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Self Diffusion of a tagged particle in equilibrium
for asymmetric mean zero random

walk with simple exclusion
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Dedicated to the memory of Claude Kipnis.

ABSTRACT. - We consider a tagged particle in a simple exclusion model
where the probability distribution of the jump sizes has zero mean, but is
not necessarily symmetric. We establish for the tagged particle, a central
limit theorem under the usual scaling.

Nous considérons une particule marquee dans un modèle
d’ exclusion simple où la loi de probabilité des sauts est de moyenne nulle
mais pas nécessairement symétrique. Nous démontrons pour le déplacement
de la particule marquee un théorème central limite avec le changement
d’échelle usuel.

1. INTRODUCTION

We consider a random walk with simple exclusion. This means that we
have a collection of particles in Zd, d &#x3E; 1 with at most one particle per
site. Each particle waits for an exponential time with mean 1 and at the

end of this time picks a random site to jump to. The probability that a
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274 S. R. S. VARADHAN

particle, located at x, picks the site y to jump to is given by p(y - x).
However the jump can be executed only if the site y is free. Otherwise
the particle remains in the original site and waits for a new exponential
time. All the particles are doing this simultaneously and independently of
each other. Since we are dealing with processes in continuous time ties will
never occur and this describes the evolution completely.

For a more mathematical definition of the model we start with the state

space Q consisting of functions yy on Zd taking values either 0 or 1. If
= 1, then there is a particle at x and if = 0, the site x is free.

We next define certain transformations on the space O.

The transformation ax,y for two sites x, y in Zd could be

either a particle jumping from x to y or one jumping from y to x. Of course
= then ax,y does nothing and is identity. Given p ( x ) &#x3E; 0 with

p(0) = 0 and ~p(x) = 1, i.e. the distribution of jumps, we can define a
formal infinitesimal generator acting on suitable functions F on H

It is known [3] that this generator defines a good Markov Process on S2
. For each p in 0  p  1, we have on S2 the Bernoulli product measure

P~ with = 1] = p for all x in Zd. Each P~ is an invariant measure
for our evolution. Corresponding to each p we have a system of interacting
particles with initial distribution Pp which is in equilibrium. Of p(x) we
assume that it is zero outside a finite set. The case when p(x) = p( -x) is
the symmetric case and then the process is reversible with respect to any
one of the invariant measures. But in this article we will assume only that

or that the jumps have mean zero. Now the process is not necessarily
reversible. We will also assume an irreducibility condition namely that
{x : p ( x ) &#x3E; 0} generates the whole group Zd .

If we start our evolution under the assumption that there is a particle at
0 and that at other sites we have a random Bernoulli configuration with
density p , we can tag the particle at 0 as it moves around and denote

its location at time t by zt . We are interested in proving a Brownian
scaling limit for zt , i.e. to establish that converges as A - oo to a
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275RANDOM WALK WITH SIMPLE EXCLUSION

Brownian motion in distribution. In [2], with Claude Kipnis we proved that
this was indeed so in the symmetric case. The case p(l) = p(-1) = 1 2 in
one dimension is special and leads to Brownian motion with zero variance.
In all other cases it is nondegenerate. In this article we will extend these
results to the asymmetric mean zero case.

2. EVOLUTION OF THE TAGGED PARTICLE

In order to follow the motion of a tagged particle the state space has
to be changed. The state space H cannot distinguish between particles. We
shall find it convenient to describe the current state of the system by giving
the location of the tagged particle and the environment around the tagged
particle. In other words the state space is fi = Zd x Ho. Here Ho is the
space of configurations on Zd - ~0~. In order to describe the evolution
in the space fi we need to describe a transformation Tx that acts on Ho
for each x ~ 0.

is meaningful only if = 0 and describes the effect of the tagged
particle, which by definition is always at zero, jumping to x. We relocate
the origin at x the new location of the tagged particle. The transformations

for 0 are well defined on no. The evolution of the tagged
particle on fi is governed by the following generator

If F were a function of q only, then

In other words if (zt, qt) is the tagged system , ~t by itself is a Markov
Process with generator Lo . The Bernoulli measures Pp on Ho defined by

Vol. 31, n° 1-1995.



276 S. R. S. VARADHAN

are invariant measures for Lo. L on the other hand does not have an
invariant measure because the zt part will wander away in Zd.
Our initial distribution on S2 is 80 x Pg, i.e. we start from z = 0 and 7y

is in equilibrium . Then under the L evolution yy is always in equilibrium.
zt is the location of the tagged particle at time t and the scaling limit is
to be established for it.

3. OUTLINE OF PROOF

A direct calculation yields .

or equivalently for each 0 in R~

Therefore,

Here M(t) is a Martingale with stationary increments. The basic idea in
[2] was to replace the first term on the right in the above equation by a
Martingale term and an error term.

Our ability to do so depended on the following procedure.

Step 1.

Solve the equation

For simplicity let us take just one component of ~ . Based on an estimate
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where D~(~) = -  Lo u, u &#x3E;~ is the Dirichlet form of u, we get for
the solution ux

This gives us bounds

holding uniformly as A - 0.

Step 2.

Using either spectral theory or a more direct argument one establishes
in fact that

and

This was enough to reduce the Brownian scaling property for zt to the
same thing for a Martingale with stationary increments which is elementary
and standard.

Step 3.

We prove compactness by establishing the tightness of the distributions of

under Brownian scaling.

Step 4.

Establish the nondegeneracy of the Brownian motion obtained as the

scaling limit.

4. DETAILS OF PROOF

Due to the asymmetry one has to make changes in the proof along the

way.

Vol. 31, n° 1-1995.



278 S. R. S. VARADHAN

Step 1.

where are weights with = 0 . We can therefore rewrite

for some weights y). Because of irreducibility we can assume that
y) ~ 0 only if p(y - x) &#x3E; O. Since ~(x) - ~(y) =

(03C3x,y~)(x)) we can write,

where

Here and in what follows E is expectation relative to Pg for some fixed
0  p  1. If we denote by

then the full Dirichlet form for Lo is

Step 2.

If now one solves the equation

one can get the estimates

We can as before take a subsequence of ux converging to a limit u
in Hi. Here Hi is the completion of nice functions with respect to the
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279RANDOM WALK WITH SIMPLE EXCLUSION

Dirichlet norm Do (u) . It contains a lot of generalized functions and consists
technically of limits of equivalence classes of functions modulo constants.
Let us suppose that the following estimate holds. For all functions F and G,

then Lo will be a bounded operator from Hi into and Aux - 0

weakly in H-i. Therefore

From this we obtain,

where , &#x3E; is the pairing between Hi and H -1, the latter being the formal
dual of the former. Taking limits as A - 0 in (4.1) if d1 = lim 03BBEu203BB and

d2 = lim along suitable subsequences then

By lower semicontinuity Do ( u)  d2. Therefore di = 0 and d2 = Do ( u).
This proves the strong convergence of ux in Hi and also establishes

It is now routine to prove the uniqueness of the limit point. So the inequality
(4.2) which is obvious with C = 1 in the symmetric case is the crucial step
in the nonsymmetric case. We shall prove it in the last section. The rest of
the details are identical to the symmetric case.

Step 3.

Whereas in [2], for the symmetric case, compactness was a consequence
of the estimate in step 1, in our more general context we need to use some

special properties of We start with the estimate

As in step 1
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and

We have used the facts that ~r~(~c)-~(y)~  1 and = EG2(~7) _
1. Therefore

In other words

Compactness is now a consequence of Garsia-Rodemick-Rumsey estimate
which can be found in [4].

Step 4

We now establish the nondegeneracy of the limiting Brownian motion.
From the outline of the proof it is clear that what we need to establish is

that the martingale produced by /  1b(qs) , 0 &#x3E; ds namely  N(t), B &#x3E;

cannot cancel the martingale  M(t), () &#x3E;. There are two classes of

martingales generated by the underlying Poisson events: jumps that involve
the tagged particle, identified through Tx and those involving other particles
identified through with 0. These are orthogonal martingales
because they relate to non simultaneous Poisson jumps. If N(t) were
to totally cancel M(t), which involves only the first type of jumps, its

orthogonal projection on to the second type of martingales should go to zero.
This can happen only if for the corresponding ux, - 0 as A - 0.

But if Di (ux) - 0 then it follows from our estimates that 0

as well and this forces N(t) to be identically zero. With a small bit of
extra calculation one can turn this into a lower bound for the variance of

the limiting Brownian motion.
With only the basic estimate (4.2) remaining to be proved in the next

section we have now established our main result.
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THEOREM 4.1. - If zt is the location of the tagged particle in Zd then as

1~ ~ 00 the distribution of the stochastic process converges in Skorohod

space to a Brownian motion on Rd with a nondegenerate covariance matrix.

5. THE BASIC ESTIMATE

For ’ the operator Lo acting on functions defined on no

we wish to establish the following estimate.

THEOREM 5.1. - For functions and 

for some constant CP depending only on p.
Here , &#x3E;P represents the inner product in L2 (PP ) and Do (F) is the

Dirichlet form

Before we prove Theorem 5.1 let us make some observations.

1. If Lo were symmetric in L2(Pg) then the inequality is valid with

2. Suppose A is a Markov generator on a finite state space with an

invariant measure ~c and A is not symmetric. Let A be the symmetrization

A -~- 2 A* in ~2(~6). Since A and A have the same range, if we have Ag = h
we also have for some g, Ag = h and the is well defined and

the two Dirichlet forms are related by

Let us first prove a similar estimate for the untagged system L on H.

Vol. 31, n° 1-1995.
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LEMMA 5.2. - For any two functions F, G on SZ and for any p

Proo, f: - The proof depends on the following considerations. Suppose
~1,~2,’’’~ are k points in Zd such that ai + a2 + ... + ak = 0,
then the probability distribution on Zd defined by == i for
j = 1, 2 ... k and x(x) = 0 for all other x has clearly mean 0. The

sequence Yo = 0,~i = Y2 = ai + a2 , ... , yk = ai + a2 + ... ~.. a~ - 0
defines a cycle C = ~1, ~ ~ ~ , and a x can be associated to each

such cycle by taking ~ = ~ 2014 Moreover one can assume that the

cycle has no double points. Otherwise the cycle decomposes into two or
more cycles and xc is a convex combination of 03C0Ci corresponding to the
component cycles. We can therefore limit ourselves to irreducible cycles. If
Ci, C2 , ... , Cz are l irreducible cycles and ~2?’ " wi are nonnegative
weights adding up to 1, the convex combination p(x) = (x) is a

mean zero probability distribution on Zd. We have the converse

LEMMA 5.3. - Any p(x) with finite support and mean 0 has a

representation

for some weights w1, w2, - - - , wi and irreducible cycles Cl, C2, - - - , Ci.

Proof - A proof of this lemma can be found in [5].
We continue with the proof of lemma 5.2. Each cycle C introduces an

operator Ac on H by

One can verify that Ac has PP for an invariant measure and is in general
nonreversible unless k = 2. For any cycle C we can consider the cycle
C + x described by x, x + ~1, ~ ~ ~ , x + ~ = ~ starting and ending at x
rather than at 0 and define

We can make a translation invariant generator on H by defining
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Lc is a typical generator for asymmetric mean zero random walk with

simple exclusion. A consequence of lemma 5.3. is the representation

LEMMA 5.4. - Our generator L for asymmetric mean zero simple exclusion
has a representation

for some Cl, C2, ~ ~ ~ , CL which are irreducible cycles.
Now we can complete the proof of lemma 5.2. The Dirichlet form for L is

easily seen to be weighted sum of the forms for each Ci. Therefore there is
no loss of generality in assuming l = 1 or L = Ac for some irreducible C.

The Dirichlet form for Lc is the sum of Dirichlet forms for each Ac+x. By
Schwartz’s inequality it is enough to prove the estimate for each Ac+x and
this is essentially observation 2. The idea is that instead of detailed balance
that produces reversibility we now have local balance that yields bounds.
Now we have to extend these considerations to the tagged system. We

need another basic idea. Suppose (Q, 0, P) is a probability space and
Tl, T2, ~ ~ ~ , T~ are k measure preserving transformations. Let us assume
Tk ... Ti = I, and define

Our claim is that our basic estimate is valid in this context.

LEMMA 5.5. - We have for all F and G,

Proo.f.

because
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Rest is Schwartz.

Finally we return to the proof of Theorem 5.1. The operator

decomposes into cycles and we can assume without loss of generality that
p(x,) _ for some irreducible C. The problem is that 0 plays a special
role and translates C + x of the cycle C that touch 0 create trouble. We
can write

where L2F involves only jumps of the untagged particles and in addition
to full cycles that are estimated without any trouble there are incomplete
cycles because they go through the origin. Li on the other hand involves
only jumps of the tagged particle.

Let us remark that

so that the terms of Li and L2 look similar. Let our cycle be

0 =~0~1, " ’, yk = 0 with ai = ~2 - for i = 1,.’., ,1~ . Then ignoring
constants I/k and disregarding the full cycles,

The rest of the proof can be best described in words. Suppose there is an
empty site in the loop in front of the tagged particle, i.e. = 0. Then

the tagged particle can move, that is we can apply Now the empty site
created at the origin is really at - ai = (a2 + ... + ak ) because the origin has
shifted with the tagged particle. -ai is the last site of the loop that starts
from the new origin i.e. the old ai . One can effect o~~2 +... +~~ _ 1,~2 +~ ~ ~+ak
and get a free site at a2 + ... + We can proceed in this fashion
till we get a free site at a2. Now the tagged particle can jump to a2 and
the whole process starts again. After several steps the tagged particle will
return to its original starting point with an empty site in front and all

other particles in exactly the same position that we started from. This takes
exactly n = ~(A; 2014 1) steps and we use up every term of Li and L2 exactly
once. In other words
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where = S1E1 and Si = I on Ei. We can use
lemma 5.5 at this point and we are done.

6. REMARKS

The basic estimate (4.2) for the untagged system was derived and used
by Lin Xu in his New York University PhD dissertation to establish

a hydrodynamic scaling limit for mean zero random walks with simple
exclusion. A central limit theorem for the position of a tagged particle in
the case of asymmetric one dimensional simple exclusion (non zero mean)
was considered in [1] ] by C. Kipnis.
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