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ABSTRACT. - It is shown, in particular, that a centered probability measure
on a linear group of exponential growth has non-constant positive harmonic
functions. The same conclusion holds also for the Laplace-Beltrami operator
on a co-compact Riemannian covering, with such a deck group.
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RESUME. - On montre en particulier qu’une probability centree sur

un groupe lineaire a croissance exponentielle possede des fonctions

harmoniques positives non constantes. Il en est de meme de Foperateur
de Laplace Beltrami sur le revetement d’une variété compacte admettant
un tel groupe de revetement.
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60 P. BOUGEROL AND L. ELIE

1. INTRODUCTION

During the last years a lot of papers have studied the existence of
bounded or positive harmonic functions on locally compact groups and on
Riemannian manifolds. The purpose of this article is to show that there
are non-constant positive harmonic functions on groups and manifolds of
exponential growth, at least if the group can be embedded in an almost
connected group and if the manifold is a co-compact covering with such
a deck transformation group.
We first consider groups. Let  be a probability measure on a locally

compact group G. A measurable function f : G - R, either bounded or
positive, is said to be harmonic (or &#x3E;-harmonic) if

We suppose that G is compactly generated. Let V be a compact
neighborhood of the identity in G such that G = U Vn. The growth

n&#x3E;o

of G is the rate of growth of the sequence E N, where
m is a Haar measure [13]. In particular, G is of exponential growth if
lim sup rl2 &#x3E; 1. We set 

,

Following Guivarc’h [14], we say that the probability measure ~c on G has a

moment of order a &#x3E; 0 if (g)  +0oo. It is called centered if

it has a moment of order 1 and if for any additive character x of G (i.e., any

continuous homomorphism x : G - R), x (g) dJl (g) = 0. For instance
a symmetric measure with compact support is centered. The probability
measure ~c is called adapted if there is no proper closed subgroup H of
G such that J-L (H) = 1.

Let us recall some general results on the existence of non-constant
harmonic functions. The first one, due to Azencott [5], is the following
(notice that the existence of bounded harmonic functions obviously implies
the existence of positive ones).

THEOREM 1.1 [5]. - If G is non-amenable and if ~c is adapted, there exist
non-constant bounded harmonic functions.
On the other hand, since the work of Avez [4], it is known that there is a

strong connection between the existence of harmonic functions on a group
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61POSITIVE HARMONIC

and its growth. Let us gather some related recent results of Alexopoulos
[ 1 ], Kaimanovitch [20], Guivarc’ h [ 14], Hebish and Saloff Coste [ 18] :

THEOREM 1.2 ( [ 14], [ 1 ], [20] ). - Let us suppose that ~c is adapted, centered,
with a continuous compactly supported density. Then, if G is either connected
and amenable, or polycyclic, the bounded harmonic functions are constant.

THEOREM 1.3 [ 18] . - We suppose that ~c is adapted, symmetric, with a
continuous compactly supported density. Then if G has a polynomial growth,
the positive harmonic functions are constant.
Our aim in this paper is to prove the following theorem. It gives a partial

converse of Theorem 1.3. An almost connected group is a group that has
a co-compact connected subgroup. 

_

THEOREM 1.4. - Let G be a compactly group for which there is a continuous
homomorphism P from G into an almost connected group L such that the
closure of 03C6 (G) has an exponential growth. Then any centered, adapted
probability measure on G with a third moment has non-constant continuous
positive harmonic functions. -

A polycyclic group is a countable solvable group that can be realized
as a closed subgroup of a connected group. Therefore, we deduce from
these theorems that:

COROLLARY 1.5. - Let G be a polycyclic group and let ~c be an adapted
symmetric probability measure on G with finite support. Then

l. The bounded harmonic functions are constant.
2. The positive harmonic functions are constant if and only if G has

polynomial growth.
A simple example of polycyclic group with exponential growth is the

semidirect product Z x 03C4Z2 where, for any n E Z, T (n) = An and A =

( ~ ~ ) . This group gives a positive answer to a question of S. Northshields
who asked in a conference in Frascati whether there is a discrete group
on which for some finitely supported symmetric measure, there are non-
trivial positive harmonic functions and no bounded ones. It was already
known that a similar phenomenon occurs for the Brownian motion or for
measures with a density w.r.t. the Haar measure on the real affine group
(see Molchanov [26], Elie [ 11 ] ) and on R x 03C4R2 (Lyons and Sullivan [24] ) .
Another example of countable solvable group to which Theorem 1.4

can be applied is the group G of affine transformations of R generated
by the two transformations x H 2 x and x - x + 1. This is the group

Vol. 31, n° 1-1995.



62 P. BOUGEROL AND L. ELIE

with two generators a, b and the relation aba-1 = b2 . It is of exponential
growth but not polycyclic. The closure of G in the whole affine group is
the group of exponential growth of all the transformations x ~ 2n x + b,
where ?7 G Z and &#x26; ~ R.

On the other hand, a typical class of groups for which our theorem does
not apply is given by the countable non-closed subgroups of exponential
growth of the group of motions of the plane, that is itself of polynomial
growth. Actually, we do not know if there are positive harmonic functions
on such a group.

Let us now consider covering manifolds. A harmonic function f on a
Riemannian manifold M is a solution of 0 f = 0, where A is the Laplacian.
We say that M is a regular covering of a compact manifold N, with deck
group r, if MBr = N where r is a discrete group of isometries of M.
We will deduce from Theorem 1.4 the following one. It provides a partial
answer to Lyons and Sullivan ([24], p. 305).

THEOREM 1.6. - Let M be a regular covering of a compact manifold such
that the deck transformation group r is a closed subgroup of an almost
connected group. Then there exist non-constant positive harmonic functions
on M if and only if M is of exponential growth.
The plan of this paper is the following. We first prove Theorem 1.4 in

Section 2 for the closed subgroups of the group Sd of affine similarities
of Rd. Our approach is probabilistic. We then deduce in Section 3 this

theorem in full generality by a reduction to this particular case. Finally, we
make use of a discretization procedure that goes back to Furstenberg and
to Lyons and Sullivan in order to prove Theorem 1.6.

After finishing this paper it was observed that Theorem 2.3 can also be
derived from Lin [22] (see Babillot et al. [6]).

2. HARMONIC FUNCTIONS ON THE

GROUP OF AFFINE SIMILARITIES

In this section, we prove Theorem 1.4 for closed subgroups of the group
of affine similarities Sd. For notational conveniences, we consider the
following realization of S d :

DEFINITION 2.1. - The group Sd of affine similarities of Rd is defined as
the semidirect product
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63POSITIVE HARMONIC

where O (d) is the orthogonal group, and where the product is given by

For any g E Sd, we write g = (a (g), k (g), b (g)) where a (g) E R,
k (g) E 0 (d) and b (g) E Rd. The group Sd acts on Rd by the formula

for all g E Sd and x E Rd. For any positive measure m on Rd and g E Sd,
we define g . m as the image of m under the x. Let ~c be a

probability measure  on Sd. We say that a measure m on Rd is -invariant
if, for any Borel non-negative function ~ : R,

The measure m is a Radon measure (or a regular measure) if the mass
of each compact set is finite. The proof of the following lemma is

straightforward.

LEMMA 2.2. - Let us suppose that there exists a -invariant Radon measure
rrz on Rd. For any non-negative continuous ~ : R with compact
support, the function

is harmonic and continuous. Therefore, there exist non-constant positive
continuous harmonic functions as soon as ~c ~g E Sd; g ~ rn = 1.

For any g E Sd, let 8 (g) = I a (g) I + log (1 + II b (g) II ). Then, for any
neighborhood V of the identity in Sd there exist constants A, B, C, D &#x3E; 0

such that

for all g E S d (see Guivarc’h [14], Elie [ 11 ] ) . Therefore the probability
measure {t has a moment of order a &#x3E; 0 if and only if

Vol. 31, n° 1-1995.



64 P. BOUGEROL AND L. ELIE

The map x : R defined by x (a, k, b) = a is an additive character.

Thus a (g) dJl (g) = 0, when ~c is centered. Our aim is to prove the

following theorem:

THEOREM 2.3. - Let  be a centered probability measure on Sd with a
moment of order 3. We suppose that ~c ~g E Sd; a (g) = O} :f 1 and that
 {g E Sd; 9 . x = x} ~ 1, for any x E Rd. Then there exists a -invariant

Radon measure m on Rd such that ~c ~g E Sd; g ~ m = m} i- 1. Therefore,
there exist continuous non-trivial positive harmonic functions.

This theorem will be proved in a series of steps, by probabilistic
arguments. We shall see that it is quite easy to construct a candidate to
the invariant measure m. The main difficulty is to prove that this measure
is actually a Radon measure.

COROLLARY 2.4. - The Theorem 1.4 holds true when G is a closed

subgroup of Sd of exponential growth.

Proof of the corollary. - Let ~c be a centered, adapted probability measure
on a closed subgroup G of Sd with a moment of order 3. Then, considered
as a measure on Sd itself, {t is also centered and with a moment of order 3. If

/z {/ E Sd ; a (g) = 0~ = 1, then G is contained in the group of polynomial
growth 0 (d) x Rd. If for some x E {g E = x~ = 1, then
G is contained in the group {g E Sd; g . x = x~ which is isomorphic to
R x 0 (d) and thus also of polynomial growth. Therefore, the assumptions
of Theorem 2.3 are fulfilled when G is of exponential growth.

In order to prove Theorem 2.3, let us introduce some notation. Let 
be a probability measure on Sd. We consider the product space H = S~.
Let Xn = (An, Kn, Bn), n E N, be the coordinate maps and let 0 be
the a-algebra on H generated by these coordinates. For any probability
measure a on Sd, we let Pc, be the probability measure on (H, .~’), for
which the random variables Xn+1 X;; 1 , n E N, are independent with the
same distribution {t and independent of Xo and for which the distribution
of Xo is a. Under each the process Xn, n E N, is a Markov chain
on Sd called the left random walk of law ~. Its transition probability P is
given by P (g, ~4) = ~ (Ag-1), for all Borel set A of Sd.
We set P = Pa when a is the Dirac mass at the unit element (0, Id, 0)

of Sd, where Id is the identity matrix of order d. If A is a probability
measure on R x Rd, we set Px = Pc, when a is the probability measure
on S d defined by

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



65POSITIVE HARMONIC

for any bounded Borel function f : R. If v is a probability measure
on Rd, we set P v = P a when a is the probability measure on S d equal
tO Id) ~ v~ .

Therefore, for any Borel function f : R+, and any probability
measure v on Rd, -’

where This implies that {B~ ~ &#x3E; 0~ is a

Markov chain on Rd with transition kernel Q. A ~-invariant measure on
Rd is also an invariant measure for this chain.

In what follows, we assume that the assumptions of Theorem 2.3 hold. Let

As M is centered, the random walk (An) is recurrent and therefore T is

finite a.s.

LEMMA 2.5. - There exists a probability measure v on Rd such that, for
any Borel set D in Rd,

Proof - This lemma is contained in Elie [ 11 ], but for the sake of

completeness we give the proof. Let fl be the distribution of Xr under
P. We shall construct v as a fl-invariant probability measure on Rd. Let

E N} be a sequence of independent random variables with the
distribution fl. Let us show that the sequence (gl g2 ... gn) . 0 converges
almost surely. Since

it suffices to prove that

almost surely. By the law of large numbers~ this expression is equal to

Vol. 31, n° 1-1995.
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Using the fact that M has a third moment, it is proved in Elie [11] that
E b is finite. This implies that limsup - log ~b(gr+1)~ 
0. Since = E(~(~i)) is positive, we see that the serie converges
a.s. Let v be the distribution of Z = lim 91 92 ... gn . 0. The relation

ensures that the distribution of go. Z is also v. Thus, for any Borel set
D in Rd,

notice that T = TO. It is known that E (Ar) is finite since has a second
moment (see Feller [ 12], Theorem 18.5.1 ). Let v be the probability measure
on Rd given by Lemma 2.5. Since Ev (Ar) = E(Ar) is finite, we can
define a probability measure A on R+ x Rd by the formula

for any Borel set F in R+ x Rd.

PROPOSITION 2.6. - The probability measure ~ is an invariant measure
of the continuous time Markov process Zt = (ATt - t, BTt ), t E R+, on
R+ x Rd.

Proof - We remark that for any Borel set C in Rand D in Rd,

This means that (An, Bn), n E N, is a semi-Markov chain which implies
that ( Zt ) is a strong Markov process (see Cinlar [ 10], Jacod [19]). Let
( = = 7-~ and (A, k, B) = X~ We remark that Zo = (Ar , BT)
and that Z( == (A~ - AT, B~). Moreover, T and ~ are the first two ladder
indices of the random walk (An ) . Since (Xn ) is a left random walk on Sd, it
follows from the Markov property that, under Pv, (A, K, B) is independent
of XT and has its distribution /~ used in the proof of Lemma 2.5. Since
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and since the distribution of Br is v under Pv, we see that, for any
bounded Borel f : R x Rd - R, .

This proves that Zo and Z, have the same distribution under P v . Since (
is a stopping time of the Markov process (Zt), it is well known and easy
to show that this implies that the formula

defines an invariant measure of this process e.g., Asmussen [3]). When

L -I

This implies that A is an invariant probability measure.

COROLLARY 2.7. - Under P~, for all t &#x3E; 0, the law of the process
BTt+n), n E N} is the same as the law of the process

n E N .

Proof. - Under Pa, Ao &#x3E; 0, a.s., hence To = 0. This implies that

Zo = ( Ao , Bo ) and therefore that the distribution of Zo is A. Since A is an
invariant measure of the Markov process ( Zt ), we see that the distribution
of Zt is A for all t &#x3E; 0. We now use the fact that Xn = (An, Kn, Bn),
n EN, is a Markov chain and that Tt is a stopping time. Let ~ be a
bounded measurable function on (R x Rd)N. For any t &#x3E; 0, let

It follows from the strong Markov property that, if 03B8 is the shift on H,

On the other hand, as Rt depends only on the process (An, Bn), n &#x3E; 0,

Since the distribution of Zt is A, this entails that

which proves the corollary.

Vol. 31, n° 1-1995.
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J

Then m is a -invariant positive measure.

Proof - The proof is classical: since Tl is a stopping time of the filtration
.~n = a~ (Xo, ~ ~ ~ , Xn), and since Bo and BTl have the same distribution
under Pa, we can write for any Borel function f : Rd -t R+,

Therefore f dm = ~ Q f dm and m is invariant.
The next results will be used to prove that the measure m defined above

is a Radon measure, i.e., that the measure of each compact set is finite.

PROPOSITION 2.9. - For all Borel set C in Rd,

Proof. - Making use of the fact that P~, (To = 0) = 1, we have

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Thus, it follows from Corollary 2.7 that

since Ai  1 when i  Tl.

LEMMA 2.10. - Let G be a closed subgroup of Sd which is not contained
x 0 ( d) x Rd, nor in a conjugate of R x O ( d) x ~ 0 ~ . Then

(i) G is non-unimodular;

(ii) There isnoRadonmeasuremonRd suchthatg.m = m for all g E G.

Proof - Let us first show that under the assumptions of the lemma, G
has a simple structure. Let go be an element of G such that a (go ) &#x3E; 0

and let

By replacing G by its conjugate x-1 Gx and go we can

and shall suppose without loss of generality that b (go) = 0. Since 0 (d)
is a compact group, there exists a sequence (ni) of integers such that
k; (go)ni converges to Id as i - +00. Then ~ converges to

(a (g), k (g), 0), for any g E G. Since G is closed, (a (g), k (g), 0) E G
and therefore, (0, Id, b (g)) = g ( a (g), k (g), 0) 1 is also in G. This proves
that G = Gi x G2, where Gi is the closed subgroup of R x 0 (d) such that
G1 x {0~ = G n R x 0 (d) x {0}, and G2 is the closed subgroup of Rd such
that {(0, Id)} x G2 = G n {(0, Id)} x Rd. Since e-a (go) k (go) G2,
G2 has no discrete component and is therefore isomorphic to RP, for some
p &#x3E; 0.

Let ai and a2 be the Haar measures on Gi and G2. It is straightforward
to check that the measure al 0 a2 on G is right invariant but not left
invariant under multiplication. Hence G is not unimodular.

Let us now suppose that there is a G-invariant Radon measure m on

Rd. Let H be the subspace orthogonal to G2 in Rd. We identify Rd with
H x G2. Since m is invariant under G2, we can write m = mi 0 m2,
where ~1 is a Radon measure on Hand m2 is the Lebesgue measure on

Vol. 31, n° 1-1995.
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G2. Let Br = (x e  r} and c = Then, since = m,

for any Borel set A in G2,

This leads to a contradiction as n - +00.

Proof of Theorem 2.3. - Let G~ be the smallest closed subgroup of Sd
that carries /~. Under the hypotheses of the theorem, it is easy to see that

G~ has the properties of Lemma 2.10. In particular it is non-unidomodular.
Let U be the potential kernel of the random walk ( X n ) of law ~, defined by

Since {t is adapted to the non-unimodular group G~, (Xn ) is a transient

random walk, which implies that for any compact set D in Sd, U (g, D) is
a bounded function of g E Sd (see, e.g., Guivarc’h et al. [16], Theorem 51,
Prop. 31 ). By Proposition 2.9, for any compact set C in Rd,

thus m (C) is finite. It then follows from Lemma 2.8 that m is a &#x3E;-invariant
Radon measure. If ~c {g E Sd; g . m = m} = 1, then 9 . m = m for all
g E G~, which is impossible by Lemma 2.10.

Remark. - There are other natural &#x3E;-invariant measures on Rd. For
instance, the formula

also defines a &#x3E;-invariant positive measure. One can show that m is a
; 
Radon measure (by making use of the fact that m is Radon). Actually, we
conjecture that all the &#x3E;-invariant Radon measures are proportional.

3. THE GENERAL CASE

We shall first prove Theorem 1.4 by a serie of reductions to the group
of affine similarities S d .
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LEMMA 3.1. - Let ~c be an adapted centered probability measure on a
compactly generated group G moment of order 0152. G  H

be a continuous G to the l.c. group H be

the closure (G). Then the image ~ (M) centered

and has a moment of order 0152.

Proof - Let V be a compact set in G such that G = U V. Let W
n&#x3E;0

be a symmetric open set in K, relatively compact, that contains ~(~).
Then U t~~ is an open subgroup in K that contains p ( G). Since an

n&#x3E;0

open subgroup is closed, U W n = K. This shows in particular that K
n&#x3E;o

is compactly generated. is contained in we see that

for any g E G. Therefore, byY (/~)~~(/~)(~) 

03B4v (g)03B1 d  (g). If X is an additive character of K, then is an additive

character of G and thus, x dej; = x 0 ej; 0, when ~c is centered.

We shall need the following well known lemma (see, e. g. [ 16] ) :

LEMMA 3.2. - A random walk on a finite group with an adapted law is
an irreducible Markov chain.

Let H be a normal closed subgroup of a locally compact group G of
finite index. To each probability measure ~c on G, we associate a probability
measure ~cH on H, called the induced measure, by the following recipe:
let Sn, n E N, be the right random walk of law ~c starting from the unit
element. By definition

where ~Yn, n &#x3E; 1~ is a sequence of independent random elements of
G with the distribution /~. Let T = 1; Sn E H~. The induced
measure ~cH is defined as the distribution of ST. If 7r : G - G/H is
the canonical projection, then 7r ( Sn ) is a random walk on the finite group

G/H. The state 7r (H) is recurrent for this Markov chain. Since T is the
first return time of 7r (Sn) to this state, T is finite almost surely and has
an exponential moment.

PROPOSITION 3.3. - Consider a probability measure ~c on a compactly
generated group G, that is adapted, centered and with a third moment. Let
~~ be the induced measure on a normal subgroup of finite index H of G.
Then ~cH is adapted, centered and has a third moment on H.

Vol. 31, n° 1-1995.
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Proof. - The proof of this proposition is given in three independent parts.
Part 1. - We first show that ~cH is centered. Let s : 

a section of G / H, which means that 7r 0 s = id. Let ~ be an additive
character of H. For any (g, x) E G x is in H.
We set A (g, x) = ~(~(~)~5(~7r(~))’ ). It is straightforward to check
that, for all gl , g2 E G and x E G/H,

(A is actually the cocycle associated with the representation induced by
x). Let v be the uniform probability measure on the finite set G/H and

= J A (g, x) dv (x). It follows from the relation above that

ç (~i ~2) = ~ (91 ) + ç (~2). Therefore, ~ is an additive character of G, and
since {t is centered,

We can suppose that s (e) = e, where e and e are the unit elements of
G and G / H . Then,

Therefore, using the fact that {T &#x3E; k} is independent of Yk+l,

The Markov chain 7r (Sn) on the finite space G/H is irreducible by
Lemma 3.2, and its unique invariant distribution is v. Since T is the return
time at e of this chain, we know that for any function f : G /H - R+,

Hence,

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



73POSITIVE HARMONIC

This proves that distribution of ST is centered.

Part 2. - Let us now show that ~~ is adapted. We consider the semigroup
S = U where Supp  is the support of . Let Hi be the

7t&#x3E;0

subgroup of H generated by S n H. Let us prove, by induction on n E N,
that

This is clear when n = 0. We shall use the fact that the order of each
element of G/H divides r = Card (G/H), and therefore that 9T E H for
any g E G. Let h E n H. We can write h = g1 g-12 g, where
gl, g2 E S and g e (SS-1)n. Then

Since gi and (~2~ ~)~ are in H n S, we see that gi (g2 gi -1 ) -r E H1.
This implies, in particular, that (g2 g1-1)T-1 g E H. On the other hand,

Thus (g2 gi 1)r 1 g is in

n H, hence in Hi by the induction hypothesis. This proves
that h E Hi.
The cofinite subgroup H is open in G and U is dense in G

n&#x3E;o

since ~c is adapted. Hence Hi is dense in H. Now let H2 be the closed
subgroup of H generated by the support of If x E S n H, then for some
n E N, x E supp ~n n H. Therefore, for any neighborhood V of x in
H, P (Sn E V) ~ 0. If To = 0 and = inf {k &#x3E; Tn, Sk E H},
then {5~ ~ E N} is the random walk of law We see that
+00

E V) # 0, hence x E H2. Thus Hi is contained in H2.
k=l

Since Hi is dense in H and H2 is closed, H2 = H.

Part 3. - Let us show now that ~cH has a third moment. Let V be a

compact set in G with e in its interior, such that G = U vn. There exists
Tt&#x3E;0

a generating compact neighborhood W of e in H, and a, /3 &#x3E; 0, such that

(see Kaimanovitch [20]). The function bv is subadditive, thus
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n

Let us remark that ~~ 8v (Yk) is an usual random walk on R with a third’ 

l~=1

moment, and that T is a stopping time with an exponential moment. It is
classical that such a stopped sum has a third moment (see, e.g., Gut [17]).

Therefore  +00.

LEMMA 3.4. - Let ~c be an adapted probability measure on a locally
compact group G. We suppose that there is a normal subgroup H of finite
index of G such that the induced measure ~cH has non-constant positive
continuous harmonic functions. Then ~c also has non-constant positive
continuous harmonic functions.

Proof. - Let h be a non-constant positive continuous H-harmonic
function on H. We shall use a classical construction. We consider the right
random walk (0, (Sn), Pg, g E G) of law /Z. Let f (g) = Eg (h (ST)),
g E G. Since h is H-harmonic, f (g) = h (g) when g E H. Let 03B8 be the
shift on H. We have by the Markov property, for any x E G,

since ST o 0 = ST when H. This proves that f is a non-constant

positive harmonic function. Let us show that f is locally integrable with
+00

respect to a Haar measure on G. We consider the measure v = 2: ~,n ~2n+1 _
n=o

Since f is harmonic, for all x E G, f (x) = J f (xg) dv (g). The function
f is equal to h on H, thus it is locally integrable on H. Let V be a
relatively compact open set in H, and m H be a right Haar measure on
H. Then for all y E H,

therefore / +00, for mH 0 v-almost all (y, g).
Since  is adapted on G, the support of the image of v on G/H is equal
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to G / H (see lemma 3.2). Thus there exists a subset i = 1, ... , r~ of
r

G such that G = U H g2 and such that
2=1

r r

r

for mH-almost all y E H. Since m = ~ mH is a right Haar measure
i=l

on G, this implies that f is locally m-integrable. Finally, let 03C6 be a positive
continuous function on G with compact support, then § * f is a positive
continuous harmonic function.

We shall now establish some algebraic preliminary results. Let us

introduce the following definitions:

DEFINITION 3.5. - The class C is the class of the topological groups G
which admit a continuous homomorphism p in a group of affine similarities
Sd such that the closure of 03C6 (G) in Sd is of exponential growth.

DEFINITION 3.6. - We consider a group G acting on a finite-dimensional
real vector space V by linear transformations p (g), g E G. We say that this
action is of type S is there exists a compact subgroup K of G l (V) such
that for all g E G, p (g) can be written as

where ð. (g) E R+, k (g) E K. We call ð. the associated multiplicative
character.

If a = dim (V), then ð. (g) = | det p (g) 11/ 0152, therefore ð. is indeed a
multiplicative real character of G, i.e. a continuous homomorphism from
G into the multiplicative group R~.
LEMMA 3.7. - Let G be a subgroup of G l ( d, R) which is not in the

class C. If there is a G-invariant linear subspace V of Rd such that the
actions of G on V and on are of type S with different multiplicative
characters, then V has a G-invariant supplementary subspace.

Proof - Without loss of generality, we can suppose that V is the linear
subspace of Rd spanned by the first n = dim (V) vectors of the canonical
basis, for some n  d.

Then we can write each g E G as g = gl g2 , where for instanceo g3

gl is a n x n matrix. Let W be the vector space of n x (d - n) matrices.
We set p (g) M = g~ M for any M E W . This defines an action of
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type S of G on W with the non-trivial character A = Ai/A2, where Ai
and A2 are the characters of the action on V and on Rd IV, respectively.
We identify W with the vector space R m, where m = n (d - n), equipped
with a scalar product for which the maps p (g)/0 (g) are in the orthogonal
group 0 (m). One checks easily that the formula

defines an homomorphism ~ from G to the group of affine similarities

Sm. We have supposed that G is not in the class C. Thus the closure of
ç (G) is not of exponential growth, and in particular it is unimodular. Since
the character A is not trivial, it follows from Lemma 2.10 that ~ (G) is

contained in a conjugate of R x 0 (m) x f 0}. This yields that there is

M E W such that

Then the linear subspace { ( E of Rd is G-invariant

and supplementary to V.

LEMMA 3.8. - Let G be a closed subgroup of G l (d, R) which is not in
the class C. We suppose that there is a finite sequence ~0~ = Vo C V1 C
... C Vn = Rd of G-invariant linear subspaces of Rd such that the action
of G on each Y /V _ 1 is of type S. Then G has a polynomial growth.

Proof - We shall say that a closed subgroup G of G l (d, R) is of

type S* is there is a finite sequence {0} = vo C Vi G " - C Vn = Rd
of G-invariant linear subspaces of Rd such that the action of G on each

is of type S and all the associated characters are equal. Such a
subgroup is contained in the direct product of R+. with a compact extension
of a nilpotent (upper triangular) group. It has therefore a polynomial growth.

Let us prove by induction on d that for any subgroup G of G l (d, R)
satisfying the assumptions of the lemma, there exists a direct sum

decomposition

such that, for each i = 1, ’ -’, k, the linear subspace Wi is G-invariant and
the action on G on Wi is of type S * . This will imply that G is isomorphic
to the direct product of subgroups of G l ( d, R) of type S * . Hence G has

a polynomial growth. Let us suppose that the induction hypothesis holds
true until d - 1. Let L be a proper G-invariant subspace of Rd containing

of maximal dimension. Then the action on Rd / L is irreducible and of
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type S. Let A be its multiplicative character. By the induction hypothesis,
we can write

where, for each i = 1, ... , p, the subspace Wi is G-invariant and the action
of G on Wi is of type S * . If all the characters of these actions are equal to A
then G is of type S* and the conclusion of the lemma holds. Let us suppose
that one of these characters, for instance the character Ai associated with
the action on Wi, is different from A. Owing to the induction hypothesis,
it suffices to prove that Wi has a supplementary G-invariant subspace.

Let V be a linear subspace of Rd such that Rd = L 3 V. We consider
the quotient action 7r of G on Wi e V = Rd /(W2 0 ... EB Wp). Let E be
a proper subspace of minimal dimension of Wi invariant under this action.
By minimality, this action on E is of type S. Applying the induction
hypothesis to the quotient action on (Wi 3 V) /E, we see that there exist
two subspaces U1 and U2 of Wi e V such that Wi C V Ul C U2,

and the quotient action of 7r(G) on ( E 0 U2 ) / E is of type S, with
character A. We remark that 7r ( G) ( E e U2 ) = E e U2 and that the
character of the type S action of 7r (G) on E is Ai. Thus we can apply the
preceding lemma to conclude that E has a supplementary subspace F in
E C U2, invariant under the action of 7r (G). Then 
is a G-invariant subspace, supplementary to Wi. This proves the induction
hypothesis.

PROPOSITION 3.9. - Let G be a closed amenable subgroup of G l (d, R)
of exponential growth. Then there is a normal subgroup D of G of finite
index in the class C.

Proof - Since G is amenable, it has a normal subgroup D of finite index,
for which there is a finite Rd
of D-invariant linear subspaces of Rd such that the action of D on each
Y /YZ-1 is of type S (cf. Guivarc’h [ 1 3]). This group D has an exponential
growth. Thus it follows from Lemma 3.8 that it is in the class C.

LEMMA 3.10. - Let T be a closed subgroup of exponential growth of a
connected Lie group L. There exist an integer d &#x3E; 0 and a continuous

homomorphism 03C8 : L ~ G l (d, R) such that the closure of 03C8 (T) has an
exponential growth.

Proof - We consider the image Ad (L) of L in the adjoint representation.
Since Ad (L) is a connected subgroup of a linear group, there exists
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some integer d &#x3E; 0 and a one-to-one continuous homomorphism § :
Ad (L) - Gl (d, R) such that § (Ad (L)) is closed (see Bourbaki [8],
Ex. 111.9.42). o Ad. Then C = Ker 03C8 is central and ’ljJ (L) is
closed. Let G be the closure of ’ljJ (T), Go be its connected component
of the identity and let H = ~ -1 (G). Let us suppose that G is not of
exponential growth. This is equivalent to suppose that the weights of the
adjoint representation of Go are of absolute value one, and that the discrete
group G/Go is a finite extension of a nilpotent group (see Guivarc’h [13],
Losert [23]). Let Ho be the connected component of the identity of H.
Then Go and Go is isomorphic to Ho/Ho n C. Since C is
central, the weights of the adjoint representation of Ho are weights of
the adjoint representation of Go, and therefore are of absolute value one.
On the other hand, (HIHo)/(HoCIHo) = H/Ho C = G/Go is a finite
extension of a nilpotent group, and Ho C/Ho is central in H/Ho. This
immediately implies that H/Ho is itself a finite extension of a nilpotent
group, because a central extension of a nilpotent group is nilpotent. Thus H
has a polynomial growth. This is impossible, since T is a closed subgroup
of H with an exponential growth.
We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. - We consider a probability measure ~c on the

group G, that is centered, adapted and with a moment of order 3. Let R be
the closure of ~ (G) in L. Since L is almost connected, it has a compact
normal subgroup K such that L = L/K is a Lie group with a finite number
of connected components (see Montgomery-Zippin [27]). Let 7r : L - L
be the canonical projection. By Lemma 3.1 the image M = (7r o ~) (~c) is

adapted to 7r (R), is centered and has a moment of order 3. Moreover
R is a closed subgroup of L with exponential growth. If f : R - R+
is it-harmonic, then f o 7r o ~ is &#x3E;-harmonic. Thus, it suffices to prove
that the probability measure M on R has non-constant continuous positive
harmonic functions. Let Lo be the connected component of the identity in
L and let T = R n Lo. There is a natural injection from R/T into L/Zo.
hence fliT is finite. By Lemma 3.4, it suffices to show that the induced
measure T on T has non-constant continuous positive harmonic functions.
As T is a closed subgroup of exponential growth of Lo, there exists an
homomorphism 03C8 from Lo to Gl (d, R) such that the closure H of 1jJ (T)
is of exponential growth (see Lemma 3.10). The image ~ = 03C8(T) is

centered, has a moment of order 3, and is adapted to H (by Proposition 3.3
and Lemma 3.1 ). Once again, it suffices to prove that ~ has non-constant
continuous positive harmonic functions.
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If H is is non-amenable, then there are positive (and bounded) 17-harmonic
functions by Theorem 1.1. When H is amenable, it has a normal subgroup D
of finite index in the class C, by Proposition 3.9. In other words, there is
a continuous homomorphism ~ from D to an affine similarity group Sm
such that the closure D of ~ (D) is of exponential growth. Let 17D be the
induced measure by ~ on D and let  be the image of by 03BE. Then ,
considered as a measure on D, is centered, adapted and with a moment of
order 3 and it suffices to see that it has non-constant continuous positive
harmonic functions. This follows from Theorem 2.3.

Proof of Theorem 1.6. - It follows from the discretization procedure of
Lyons and Sullivan [24], Ancona [2], Ballmann and Ledrappier [7], that
there exists a probability measure  on F such that any positive -harmonic
function on r can be extended to a positive harmonic function on M. The
support of {t is r. The fact that the covering is co-compact implies that ~c
has an exponential moment (see Ancona [2], p. 67 or Kaimanovitch [21]),
and {t can be chosen symmetric (see Ballmann and Ledrappier [7]) and
thus centered. If M is of exponential growth, then F is also of exponential
growth (see Milnor [25]), thus the existence of positive harmonic functions
follows from Theorem 1.4. When M is not of exponential growth then it is
proved in Guivarc’h [15] that the positive harmonic functions are constant
(notice that r is of polynomial growth by [13]).
Under the hypotheses of Theorem 1.6, the bounded harmonic functions

are constant if and only if there is no spectral gap. Indeed, it is shown in
Brooks [9] that there is a spectral gap if and only if r is non-amenable. In
this case there exist non-constant bounded harmonic functions on F, and
thus on M. If r is amenable, then it is a finite extension of a polycyclic
group (see Guivarc’h [ 13 ] ), and the Liouville property of M in that setting
is proved in Ancona [2] and Kaimanovitch [21 ] .
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