

4. Denote by the a-field generated by the process (v when

2014oo  ~  ~ ~ ~ ~ +00. Suppose that the family of 
satisfies the absolute regularity mixing condition (Kolmogrov’s condition):

where for sets A 1 x A2 , A 1 E A2 E ~?. the measures are defined
by the relations

In the special case, when b (x, z) has the form

it is sufficient to assume that the family {Nts} satisfies the strong mixing
condition (Rosenblatt’s condition):

It is known that the absolute regularity mixing condition is stronger than
the Rosenblatt condition [10]. Some sufficient conditions for these mixing

Vol. 31, n° 3-1995.



490 A. N. BORODIN AND M. I. FREIDLIN

properties and bounds for the coefficients a (T) and j3 (T) one can find
in [10].
We assume that the mixing coefficients are such that

The conditions for a (T) are assumed if b (x, z) satisfies (2.5).
5. Put

where V denotes the gradient in x, and the notation (. , . ) is used for the

scalar product. Denote

We will verify that under our assumptions these integrals are finite and
define bounded Lipschitz continuous functions D (x) and Q (x).

Let

where dl is the length element on C (y), be Lipschitz continuous in y. Note
that (x) 1-1 dl = T (y) is the period of the rotation along the curve

C (?/). It follows from our assumptions that 7 (y) and B (y) are bounded.

THEOREM 2.1. - Let ye (t) = H (X~ (t) ), where X ~ (t) is the solution of
problem (2.1 ), and H (x ) , x E R2, is the first integral for non-perturbed
equation (2.2). Let conditions 1-5 hold. Then for any T  oo the processes

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Y~ (t) converges weakly in CoT as ~ 1 0 to the diffusion process Y (t)
determined by the stochastic differential equation

where Wt is the standard Wiener process.

Now we will modify the conditions on the system (2.1 ) to include the
case of unbound functions H (x) and |b (x, z) (. Instead of conditions 2-4
we introduce the following ones.

2’. Let for some constant C and k, l, j G {1,2}

and for some ~c, 1  2,

3’. Let g (~, z) = b (x, z) - b (~). Suppose that for some constant C
and some positive function q (z)

Assume that

Vol. 31, n° 3-1995.



492 A. N. BORODIN AND M. I. FREIDLIN

4’. Let condition 4 holds with (2.6), (2.7) replaced by

and the same condition for the coefficient a (T).
THEOREM 2.2. - Let ye (t) = H (X~ (t)), where X~ (t) is the solution of

problem (2.1), and H (x), x E R2, is the first integral for the non-perturbed
equation (2.2). Suppose that conditions 1, 2’-4’, 5 hold. Then the process
Yé (t) converges as ~ 1 0 weakly in CaT for any 0  T  00 to the diffusion
process Y (t) determined by stochastic differential equation (2.8).
We give the proofs of Theorems 2.1 and 2.2 in the next section. Now

let us consider some examples.
Let H (x), x E R2, be a smooth function satisfying condition 2’. Assume

that the origin 0 is the only point where (x) = 0 and let it be the

minimum point and H (0) = 0. Let A (x) , x E R2, is a 2 E 2 matrix such
that the function g (x, z) = A (x) z, z E R2, satisfies condition (2.12).
Let (t be a two dimensional stationary process such that E~t - 0 and let
conditions 3’, 4’ and 5 be fulfilled for g (x, (t) = A (x) (t.

Consider the equation

where (xl, :~z) = C d d ~Z ~ , - is the Hamiltonian vector

field corresponding to H (x). One can look on (2.15) as on result of small
in the mean sense perturbations of the Hamiltonian system

It follows from the averaging principle (see, for example [8], [5])
that X[ converges weakly in COT, 0  T  oo, to Xt as 6’ 1 0. Thus

H (~) 2014~ H (Xt) - H (x) for small ~. But on larger, growing together
with ~-1 time intervals will change. One can apply here the
Theorem 2.2. Here

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Let K (T) = (K?3 (T) ) be the correlation matrix for the stationary process
(t = ((1, 03B62t); Kij (t) = E03B6i03B6j0. Denote K = 100 K (T) dt. The finiteness
of this integral follows from the assumption 5 if one takes into account
that E~t - 0.

One can derive from (2.17), that

Since K (T) is a positively defined function, K, and thus AK AT, are also
positively defined. Thus one can introduce a (x) such that

To write down the drift coefficient for the limiting process, we need some
notations. For any smooth vector field e (x) in RZ denote (x) the matrix

(x)), eij (x) = ~2 ~ . Then simple calculations show that

and we have the following expression for the drift

Let, for example, A (x) be the unit matrix. Then

where is the Hessian matrix for H (x) : = 
ax d~c~

Formulas (2.18) and (2.19) give the diffusion coefficient and the drift for
the limiting process.

Vol. 31, n ° 3-1995.
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Let us consider the harmonic oscillator: H (x) _ ~ and assume

that the components of the noise (t are independent and have the same

correlation function,

If, for example, we are interested in the expectation of the time ~H1 when
the energy reaches the level Hl starting from a point x with the energy
H (x )  Hi, we should solve the problem

= 0, u (y) is bounded for y E [0, Hi]. Then lim ~Ex
u (H (x)). Problem (2.20) can be solved explicitly. Note that the diffusion
coefficient is degenerate at the critical point y = 0 and the drift is positive,
so that the point y = 0 is inaccessible for the limiting process and no
boundary conditions should be added at this point.

After this paper was written (Technical Report TR92-25, 1992, University
of Maryland), an article [2] appeared where a similar problem is considered.
But the assumptions, methods, and part of results are different. In particular,
we make substantially less restrictive assumptions on the mixing properties
of the noise, and allow some growth of the right side of the equations. This
allows to consider some interesting examples. We shortly consider also the
case when the averaged dynamical system is not ergodic on the energy level,
and the limiting process should be considered on a graph (see Section 4).

Finally, we would like to mention that if the fast process (t is a diffusion
process, our results imply some new results concerning second order partial
differential equations with a small parameter. If (t is a Markov process
with finite phase space then Theorems 2.1 and 2.2 allow us to consider a
small parameter problem for some systems of partial differential equations
(compare [4], Ch. 4,6).

3. PROOF OF THEOREMS 2.1 AND 2.2

There are two main parts in the proof of these theorems. The first one
concerns the averaging with respect to the fast oscillating noise. The second
part deals with the averaging provided by the ergodic properties of the non-
perturbed dynamical system. The rates of change of the noise and of the

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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motion of the dynamical system have different order as ~ 1 0. It allows, in
a sense, to make those two averating successively.
We need some auxilliary results from [ 1 ) (Corollaries 1 and 1’).

LEMMA 3.1. - Suppose that the family of a-fields ,J~s , 0  s  t  oo,

satisfies absolute regularity mixing condition. Let G (x, w) be f°-
measurable random variable for each x E R2 , E sup G (x, w) |03B3  00

x

for some 03B3 &#x3E; 1, and the random variable 03B6(03C9) to be Ns0-measurable. Set
g (x) = EG (x, w). Then for s  t and any set A E No with P (A) # 0

LEMMA 3 .1’ . - Let

Suppose that |Uk (x) I  C, E I Vk  C for some 03B3 &#x3E; 1. Then

Lemma 2.1 holds when the condition of absolute regularity of the family
N;, replaced by the strong mixing condition and
correspondingly the coefficient /3 (T) in (3.1), (3.2) is replaced by a (T).
These lemmas allows us to use conditions (2.6), (2.7) for the proof of

Theorem 2.1. Taking into account that H (x) is the first integral we have
that (x), b (x)) = 0 for x E R. Due to this fact the increments of the
process ye(t) = H(Xé(t)) can be represented as follows.

Denote by [a] the greatest integer not exceeding a. Let 8 = ~3/2+i/(p-2)
Obviously ê5/3 ~ 8 ~ é3/2, since p &#x3E; 8. We devide any time interval

(~i? T2 ) in subintervals v~ = k 8, where k is an integer number.
Let also = TI, v[2/03B4]+1 = T2, = 1-min{ 72 -7I,8}. This

Vol. 31, n° 3-1995.
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agreement in fact implies that the length 
of the first and last subintervals

can be less then 8.

To prove Theorems 2.1 and 
2.2 we need many technical results. To

clarify the main ideas of the proof of these 
results we present first some

rough calculations.

Let A be an arbitrary subset of N;1/e2 with P (A) # 0. Note that the
process 0 _ t  T, is measurable with respect to . Using

(3.3) and the fact that as 03B4/~2 - ~, b - 0 the process weakly

depends we can for any 71  71 obtain

The first term here is negligible. Using stationarity of the process (t 
and

the definition of functions Q (x, s), Q (x) the second term 
can be rewritten

in a form which implies

At this stage we carry out the first averaging 
with respect to the fast

oscillating noise. Next one must use the 
closeness of the non-perturbed

solution X (t) with Xê (t) = Xê (.) and the fact 
that the solution X. (t)

of the equation (2.2) starting at the point x possess 
the ergodic properties.

Annales de l’ lnstitut Henri Probabilités et Statistiques
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If we choose A - 0 such that A/~ 2014~ oo , - oo, then we will have

Analogously one can obtain

Vol. 31, n° 3-1995.
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Suppose that we can prove the existence of the weak limit

where Y (t) is some limiting process. Then for the process Y (t) the
following relations for the conditional first and second moments will be
hold:

where A is some arbitrary subset from the a-field generated by the process
Y (s) up to time Tl. These two equalities will imply that Y (t) is the
diffusion process with drift coefficient B (x) and diffusion coefficient
Qz (x).
LEMMA 3.2. - The increments of the process YE (t) can be written in

the form

where

and B~ (T) is some process for which

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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(Here and in the sequel the letter B with some argument or index is used
for the random variables which are not essential for the limiting behavior
of the process YE (T). The symbol o (1) stands for a quantity which tends
to zero as e - 0 uniformly with respect to any parameters and 0 (1) is

uniformly bounded quantity.)

Proof. - Substituting in the relation

the Taylor expansion of the function F (x, ~5~~.2 ) with the remainder term
of the second order we obtain:

where

Here the symbol T is used for transposition and X s is some intermediate
point. Substituting the Taylor expansion of the vector function b (x, ~t~~2 )
with remainder term of the first order in the relation

we have

Using this relation and (2.13), we find that

Vol. 31, n° 3-1995.
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where

Sometimes to simplify the notations we denote XE 
Due to the condition (2.4) it follows from (3.7) that for s E [Vk, vk+1]

Conditions (2.3), (2.4) imply

Then, using Holder’s inequality, we have

and thus

To estimate the moments of the variable 03, k note that in view of (2.3)
and (2.5)

,

Denote

Using this notation, we can write

Since the function g (x, ~s/~2 ) is £/§/-measurable and the variable
X~ ( v~ _ 1 ) is -measurable, applying Lemma 3 .1 with’Y = p/ 2 and

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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03C3-fields N~s/~2, Nt/e2 0, vk ~ t  s  and taking into account (2.4),
(2.5), (3.11), we have

Then

Here we use condition (2.7). Let l + 2 ~ ~ and s ~,
t ~ Applying Lemma 3.1 with ~ = p/2 and a-fields

J~ ~~2 , .J~o k-1, we obtain:

and thus

Now we have

Here we used the agreement = TI, = T2, which implies that
if T2 - Tl  8, then for E83, ~ , I~ = [TI/8], we have the bound

Vol. 31, n° 3-1995.
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Let

Adding up (3.8) we obtain (3.4). The estimate (3.5) 
is the consequence of

the bounds (3.10), (3.12). D

In the following lemmas we assume that ~ e ~’ ~ and P (A) ~ 0.

LEMMA 3.3. - 77M following estimates /!oM for the expectations of

Proof - Since A ~ the variable is 

measurable and for s E the process 03B6s/~2 is N~vk/~2-measurable,
we obtain from (3.1), with ~ p, (2.4), (2.5) and (3.11):

Integrating this relation with respect to s from vk 
to we obtain the

first of the estimates (3.14). Applying Lemma 3.1 with ~y 
= p/2 and the

a-fields .J~°° 2 , we have for t  Vk  s  that

Since

we obtain the third estimate in (3.14). When v~  - t  s C using

Annales de l’Institut Henri Poincaré - Probabilités 
et Statistiques
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Lemma 3.1 with ~/~, have

and thus

From (3.2) and (3.11 ) one can deduce that

Thus Q (x, u) is an integrable function with respect to u and

Thus the second estimate in (3.14) is also proved. D

Remark 3.1. - Using (3.2) and taking into account both relations 3.11,
one can obtain the following bound for the derivative of the function

Q (x, u) :

This bound and (3.16) imply that the function

is bounded and satisfies the Lipschitz condition

As a consequence of Lemmas 3.2, 3.3, we have the following result.

Vol. 31, n° 3-1995.
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LEMMA 3.4. - AS 6- 2014~ 0

We note only that since Q (x) I  C then

LEMMA 3.5. - As ~ ~ 0 the following relations hold

Proof - Using Lemma 3.1 with "/ = p/2 and
the 03C3-fields Nvk-1/~20, N~vk/~2, we obtain

Now calculations analogous to (3.15)-(3.17) yield the first of the relations
in (3.21). To prove the other relations it is sufficient to estimate and

Epf. Let si E E Si], i = 1, 2, 3, 4,

Applying Lemma 3.1 with ~ = p/8 and a-fields we

obtain 
Vk e o

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Integrating this relation with respect to si, ti from the region { 
and taking into account the bound (see [8], Lemma 2.1 ),

we conclude that C 84. Note that the method of the proof of this
bound does not permit to improve the conditions (2.6), (2.7). It is a little

more difficult to obtain the estimate for Epf. The detailed proof of an
analogous estimate is given in ( [ 1 ], Lemma 5), and we refer the reader
to this paper. D

LEMMA 3.6. - The following equality holds as ~ 1 0:

Proof. - The left-hand side of (3.22) can be represented in the form

Using (3.1), for 03B3 = p/2, we obtain

and for

Vol. 31, n° 3-1995.
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Here we used the special choice of the parameter 8 (8 = 2 + 1 21 and
the condition (2.7). These estimates together with the first of the relations
(3.21) imply (3.22). It is necessary only to take into account the estimate
for the function D similar to (3.20), what explains the appearance of the
last term in the right-hand side of (3.22). D

LEMMA 3.7. - The following inequality holds as e  0:

Proof. - Due to (3.4) and Holder’s inequality

The function D (x) is bounded for the same reason as it holds for the
function Q (x) (see Remark 2.1). Therefore, we have from (3.22):

By virtue of (3.21)

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Now (3.23) is an immediate consequence of (3.5) and (3.22).

COROLLARY 3 .1. - For T, Tl E [0, T ~ , l = 1, 2, the following relations
hold:

It follows from this corollary (see [5], remark on p. 13) that for any
sequence 0 there is a subsequence 0 such that on some

probability space it is possible to define random processes (t),
which have the same finite-dimensional distributions as yenrn (t) and

(t) probability, where Y (t) is some

stochastically continuous separable random process.
The end of the proof of Theorem 2.1 will consist of the following

steps. We shall prove that the process Y (t) is continuous with probability
one. Then it will be shown that the finite-dimensional distributions of the

process Y (t) obtained in this way are independent of the choice of the
subsequence Moreover, it will be verified that Y (t) is a diffusion

process determined by the stochastic differential equation (2.8). Finally, we
establish the weak compactness of the E [0, T] 
of random process. All these statement together imply that the processes
ye (t), t E [0, T], converges weakly as e - 0 to the process Y (t)
determined by (2.8).

LEMMA 3.8. - The trajectories of the process Y (t) are continuous with
probability one and for 0  T2  T

Proof. - As is known from the Kolomogorov theorem (see, for example
[12]), (3.24) implies the first statement of the Lemma 3.8. To prove (3.24) let

It follows from (3.4) that

and hence the limiting behavior of the process YE (t) and YE (t) is the
same. Therefore to prove (3.24) it is sufficient to verify that

Vol. 31, n° 3-1995.
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Taking into account the convergence yoe (t) - Y (t) and Foutu’s lemma,
(3.25) and (3.26) imply (3.24).

Obviously

Due to (3.21)

The proof of the bound

require more detailed consideration. Similar calculations in a more general
case were made in [8] (Lemma 3.2) or in [1] ] (Lemma 8). For our case one
should put there (x, s) = 0,~ (T) = 0. We thus omit the proof of this
bound. The mentioned estimates imply (3.26). The Lemma is proved. D
The main estimates connected with the averaging due to the mixing

properties of the stationary process (t have been obtained. Now we pass
to the second averaging connected with the asymptotic behavior of the
solutions of the non-perturbed equation (2.2) when t - 00.

Let xe (t) = X~ (et). It is obvious that the process XE (t) satisfies the
equation

It turns out (see, for example [8], Theorem 1.1 or [5], Ch. 7) that the
process X ~ (t) converges as c - 0 to the solution X (t) of the non-
perturbed equation (2.2). The following result gives an Li estimate for
this convergence

LEMMA 3.9. - For any t &#x3E; 0
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where Land C are some constants.

Proof - It follows from (3.27) and (2.2) that

In view of the definition of the function b (x) and (2.5)

for some constant L. Then

By Gronwell’s lemma we have

and we must verify only that

Using Taylor expansion we can write

where symbol T is used for the transposition and Xs is some intermediate
point.

Because of (2.5) and (3.27)

Applying (3.2) and taking into account (3.11 ) we have
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and therefore

Thus the estimate (3.29) and hence Lemma 3.9 is proved. D

Let us consider the sums

which are contained in the relations (3.19) and (3.22) correspondingly.
These sums are similar, so we will consider only the first one. Let A satisfy
the conditions: A where L is the constant from (3.28);

0/b is an integer number. Let tl = Without loss of generality one can
assume that = TI, = T2. For arbitrary 8 and any variable v
put = 8. Then the sum Sf can be rewritten as follows

where

Let
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If one looks over the proof of Lemma 3.9, one can see that even for the
random starting point XE the estimate (3.18) holds:

Let

Since the function Q (x) satisfies Lipschitz condition (3.18) we have

LEMMA 3.10. - The following relation holds:

Proof. - Let h = H (x) for some fixed point x. The trajectory X (t) of
the equation (2.2) starting at the point x moves periodically along the curve
C (h) == {y: H (y) = ja} with some period T (h). It is easy to verify that

since we assumed that T (h)  C (1 + jc~). One obtains after the change
of variable = Xx (s):
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The integrals along the curve C (h) exist since the function Q (y) is
bounded and

Relations (3.32), (3.33) imply (3.31). D

In view of (3.31) and Corollary 3.1 the sum S~1 can be represented as
follows

"

In the last equality we use the estimate

from Corollary 3.11.
Now we have from (3.19), (3.30) and this representation:

In a similar way (3.23) can be transformed into the relation
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The following lemma gives the main relations for the limiting process
Y (t).
LEMMA 3.11. - Let be a a-field generated by the process Y (t), when

0  t  T. Let A E and P (A) ~ 0. Then the following relations hold
for the process Y (T ) for all TI, T2 , ~  72 ~ T :

Proof - We need the following result (see for example, [8]): Let the
random variables fn converge to the variable f in probability as n - oo. Let

Then

To prove Lemma 3.11, it is sufficient to consider only the following sets
A = { ~ : (Y (tl, w) , ..., Y (tk , w)) E where Bk is some Borel set
in E [0, n]. Let Am = {~ : (tl, w) , ..., (tk, w)) E

Using the result formulated above, (3.34), Corollary 3.1 and the

assumption that B (y) is uniformly continuous, we obtain:

This proves (3.36). To prove (3.37) we cannot apply the result formulated
above directly to the process Yoenrn (T) because we have no estimates for
the moments of this process of the order greater than two. But we do have
such an estimate for the process Y~ (T); it is (3.26). We also have the
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bound (3.5) for the second moment of the difference ye (t) - 
Then taking into account (3.35) we obtain

Let us complete now the proof of the theorem. Put

By (3.36) the process Y (T) is a martingale with respect to the family of a-
fields By (3.37) and because of the fact that B (y) | ~ sup ] Q (x)|  C
we have: 

x

Let tl = l A, = TI, = T2. Then it follows from this estimate
and the martingale property of the process Y (T) that

Hence
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Then by Theorem 5.3, Chapter IX of [3], it follows that there exists a

Wiener process {~(~),0~T} such that for each T E [0, T]

with probability 1. Thus the finite-dimensional distributions of the process
Y (T) are uniquely defined and Y (t) satisfies the equation

The solution of this equation is determined only by the coefficients

B (y), a (y) and the starting point ~o and independent of the choice of
the sequence En - 0. Therefore, the finite-dimensional distributions of
the process Y~ (t) converge to the finite-dimensional distributions of the
process Y (t) determined by (2.8).
The weak compactness of the E [0, T]} can be

established in the following way. According to (3.25) the process V (t)
is the sum of two processes Y~* (t) and 03B8~ (t). Each of these sequences
of processes satisfies the condition of the weak compactness, that is the
conditions (3.26) and (3.5) correspondingly. From this we have the weak
compactness of the processes ye (t), which together with the convergence
of the finite-dimensional distributions implies (see [1 1], Theorem 2.1 ) the
weak convergence of Y~ (t) to Y (t) as ~ - 0. Theorem 2.1 is proved. D

Now we turn into the proof of Theorem 2.2. The general scheme of
this proof is the same as for Theorem 2.1. Therefore we point out only
the main differences. In view of conditions 2’, 3’ we need good bounds
for the moments of the variable For this purpose we need a

generalization of Lemma 3.1.

LEMMA 3.12. - Suppose that the family of a-fields Ns , 0  s  t  00,

satisfies absolute regularity mixing condition. Let G (x, w) for each x be
a N~t-measurable random variable and E sup G (x, w) |03B3  00 for

some 03B3 &#x3E; 1. Let the random variables ( (w) , ri (w) be Ns0-measurable and
E|~(03C9)|03C3  ~ for some 03C3 &#x3E; 1. Denote g (x) = EG (x, w). Then for
s  t, l/a +  1 and any set A E No with P (A) ~ 0
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and

This result is the consequence of Lemma 1 from [ 1 ] and Holder’ s
inequality. D

First, we obtain some preliminary estimate for the moments of the
variables xe (t), From (2.1), (2.11 ) and the definition of the
function g (x, y) we have

and by Gronwell’s lemma

Then applying the first bound in (2.12), we obtain

and taking into account the first bound in (2.9)

We need these bounds only to be sure that the moments of the variables
XE (t) and ye (t) are finite. -

LEMMA 3.13. - For all t E [0, T] and q = 2 [2 (fL + 

Proof - Let yo = H (xo) . Then using (3.3) we can write
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Let k = (2 (~ + 1)//~] be an integer number. It follows from (2.1) and
(3.3) that for any fixed z

We obtain from the last equality and (3.41):

By (2.9) and (2.12)

Applying Lemma 3.12 with a = ~/(~ 2014 1 +1/~), ~ = p / 2 and the a-fields
No/~2 , and taking into account (3.11 ), (2.9)-(2.12), we obtain

To apply Lemma 3.12 it is convenient to rewrite the scalar products of
the vectors in the coordinate form. Especially it concerns the function F.
Integrating (3.43) with respect to s, t, 0  t  s  T, we have from (3.42)
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It follows by Gronwell’s lemma that

This bound together with (2.10) implies

The lemma is proved. 0

In view of the restrictions on the growth of the functions H (x), b (x)
and their derivatives, the estimate (3.40) allows to prove Theorem 2.2

analogously to the proof of Theorem 2.1. Note only that for the proof we
must use Lemma 2.12 instead of Lemma 2.1.

4. REMARKS AND GENERALIZATIONS

1. If system (2.2) in the plane R~ has a smooth integral H (x), then the
non-perturbed vector field b (x) is orthogonal to (x) and directed along

VH (x) = C ~ ~ ~2 ~ , - ~ ~ ~~~ J , if x is not a critical point. This means
that b (x) = /3 (x) VH (x) , and we can rewrite system (2.2) in the form

with a proper scalar function j3 (x). If VH (x) # 0 for x ~ 0 and j3 (x) does
not changes the sign we have, roughly speaking, the situation considered
in Section 2. Consider now the case when j3 (x) change the sign.
A typical example is shown in the Figure 1. The level sets (the trajectories

of the non-perturbed system) form a family of loops around the equilibrium
point 0 where ~H(0) = 0, H (x) &#x3E; 0 and VH (x) # 0 for x ~ 0.

The function j3 (x) is equal to zero on the curve r = ABCEFDA,
positive outside the domain bounded by r and negative inside. Let
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A, C, E, D be the points where r is tangent to a level set. Let

0  H (C)  H (D)  H (~1) ~ H (E)  oo.

In the case under consideration each level set C (y) = { ~ : H (~c) = ~/}
with H (C)  y  H (E) consist of more than one trajectory of the
system (4.1), since at least one equilibrium point situated on such level
sets. The dynamical system which is the restriction of our system to

C(~/)) y E (I~ (C), H (E)) have many invariant measures. The extreme
points of the cone of the invariant measures consist of 6-measures

concentrated in each of equilibriums. Existence of such measures leads
to new conservation laws, which are described by step-functions. Let

be equal to zero for x such that H (x) g (H (C), H (E)). If

H (x) E (H (C), H (E)), we put H (x) = 1 if x belongs to the domain
of attraction of the points of the arc DFE, or H (x) _ -1 if x is attracted
to a point of the arc ABC. For the points of the arcs ALD and CME let
us put H (x) = 0. It is easy to see that fl (x) is an integral for our system.
Of course, any function of fl (x) and H (x) will also be an integral.

Let us describe the limit of Y~t = H as ~ ~ 0 in this case. Suppose
we start at a point x with H (x) &#x3E; H (E). Then the limiting process Yt will
be as described in Section 2 until first time when Yt = H (E). Then the
diffusion Q+ (y) and drift B+ (y) for y E [H (D), H (E)] will be equal
to D (XDE (y)) and Q (XDE (y)), where XDE (y) is the point on the arc
DFE with H (XDE (~/)) ~ y; the functions D (x) and Q (x) are defined in
condition 5. This is so because the trajectories of the non-perturbed system
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are attracted to the points of the arc DFE. The exception is the unstable
equilibrium points belonging to the arcs CME and ALD. But if we assume
that the noise at these points is not degenerate (D (x )) &#x3E; Do &#x3E; 0 for the

points of the arcs CME and ALD, the trajectories of the perturbed process
will fast enough reach small neighborhoods of attractive points on the
corresponding level sets.

If we started at x such that H (x) &#x3E; H (E), the limiting process Yt will
have the diffusion and drift coefficients D (XDE (y)) and Q (XDE (y)) up
to the moment when the trajectory comes to the point y = H (D).
At the time when Yt first hits y = H (D) from the area of larger

values the trajectory Xt jumps to the point B and the diffusion and drift
coefficients will be defined by the values of D (x) and Q (x) on the arc

(y) = D (y) , B- (y) = Q (XAC (y) ), where (y) has
the mining similar to XDE (y) . After Yt touches y = H (A) the trajectory
Xt jumps to the point F and the coefficients again will be defined by the
values of D (x) and Q (x) on the arc DE.

For y  H (C) the diffusion process is defined as in Section 2. Thus
the diffusion and drift coefficients for the limiting process on the interval
?/ E ( H ( B ) , H (F)) will be different depending on where from the
trajectory entered the interval. The limiting process will have Markov

property if considered not on the straight line but on the graph (Fig. 2).
The coefficients will be ~+ (y) and B+ (y) on the upper line and 7~ (y),
B- (y) on the lower line. At the point H (D) the trajectory of the limit
process jumps instantaneously to H (B) and continues the diffusion. At
H (A) the trajectory instantaneously jumps to H (F). If, for example,
we are interested in calculation of the expected value u~ (x) of the first
time when ~f(X~), Xo = x, H (x) E H2), first exists the interval
(Hi, H2 ), we have the following non-standard boundary problem for
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u+ (H) = (H (x)) = lim ué (x), where the sign "+" corresponds to the
case when x is attracted to DFE or if H (x) &#x3E; H (F), and the sign "-"
corresponds to x attracted to DBC or if H (x)  H (B):

It is not difficult to prove that the problem (4.2) has a unique solution,
and it can be written down explicitly.

2. In the previous sections we considered the case when H (x) had only
one critical point, let us say a minimum. In general H (x) can have many
critical points and the situation becomes more complicated. Let H (x) has
two minima and one saddle point as on the Figure 3 a. Then corresponding
non-perturbed trajectories behave as in Figure 3 b [we assume that b (x) has
no equilibrium points besides Oi, 02, 03]. It is easy to understand that the
limit of H (Xt ) in this case will not be a Markov process: If, for example,
we start at a point x such that H (Oi)  H (O)3  H (x)  H (02), the
behavior of the limiting process will be different for different connected

components of the level set { z : H (z) = H (~) }. To have a Markov
limiting process one should consider process on the graph F (Fig. 3 c)
homeomorphic to the set of connected components of the level sets of

the function H (x). Here the situation is similar to the case of white

noise perturbations of Hamiltonian systems considered in ([6], [7]). In that
references one can find precise definition of the graph corresponding to

H (x), description of diffusion processes on a graph and the technique
necessary to prove the convergence.

Let us consider for brevity the Hamiltonian case

Suppose that H (x) = EH (x, (t) has the structure shown in Figure 3. The
corresponding averaged system is
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Denote Y (x) : : R2 -i r the mapping such that Y (x) is the
point of r corresponding to the component of the level set of the
Hamiltonian containing x. The calculation of the weak limit of the process
Yt = Y (X~) on r as c 1 0 can be devided in the following steps:
First, prove that the limiting process on the graph is a continuous Markov
process with the Feller property. Each such process is defined by a family
of differential operators corresponding to the segments of the graph and
by the gluing conditions at the vertices ([6], [7]). Calculation of these
characteristics is the next step. The differential operators defining the
limiting process inside the segments (in our example there are 3 segments)
are calculated exacly in the same way as in Section 2, if, of course, the
mixing conditions and the restrictions on the growth are fulfilled. The
vertices corresponding to the extrema of H (x) (in our example, points
Oi and 03) turn out to be inaccessible for the limiting process and
thus no gluing conditions should be added at these points. The vertices
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corresponding to the seddle points (point 02 in Fig. 3) are accessible, and
one must add gluing conditions there. Each of these gluing conditions is
determined by a finite number of constants (see [6], [7]). They can be
calculated as follows. Denote fL (. ) the projection of the Lebesgue measure
A (.) in R2 on F given by the map (~y) = A (~y)), 7 C F. Since
the Lebesgue measure is invariant for Hamiltonian systems, the measure ~
will be invariant for the limiting process on F. The constants in the gluing
conditions should be choosen so that the measure ~ would be invariant. We

plan to consider this problem in detail elsewhere.
3. Now we describe the results for multidimensional dynamical systems

with l &#x3E; 1 conservation laws.

Consider a system

We assume that b (x, z), x E Rr, z E is a smooth vector field with

components bounded together with their first three derivatives. We suppose
that the process (t satisfies the absolute regularity mixing condition (see
condition 4).

Denote b (x) = Eb (x, (t) and consider the averaged system

Let Hi (x), H2 (x), ..., Hi (x) be the first integrals of system (4.4)
and assume that the functions Hk (x), k = 1, ... , l, are bounded

together with their first three derivatives. Denote D = ~ y E Ri :
?/ = (Hl (x), ..., Hi (x)) for some x E and assume that D

belongs to the closure of its interior (D) in Ri. Assume that the

vectors (x) , (x), ..., (x) are linearly independent if

(Hl 16’~) , ..., Hi 16’~) E (D).
Assume that for any y = (?/i, ..., yl) E D the set C (y) = { x E Rr :

Hi (x) = yl, ..., Hi (x) = is compact and connected. Let a measure

fly on C (,y) exists for any y E D such that fly (C (y)) = 1 and for any
continuous function f (x) on C (y)

uniformly in the initial point Xo = x E 0 (y). Condition (4.5) replaces
the periodicity condition.
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Denote

Then one can prove that the processes

for any T &#x3E; 0 converge weakly, in the space of continuous on [0, T]
functions with values in D, to the diffusion process in D governed by
the operator.

The points of the boundary aD of the domain D will be inaccessible for
this process.

One can prove such result using the bounds given in Section 3. There
are examples where the listed above conditions hold. But condition (4.5)
turns out too restrictive if the dimension of the sets C (y) bigger than 1.
Apparently, the convergence can be proved if (4.5) is replaced by a weaker
assumption for example, if (4.5) fulfilled for almost all y e D, but this
problem is still open.

In the more general case when the vectors VHI (x), ..., ~Hl (x) are
linearly dependent for some x, the limiting process should be considered on
a complex consisting of l-dimensional pieces. Here the situation is similar
to one discussed in Remark 2 of this section.
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