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ABSTRACT. - We consider a class of cellular automata on the state space

{0~ 1 ~ ~d , evolving in discrete time and starting from uniform product
measures. In this class l ’s do not change and the interaction is attractive,
translation invariant and occurs among nearest neighbors (see [Schl]). We

prove the equivalence of the exponential decay rates related to (i) the

probability of the origin being still vacant after a long time and to (ii) the
probability that the core of a large finite block is not completely occupied
by the dynamics restricted to this block. For the model in which 0’s change
to 1 when they have at least one neighboring 1 in each coordinate direction
a further bound between exponential decay rates is also obtained, which in
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14 E. D. ANDJEL, T. S. MOUNTFORD AND R. H. SCHONMANN

combination with results in [Mou] allows us to compute the exponential
decay rate related to (i) for these models as being exactly -2 10g (1 - p),
where p is the initial density of Fs. In particular the exponent v related to
(i) is equal to 1 for these models. This improves a result in [And].

Key words: Cellular automata, bootstrap percolation, critical behavior, exponential rates.

RESUME. - On considère une classe d’ automates cellulaires dans l’espace
{0, 1 }~ , qui évoluent en temps discret et ont comme distribution initiale
une mesure produit invariante par translations. Dans cette classe, l’état 1
est stable et 1’ interaction est monotone, invariante par translations et à plus
proches voisins. On démontre l’équivalence des paramètres qui mesurent
la décroissance exponentielle de (i) la probabilité que l’origine ne soit pas
occupée apres un long intervalle de temps et (ii) la probabilité que le noyau
d’un grand hypercube ne soit pas entierement occupé par la dynamique
restreinte à cet hypercube. Pour les modèles dans lesquels un 0 devient un
1 s’ il a au moins un 1 voisin dans chacune des directions parallèles aux
axes de coordonnées, on démontre une seconde relation entre les paramètres
de décroissance exponentielle, qui combinée aux résultats de [Mou] nous
permet de conclure que pour ces modèles le paramètre lie à (i) est égal à
- 2 log ( 1 - p), où p est la densité initiale des 1. En particulier, l’exposant
v lie à (i) est égal à 1 dans ces modèles. Ceci améliore un résultat de [And].

1. MODELS AND RESULTS

In this paper we continue to investigate the behavior of a class of cellular
automata considered in [Sch1] and [Sch2], which generalizes in a natural
direction the bootstrap percolation models. As in previous papers we are
mostly concerned with the critical behavior of such models. The motivation
for this projet comes from the increasing interest on cellular automata and
especially from the surprising behavior of the bootstrap percolation and
related models (see for instance the references to this paper and references
therein; [Adl] is a recent review on bootstrap percolation from a physicist’s
point of view). A subset of this class of models had been introduced before
in [AA], who called them "diffusion percolation".
The models considered in this paper are defined on the lattice where

Z is the set of integers, and d = 1, 2, ... is the space dimensionality. The
systems evolve in discrete time t = 0, 1, 2,... To each element (site) of 
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15BOOTSTRAP PERCOLATION

x, we associate at each instant of time t, a random variable rit (x) which can
assume the values 0 and 1. We say that the site x is empty (resp. occupied) at
time t if qt (x) = 0 (resp.1). 1 ~~d will represent the function that
to x E 7~d associates rit (x). Elements of { 0, 1 ~~d are called configurations.
The system will be always started, at t = 0, from a translation invariant

product random field, i.e., the random variables 7~d are i.i.d.

with P (7yo (x) = 0) = 1 - p, P (yyo (x) = 1) = p; p E [0, 1] is called the

initial density. The system evolves then according to a deterministic rule

satisfying the following conditions:

(i) rit+1 (x) = 1 if rit (x) = 1 (1’s are stable) or if qt belongs to a certain
set Cx (the sets Cx, x E specify the models).

(ii) rit+1 (x) = 0 if rit (x) = 0 and ~t does not belong to the set Cx.
In this paper the sets Cx will always obey several restrictions:

a) Translation invariance. - We define 03B8x~ by (03B8x ri) (y) = ~ (y - x) and
we assume that Cx = {~ : 8 _ x ri E Co}. In particular the set Co = : C
specifies the model.

b) Nearest neighbor interaction. - We define Nx = {y ~ Zd : ~x-y~ =
1}, where II . II is the li - norm on Z~ (11xll = ] + ... + We

assume that if vy E Cx and 71 ( y ) = ri’ (y) for every y E Nx, then ri’ E Cx.
Informally, each site is influenced only by its nearest neighbors at each

step of the evolution.

c) Attractiveness. - We define on ~ 0, 1 ~~d the partial order given by
ri  7/ if ri (x)  ri’ (x) for every x E We assume that if 71 E Cx and

ri  7/, then 7~~ E Cx. Informally, the more Fs we have at time t, the more
l’s we will have at time t + 1.

The set C may be specified by a set D of subsets of A/’ : = via

Observe that, by attractiveness, if A E D and A C B, then B E D.

In order to give some examples we define the elements of Z~

ei = (1, 0, 0, ..., 0),..., ed = (0, 0, 0, ... , 1) and denote by I A I
the cardinality of the set A.

Examples:

1) Bootstrap percolation. - Take l E ~ 0, ..., 2 d ~ and set

A 0 becomes a 1 if at least l of its neighbors are 1’s.

Vol. 31, n° 1-1995.



16 E. D. ANDJEL, T. S. MOUNTFORD AND R. H. SCHONMANN

2) The basic model. - This is the particular case of bootstrap percolation
with ~ = d.

3) The modified basic model

In this model a 0 becomes a 1 if in each one of the d coordinate directions
it has at least one neighbor which is a 1.

4) Oriented models. - Take ( a 1, ..., ad ) E { -1, + 1 ~ d . For each one
these 2d choices we have one of the oriented models defined by

In case ai = +1, for z = 1, ..., d, we call the model the basic oriented
model.

Given two models defined respectively by Di and D2, we say that the
latter dominates the former if Di c D2. Informally, if a 0 becomes a 1

in the former, the same occurs in the latter. The following statements are
clearly true. The bootstrap percolation model with l = ll, dominates the
one with l = l2 if li  l2. The basic model dominates the modified basic
model and this one dominates all the oriented models.

Once we have specified the dimension d, the set C and the initial

density p, we denote by Pp ( . ) the probability measure corresponding to
the process (TJt)t?o.

Define

7r (p) = sup { -y &#x3E; 0 : there exists C  oo such that

and

In Section V of [Sch1] it was proven that when 03C0c  1, then
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17BOOTSTRAP PERCOLATION

[when = 1 then IT (1rc) = +oo] and that for the modified basic model
(and hence for the bootstrap percolation models with l  d ) 1rc = 0. On

the other hand for the oriented models 0  1rc  1, and for bootstrap
percolation models with l &#x3E; d, 03C0c = 1. When 1r c  1, the critical exponent
v is defined by

provided that the limit exists.
Given r C ll d we define the dynamics restricted to r, (1]; : t == 0, 1, ... )

by changing at t = 0 the state of each site x e f to 0 and also modifying the
evolution in f by keeping this condition forever [i. e. for x E rc rit (x) = 0
for all t and for x E r, rio (x) = 7/0 (x) and ~0393t+1 (x) is obtained from 1]; (x)
by the same rules used for (1]t : t = 0, 1, ...)]. Given F2 c r1 we say
that "r2 is Fi-spanned (by the initial configuration if

If r is r-spanned, we say as in [AL] that "r is internally spanned".
Consider the cubes

Define

and

From arguments in Section V of [Schl] it follows that -ys (p) &#x3E; 0 =}

"/T (p) &#x3E; 0. We will strengthen this result by showing

THEOREM 1. - For all the models in the class defined above and all

0  p  1

Define a critical exponent related to qs (p) by

Vol. 31, n° 1-1995.



18 E. D. ANDJEL, T. S. MOUNTFORD AND R. H. SCHONMANN

provided that the limit exists. Theorem 1 implies that

in the sense that either both exist and are identical or both do not exist..

To relate this fact to the results in [And] and [Mou] we define also

R (N, p) = Pp (QN is internally spanned),

and

Remark. - The cube QN has side 2 N + 1. For this reason 
2 y (p), where y (p) is the corresponding exponential decay rate considered
in [And].

Clearly, by attractiveness, R (N, p)  S (N, p) and hence "YR (p) 
qs (p). But observe that for models for which the orientation is relevant,
we may have values of p [possibly every p E (0, 1)] for which

7p(p) = 0  qs (p). For this reason, when one considers the whole

class of models above, S (N, p) is in general more useful than R (N, p).
On the other hand for the modified basic model in d = 2 (for which
1rc = 0), [And] proved that for each fixed p &#x3E; 0, R (N, p) converges to
1 as N - oo so fast that

and [Mou] later proved the much stronger result which states that in every
dimension for the same modified basic model .

Using this result and the simple observation that

on obtains from Theorem 1, and the already observed inequality ’"YR (p) 
(p), the following consequence.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



19BOOTSTRAP PERCOLATION

COROLLARY 1. - For the modified basic model in every dimension

Previously the best result on v for this model had been obtained in [And],
who proved that in dimension 2 if v exists then 1  v  2. Motivated by
the explicit computation of ’YR (p) for the modified basic model in [Mou],
we will strengthen also Theorem 1 for this model and show

THEOREM 2. - For the modified basic model in any dimension and every
0  p  1

This inequality together with the trivial bound ( L ~ ~ denotes integer part)

implies that

COROLLARY 2. - For the modified basic model in every dimension

Our results for the modified basic model say that besides of the fact that

the probability that the origin is still vacant at time t goes to 0 exponentially
fast with t, also the corresponding rate of exponential decay is not too small
even when p is small, since it behaves asymptotically as 2 p when p 2014~ 0.
This should be contrasted with an important result in [AL], according to
which in d = 2 there are 0  Ci  C2  oo such that for every 6- &#x3E; 0

so that for small p the system needs an extremely large time for the origin
to be likely to become occupied. Our results on the other hand (and for
this matter also the weaker result v  2 in [And] in the d = 2 case) say
that once the time is so long that the origin is very likely to be occupied,
waiting even longer makes this probability go to 1 relatively fast.

Returning to the full class of models to which Theorem 1 applies, we
observe that still another natural probability to look at, as discussed in

Section 5 of [AL], is

Vol. 31, n° 1-1995.
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Define

And

provided that the limit exists. From attractiveness translation invariance
and the observation that "effects travel with maximum speed 1 ", since the
interaction is among nearest neighbors, one obtains as in relation (II1.5)
and (V.5) in [Sch1] the following

PROPOSITION 1. - For all the models above and all 0  p  1,

And as a consequence qM (p)  -ys (p)  2 03B3M (p) and vM = vs.

2. PROOF OF THEOREM 1

The second inequality follows easily from relation (V.5) in [Schl]
(obtained from the observation that "effects travel with maximum speed
1", since the interaction is among nearest neighbors): If ~yT (p) = 0 there
is nothing to prove, otherwise, given 0  ~yl  ~2  ~yT (p) there are Ci,
C2  oo such that

So

To prove the other inequality, observe first that if the model does not
dominate any oriented model, then by Proposition V.I in [Schl] 03C0c = 1

and rT (p) = 0 for all p E [0, 1), while rT ( 1 ) = +oo. On the other

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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hand, by the same simple argument which proves this proposition (a cube
of 0’s is never eaten),

so that ry s (p~ _ ryT (p) for all p in this case.

Suppose from this moment on that the model dominates an oriented
model, the basic oriented model say. Consider the following cubes, where
N E Z+, k E Z~

Observe that the QN, k have side 2 N + 1 and for k E Z~ form a partition
of The QN, k have sides 4 N + 1, and intersect each other when the k’ s
are close. But if d + 1 (where ~ - ~ is the ll-norm), then

For each k, QN, k and QN, k are centered on the same point (2 N + 1) k.
In what follows take a fixed N (to be chosen later). Say that the block

QN, k is "good" if QN, k is QN, k-spanned by the initial configuration.
Think of k E Zd as sites of a renormalized lattice. For k E let j3 (k)
be the indicator function of the event QN, k is good. The random field
/3 { (k) : k E clearly has a finite range of dependency (which is d in
the ll-norm). It is translation invariant and for all k

Now we have to recall some notions related to oriented site percolation.
We say that (~B ..., x~n~) is an oriented path in Z~ if xCi) E Z~
i = 1, ... , n and n = 1 or x~2+1&#x3E; - E { ei, ..., ed~, i = 1, ..., n - 1.
Given a random field ( a ( x ) : x E lLd), where 0152 ( x ) ~ { 0, 1} we say that
the oriented vacant cluster of the origin w.r.t. a is the random set

C~ ={ y E lLd : there is an oriented path (x{1~, ..., x~n~) such that

Vol. 31, n° 1-1995.
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(0) = 1 then C~ = 0.) The range of C~ is defined as 0 if 
and otherwise as

Given now s &#x3E; 0, consider the block construction above, with N = ls8 J,
where 8 is arbitrary except for the restrictions 0  8  1 /d. Given c &#x3E; 0,
let F~ be the event that for the corresponding random field j3 on the
normalized lattice we have

At time (4 N + 1)d ( Sd s8d for large s) all the Q N, k which correspond
to a k with j3 (k) = 1 will be completely occupied, because the dynamics
restricted to a finite set F has to reach a final configuration in a time  
Consider the vacant cluster of the origin on the originl (not the normalized)
lattice w.r.t. the configuration ~4~1~ == : (. It is clear that

From the facts 

1) : y E = dN, it follows from the triangular inequality that

So for large s on  s (1 - 2 e) + dN  s (1 - e). Compare
the model we are considering with one that has the same dynamics up to
time (4 N + l)d and afterwards evolves as the basic oriented model. Since
we are supposing that our model dominates the basic oriented model, it
follows that for arbitrary t

(For a formal argument see Proposition IV of [Sch1].) Therefore for large s

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Set m = ~s (1 -- 2e)/(2~V + if ~ occurs,- then in the renormalized -

lattice there is an oriented path ( ~ ~ 1 ) , ... , ~ ~ "2 ) ) , with = 0 and

,~ (1~~2) ) = 0, i = 1, ..., m. The random variables ,C3 (1~~1) ), ,(~ (yl+(d+1)) ) ~
/3 (~(1-~-2(d-f-1)) )’ ... ~ ~ (Jb(i+L(2014i)/~+i)J-(~+i))) are mutually independent
and since there are oriented paths starting at a given site and crossing
m - 1 other sites, it follows that for large s

Suppose that 18 (p) &#x3E; 0 since otherwise there is nothing to be proven.
Given now 0  1 (p) there exists Ci, C2  oo such that

From the last three displayed inequalities and the fact that 8  1/d it

follows that for large s

Now since 8 &#x3E; 0, there exists C3  oo such that

Therefore ’rT (p) &#x3E; ((1-5e)/2 (d+1))-ys (p). And since e &#x3E; 0 is arbitrary

3. PROOF OF THEOREM 2

The proof of Theorem 2 is an adaptation of that of Theorem 1. For

k E Zd let p (k) be the indicator function of the event { QN, k is internally
spanned}. The random variables {~(~) : ~ E are clearly mutually
independent and identically distributed, with

Vol. 31, n° 1-1995.
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Given a random field { a (k) : 1~ E define a’ (k) = a (-k) for
each k E lLd, and

A can be thought of as the range of the vacant oriented cluster of the
origin w.r.t. the random field a, when the orientation is the opposite of
the one considered before.

Choose as before N = Ls8J with 0  6  l/d and define ~ : = 
By time (2 N + 1)d ( 3d s8d for large s) all the QN,k which correspond to
a k with cp (k) = 1 will be completely occupied. Since the modified basic
model dominates all the oriented models, it follows from Proposition IV.1
of [Schl] that for arbitrary t &#x3E; 0

But observe that for t &#x3E; 0

The factor (Pp (p (0) = 0))-1 is irrelevant for the rest of the argument
[where t will be chosen as s (1 - e)] since it is of order exp sbd)
and 8  1/d.
From this point on, one can proceed as in the proof of Theorem 1,

but with obvious simplifications due to the independence of the f cp (1~) }.
The presence of the two terms above (those with A~ and A~ ) gives raise
to an extra factor 2, crucial to make the inequality between 1’T (p) and
’Yx (P) sharp.
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