
ANNALES DE L’I. H. P., SECTION B

SHELDON GOLDSTEIN
Antisymmetric functionals of reversible
Markov processes
Annales de l’I. H. P., section B, tome 31, no 1 (1995), p. 177-190
<http://www.numdam.org/item?id=AIHPB_1995__31_1_177_0>

© Gauthier-Villars, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1995__31_1_177_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


177

Antisymmetric functionals
of reversible Markov processes

Sheldon GOLDSTEIN (1)
Department of Mathematics, Rutgers University,

New Brunswick, NJ 08903, U.S.A.

Ann. Inst. Henri Poincaré, (In Memoriam C. KIPNIS)

Vol. 31, n° 1,1995, p. .190. Probabilités et Statistiques

This paper is dedicated to the memory of Claude Kipnis.

ABSTRACT. - We prove the central limit theorem and invariance principle
for antisymmetric functionals of ergodic reversible Markov processes under
extremely mild conditions. Moreover, the proof is based upon an elementary,
direct decomposition of the functional, into the sum of a martingale term
and an asymptotically negligible term, by an analysis relying almost solely
on symmetry considerations.
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Nous prouvons, sous des conditions extremement faibles, un
théorème central limite et un principe d’invariance pour des processus de
Markov réversibles et ergodiques. De plus, la preuve est basée sur une

decomposition directe et élémentaire de la fonctionnelle en une somme
d’une martingale et d’un terme asymptotiquement négligeable, grace à une
analyse utilisant presque uniquement des considerations de symétrie.
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178 S. GOLDSTEIN

1. INTRODUCTION

In this paper we derive the central limit theorem for symmetric random
motions in a random environment by an argument based almost solely on
symmetry considerations.

Consider a stochastic process X (t) E R [or Rd], where t E 7L (discrete-
time case) or t G [R (continuous-time case). We shall say that this process
obeys the central limit theorem (CLT) if there exists a D &#x3E; 0 such that as
t - oo the rescaled process converges to a normal random variable with
mean 0 and variance D,

in the sense of convergence in distribution. In almost all examples which
naturally arise, it follows immediately from the argument for the CLT that
as ~ - 0

where WD is the Wiener process with variance Dt and the convergence is
in the sense of finite dimensional distributions. is the process viewed
on macroscopic length and time scales. (For the case of discrete time the
"[ ]" designates the greatest integer function.)
By CLT I will mean, in fact, both of the above. Slightly stronger than the

CLT but usually satisfied together with it is the invariance principle (IP):

in the sense of weak convergence of path-space measures for processes with
paths in D [0, oo). The IP amounts to the CLT combined with "tightness."
(Whenever we are concerned with the IP, it should be understood without
further ado that, whenever appropriate, modifications which are right
continuous with left limits have been taken.)
A frequent starting point for the asymptotic analysis of a process X (t)

is the observation that an ergodic square-integrable martingale M (t) with
stationary increments satisfies the IP [ 1 ] . Thus one obtains the CLT or the
IP for a process X (t) by suitably approximating it by a martingale.
A typical example [2] of the sort of process we wish to consider is

provided by a random walker in the random bond model. A particle starts,
at t = 0, at the origin of the lattice 7~d and randomly jumps to nearest
neighbor sites; to each nearest neighbor bond b is assigned a jump rate
a (b) &#x3E; 0, the rate at which the particle jumps across bond b. The jump
rates are random variables defining a translation invariant random field
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179ANTISYMMETRIC FUNCTIONALS PROCESSES

which is assumed to be ergodic under translations. X (t) is the position of
the particle at time t. (For other examples, see [4].)
The following two sections are intended as background and motivation for

the analysis and results of Sections 4 (discrete time) and 5-7 (continuous
time).

2. THE STANDARD DECOMPOSITION

For the random bond model it is not difficult to see that X (t) satisfies

the standard decomposition

where the first term on the right is the integrated drift (formally ~ (~o) =
(E (dX = ~ a), M (t) is a square-integrable martingale with
stationary increments, and ~t is the environment process, the environment
seen by the random walker, i.e., translated so that the random walker is at
the origin. ~t is a reversible Markov process, ergodic and reversible with
respect to the probability measure JL defining the random field of bonds,
i.e., the translation invariant probability measure on environments.
More generally, it typically happens that the displacement X (t) for a

symmetric random motion in a random environment can be written in
the form (2.1 ) for some function § of the state ç of a reversible Markov
process ~t . (The reversibility of çt is a direct reflection of the symmetry of
the random motion together with the translation invariance of the random
environment.) We shall thus consider a general Markov process ~, ergodic
and reversible with respect to some probability measure JL. We shall denote
the path space measure for the process starting with distribution JL by P,
and the corresponding expectation by E~ . For the case of continuous time,
we denote the negative generator of this process by L, a positive self-adjoint
operator on L2 (/~). We shall denote the inner product on L2 (JL) by (, ).

It is clear that the approximation of a process X (t) of the form (2.1) by
a martingale can be reduced to the approximation of the first term S (t)

by a martingale. It can be shown [4] that for E L1 (~~)
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180 S. GOLDSTEIN

where

with the overbar denoting the completion in II 11-1.
Kipnis and Varadhan [2] (see also [3]) have shown that a symmetric

functional S (t) of the form (2.2) satisfies the CLT, and, in fact, even the IP,
provided ~ E L2 (/~) n H -1. They do this by establishing the decomposition

where N (t) is a square integrable martingale with stationary increments
and R (t) is asymptotically small in the sense that

in L2 (P~ ), which yields the CLT for S (t), and, indeed, that

in P,-probability, which yields the IP. The same conclusions clearly hold
as well for X (t) satisfying (2.1 ), since by (2.1 ) and (2.5)

where M (t) = N (t) + M (t) is also a square-integrable martingale with
stationary increments.

Kipnis and Varadhan thus establish the IP for a large class of symmetric
random motions in random environments by showing that the drift
appearing in the standard decomposition (2.1 ) satisfies

3. ANTISYMMETRIC FUNCTIONALS

It is shown in [4] that it is, in fact, not necessary to check (2.9)
for the drift arising from a symmetric random motion in a random
environment-it turns out that this condition is automatically satisfied by
such a ~. This is because of a fundamental symmetry obeyed by such
processes, namely, that they are antisymmetric under time-reversal. More
precisely, the displacement X (t) = X[o, t] where XI is an antisymmetric
functional of the ergodic reversible Markov process (t: For each interval
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181ANTISYMMETRIC FUNCTIONALS PROCESSES

I c R, X I E FI = 03C3 {03BEt, t ~ I} and the family {XI} is covariant,

additive, and antisymmetric,

for any time-translation 6,

and

where RI denotes times-reversal about the midpoint of I. (See [4] for

details.)

(Observe that the displacement in the random bond model is of this form,
with XI the displacement over the time interval I. This is determined by
the "jumps" in the environment during this interval, and hence by 
It is antisymmetric since the time-reversal of the motion leads to a reversal
in sign of the displacement.)

Consider a process X (t) arising from an antisymmetric functional of
a reversible Markov process, as described above, and suppose that X (t)
satisfies the standard decomposition

Since S (t) is of the form (2.2) it is clearly symmetric under time-reversal,
i.e., under t~. Moreover, since çt is reversible with respect
to PJ-L is invariant under time-reversal, i.e., under Rt for any t. Squaring
M (t) = X (t) - S (t) and noting that the cross term -2 X (t) S (t) is

antisymmetric and hence has vanishing expectation with respect to we

find that

so that

where K does not depend upon t. Thus, by (2.3), ~ E H -1 and the IP
follows provided ~ E L2 (~c). Moreover, it is shown in [4] that the condition
cjJ E L1 (~c) n H-i is sufficient for the CLT for X (t) and that under an
additional mild technical condition one also obtains the IP.
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182 S. GOLDSTEIN

4. THE DIRECT DECOMPOSITION

The preceding argument has always left me a little unhappy. What seems
to me vaguely unsettling about it is the conjunction of the following facts:
( 1 ) It employs the standard decomposition to transform the analysis of X (t)
to that of S (t). (2) In general, the analysis of a symmetric functional S (t)
of the form (2.2) requires the condition that § E H-l’ (3) There is, however,
no need to demand any corresponding condition on X (t) - since the S (t)’s
which arise, as described, from antisymmetric X (t)’s automatically satisfy
the relevant condition. It would seem, therefore, that there should somehow
exist an analysis of X (t) leading directly to the decomposition (2.8) into
the sum of an asymptotically negligible term and a martingale, which
entirely avoids the standard decomposition and S (t). (Note also in this
regard that, formally, one can at least imagine the situation in which the
standard decomposition fails in the sense that M (t) is not square-integrable,

H -1, and (2.5) is satisfied but with the martingale N (t) also failing to
be square-integrable, in such a manner that the "divergences" in these two
martingales cancel so that the sum M (t), in eq. (2.8), is square-integrable
and the CLT follows.)
We show here that such a direct analysis does in fact exist. The remainder

of this section will be devoted to the presentation of this analysis for the
discrete-time case, for which the CLT for antisymmetric functionals involves
a cleaner statement, with fewer conditions - essentially none beyond the
symmetry conditions - than for continuous time. We begin with a statement
of this CLT, in fact IP, first proven in [4].

THEOREM 4.1. - be a Markov process with state space f,
ergodic and reversible with respect to the probability measure J-L on f. Let

PJ-L be the measure on path space describing the process starting from J-L.
Suppose X is an antisymmetric function on f x f,

and that

Then

obeys the IP.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Note that Xi is an odd function of the z-th jump - ~. Just as for
continuous time, many discrete-time models can naturally be cast into a
form to which the above theorem may be applied.
The key idea for obtaining the CLT part of this theorem by a direct

analysis is to observe that

and thus to focus on the antisymmetric subspace H of L2 (P~ ~ r . 
i.e., the closed subspace of functions f (~o, ~1) which reverse sign under
the interchange ((,0, Çl) - (Çl, ~o)~
The simplest elements of H are of the form

for 03C8 E L2 ( ). We therefore form the L2-closure Ho of the set of elements
of this form,

the "null" subspace of 7~ and form the corresponding orthogonal
decomposition of H

into the null subspace and its orthogonal complement Hm = 7~ in H.
The critical observation is now that Hm is precisely the set of

antisymmetric square-integrable martingale differences, i.e., the subset of
elements M E H satisfying

In fact, for M E Hm we have that for all ’ljJ E L2 

where R implements the interchange (ço, (i) - (~i? ço) and where the
symmetry of P~ has been used. (4.8) follows immediately from (4.9) (and
conversely).
We thus decompose X1 according to the decomposition (4.7)
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into a null term and a martingale difference Mi = Mx (ço, ~i).
Replacing (~o, (i) by (~Z-1, Çi) we similarly decompose

so that upon adding we obtain that

where M (t) is a square-integrable martingale with stationary increments
and ’lj; (~) - ~ ((o) is evidently of order unity (as t ~ oo). Thus by
invoking the decomposition (4.7) we seem to have obtained the CLT with
apparently no work at all.

We should point out immediately that the argument just presented is a
swindle. The trouble is that the projection of Xi onto 1to need not be in
~£2 (/~); it need only be in the completion, and we cannot be sure that
the sums of the time-translates of such elements are also of order unity-in
fact, they of course are not! We must thus be more careful and focus on
the structure of Ho.
The crucial observation at this point is that for any 1/J E LZ 

where P is the transition probability for the Markov process Çn and is
self-adjoint by reversibility, I is the identity, and the norm on the right is
the discrete-time jHi = Hi (I - P)-norm. Therefore A, after dividing by

extends to a unitary from Hi, the completion of Lz (~c) in the norm
II ] ~~1, onto Ho. In particular, we find that

It follows that there exists E Hi such that in place of (4.10) we
have that

and in place of (4.11 ) we have that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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This satisfies

since

Thus extends by continuity to all of H1, and the full (4.18) remains
valid for this extension (since the middle term of (4.18) is continuous as
a function of 03C8 ~ Hi).

Moreover, the relation

obviously true for 03C8 E L2 ( ), extends by continuity to all1/; E Hl. Thus,
summing (4.16), we have in place of (4.12) that

Since for I x I  1, lim (1 - xt)jt = 0, it follows from (4.18) and (4.19),
using the spectral representation [4] for P on Hi , that by the dominated
convergence theorem R (t) = satisfies (2.6), completing the proof
of the CLT part of Theorem 4.1.

5. CONTINUOUS-TIME DIRECT DECOMPOSITION

The extension to continuous time of the direct decomposition of Section 4
is reasonably straightforward. Let XI be a square-integrable antisymmetric
functional of the ergodic and reversible (continuous-time) Markov process
~t, as described at the beginning of Section 3. We note that for each

interval I = [a, b],

the kernel of RI + I acting on L~ (P~ FI).

and let
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Since

where t = b - a, and since the norms 1/ 1/ (t) are equivalent for all

t &#x3E; 0, it follows that Ai extends to a continuous bijection - 7~~
satisfying (5.4), where H~1~ - Hi (I - e’~), the completion of L2 (E~,) in
~ 1/(1)’ In particular ~-l~ = ~I 
Let ~~ = (~-l0)1, the orthogonal complement of in For M E 

we have that M E if and only if E~ = 0. Corresponding
to the decomposition

we decompose

Using the covariance, eq. (3.1 ), and additivity, eq. (3.2), of XI and the
similar additivity of Ai (which follows by continuity from the obvious
additivity on 03C8 E L2 ( )), we see that 03C8 does not depend upon the choice
of the interval I for t = b - a rational. Moreover, if XI is cadlag in the
sense that t~ has a modification which is right continuous with left
limits, or, more generally, if XI is continuous in the sense that X[O, t] - 0
in P,-probability as t - 0, then this independence holds for all t.
We then find that there exists E such that for all t &#x3E; 0

where M (t) = is a square-integrable martingale. Moreover, it

follows from eq. (5.4) and the fact that for x &#x3E; 0 and t &#x3E; 1, we

have 0   1 - e-x, that R (t) = satisfies (2.6). We
have thus established Theorem 5.1 below, which improves the CLT part
of Theorem 2.2 of reference [4] by completely eliminating the need for
hypotheses concerning the existence or properties of the 

THEOREM 5.1. - Let XI be an antisymmetric functional of an ergodic
reversible Markov process as specified at the beginning of Section 3, and
suppose that XI is square-integrable and that I --~ XI is continuous in
probability. Then X (t) = t~ obeys the CLT.
We remark that the decomposition (2.8) of a process X (t) into any

process R (t) satisfying (2.6) and a square-integrable martingale with

stationary increments is unique: Forming the difference of two such

decompositions of X (t) and using the fact that the variance of a square-
integrable martingale with stationary increments is linear in t, we find upon

Annales de l’lnstitut Henri Poincaré - Probabilitcs et Statistiques
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taking t - oo that the difference of the corresponding martingales must
vanish. In particular, for X (t) as described in Theorem 5.1 we have found
the form of this unique R (t) , namely, R (t) = ’lj; for some ~ E 

6. SYMMETRIC FUNCTIONALS, ANTISYMMETRIC
FUNCTIONALS, AND THE ASSOCIATED MARTINGALE

We would like to make contact with the drift ~ i. e. , with the

standard decomposition (3.4), in as much generality as possible. We

begin by remarking that, just as with the decomposition (2.8), the

decomposition (3.4) of a process X (t) into any process S (t) satisfying

in L2 and a square-integrable martingale with stationary increments
is unique. This unique S (t), if it exists, may be regarded as - and will be
called - the generalized integrated drift. We will use the decomposition (5.7)
to establish the existence of S (t) with great generality, and to arrive at
its form.

We begin by noting [4] that for any ~ E L2 (/~) n H_1, with

H-l = H_1 (L),

Thus the integral from 0 to t extends by continuity to an operator

/~ : : H_1 ~ L~ (P,) satisfying

Observe that since, for x &#x3E; 0, 1 &#x3E; 1 - e-xs B 0 as s - 0, we have for

all § E H-l that as t ~ 0

in L2 (P,).
Vol. 31, n° 1-1995.
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Let

where the overbar denotes the completion in II 111- Since 0  
L for t, &#x3E; 0, we have that ] ] t II ] and that Hi C H~1~ . In
particular, we have from eq. (5.4) that for 03C8 E Hi

Moreover, since 0  20142014201420142014 /’ ~ 
as t B 0 for x &#x3E; 0, it follows from

(5.4) using the monotone convergence theorem that for 03C8 G H(1) we have

that 
2014201420142014201420142014 

is increasing as t B 0 and that the limit is  oo if and

only if 03C8 G Hl (in which case this limit is 2~ 03C8 ~2 1).
Note also that L : .Hi 2014~ is unitary. Thus, from eq. (6.3),

For ’ljJ E Hi define

When ~ belongs to the L2 of L, which is dense in Hi, it is

well known, and one may easily check, that M~ (t) is a square-integrable
martingale. From eqs. (6.6) and (6.7) it follows by continuity that this is

in fact true for all 03C8 G Hi. We note in passing that for any § G H-i, the

process 03C6 = M03C8 (t) with 03C8 = -L-1 03C6, and hence obeys
the CLT.

Combining the preceding observations, and using eqs. (5.7) and (6.8) and
the fact that the variance of a square-integrable martingale with stationary
increments is linear in t, we arrive at the following result:

THEOREM 6.1. - Let XI be an antisymmetric functional of an ergodic
reversible Markov process as specified at the beginning of Section 3,
and suppose that ~ ~ XI ~ ~ 2 = O ( ~ I ~ ) ] 1 ( 2014~0. Then the generalized
integrated drift S (t) exists for the process X (t) = X[o, t~ and is given by
S (t) = / 03C6 where 03C6 = -L-1 03C8 with given by (5.7).

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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7. THE INVARIANCE PRINCIPLE

We mentioned in Section 2 that Kipnis and Varadhan [2] have
/’t

shown that if 03C6 E L2 ( ) fl H_1, then S (t) = t0 03C6 satisfies (2.5) with

R (t,) obeying (2.7), a result which is extended in reference [4] to all

~ E L1 (~c) n H_1 also satisfying

Now the argument in [4] in fact shows, if we use the fact M~ (t) is a square-
integrable martingale with stationary increments for all 03C8 E Hl, that the

condition ~ E L1 (~,) n H-i can be relaxed to the condition that ~ E H-i

and is such that c~ has a modification which is right-continuous with

left limits.

If XI and 03C6 are as in Theorem 6.1, it follows from the the Doob-

Kolmogorov inequality [5] that (7.1) is equivalent to

Moreover, the condition that ~ has a modification which is right-
continuous with left limits is equivalent to the analogous condition on
Xjo, t~ - since this condition is always satisfied by the martingale M (t) [6].
We have thus arrived at the following result:

THEOREM 7.1. - Let XI be an antisymmetric functional of an ergodic
reversible Markov process as specified at the beginning of Section 3, and
suppose that II XI 112 = O ( as I I I ~ 0, that sup Xjo, I E L2 

Ot1

and that Xjo, t~ has a modification which is right-continuous with left limits.
Then X (t) == obeys the IP.

In view of the sentiments which motivated this paper, expressed at the

beginning of Section 4, we should not be happy with the proof of this
theorem, and, indeed, we are not! However, we have not been able to
avoid the indirect analysis exploiting the beautiful estimate of Kipnis and
Varadhan [2]: For all 03C8 E L2 ( ) n Hl

Notice that for a general ~ E Hi, for which ~ (çs) need have no meaning,
there can be no such estimate. However, what we would like to have, in
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view of (5.7), is a simple, direct estimate on the sup of R (t) = A[o, t] ’ljJ, and
not, of course, an estimate involving ~ (~t) itself. If 1/J is given by (5.7) for
XI satisfying the hypotheses of Theorem 7.1, then R (t) = does,
in fact, obey eq. (2.7) -by (the proof of) Theorem 7.1 and the uniqueness
described at the end of Section 5. But we don’t know how to see this

directly. Nor do we know the precise condition on E Hi under which
. 

R (t) = t] satisfies (2.7) (at least with the sup restricted to rational s).
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