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ABSTRACT. — Let A, be the amount of time that a Brownian motion
spends above 0 before time ¢. For fixed ¢ the ratio A,/t has distribution
independent of ¢; viewed as a function of time A,/f can become arbitrarily
small. In this paper we consider the effect of modifying the denominator.
In particular, if f is monotonic then lim infA,/¢tf (£)=0 or oo according

0
as j \/f (?) (dt/t) diverges or converges.
The proof considers A, at the ends of “long” negative excursions and
involves showing the existence of infinitely many such excursions.

Key words : Brownian sample path, Arcsin law, Excursion theory.

REsUME. — Soit A, le temps passé par le mouvement brownien
au-dessus de zéro avant le temps . Pour ¢ donné, le rapport A/t
a une distribution indépendante de 7; et lim infA,/t=0. Dans cet article,
nous nous intéressons aux conséquences d’une modification du déno-
minateur. Nous montrons que, si f est une fonction décroissante,

alors lim inf A /tf (1)=0 si f ’ SO @ijy=co et lim AJjif ()=c0 si
t1 o

t1 o

r) \/m(dt/t) < 0.

La démonstration s’intéresse a A, a la suite d’excursions négatives
prolongées et met en relief existence d’une infinité d’excursions.
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236 D. HOBSON

1. MAIN RESULTS

The proportion of time that a Brownian sample path spends above zero
before a fixed time ¢ is independent of ¢ and is characterised by the arcsin
law. Many other functionals of sample paths inherit time-scaling properties
from Brownian motion. In this paper we consider the asymptotic behaviour
of these functionals.

Define

t
Az"f Iig,>0,ds. 0]

0

Then A,/t has the arcsin distribution:

A 2 _
Pl—<u]==sin"! . 2
( t _u) ~sin ™! (/i) @
We consider
lim inf A, 3)
e (@)

for suitable functions f. For f the unit function f (£)=1 we can use (2)
and the Hewitt-Savage 0-1 Law to conclude

lim infi=0 a.s. 0]
o ()
We consider when (4) is true for other functions f.

Suppose that C, is an adapted functional of a Brownian sample path
and that C, has the properties

C1 0<C, <t and C, increasing;
C2 C, constant on negative Brownian excursions;
C3 C,/t has distribution F independent of ¢, and

lim ¥ Y2 F(u)=c>0;
ulO0

We prove our results in terms of the functional C,; notice that A, satisfies
these conditions, as does J, where

J,=sup{s:B,=0}.

s=t
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THEOREM 1. — Suppose f is decreasing. Then

@)
Jm% fH)<owo = li?::onftf(i't)=oo a.s. %5)

(i1)
A = = lifx:gionffc(’t—)=0 as. (6)

Since we obtain an integral test for f some monotonicity condition is
essential. Also we only need the hypothesis to hold in a neighbourhood
of infinity, since we can change the definition of f on some compact
interval without altering either the statements or conclusions of Theorem 1.
The analogous theorem for small times is as follows:

THEOREM 2. — Suppose g is increasing. Then

®

J \/m<oo = hrsnllonfS;(s)—oo a.s. )
(i)

0+s /g(s =0 = llrsnllonfsgc(s)—o a.s. ®)

A higher dimensional version of this question has been investigated by
Mountford [3] and Meyre [2]. Mountford considered the proportion of
time that planar Brownian motion spends in a wedge, normalised by the
functions f (t)=(log t)™?. By considering the wedge of angle ©= we can
specialise his result to one dimension:

p<2

52 ®

lim inf (log t)” { 0
o0

t1 o

Meyre considered the d-dimensional case, and the amount of time spent
in a closed cone with vertex O by a Brownian motion. Again considering
functions of the form f (¢)=(log ¢)~?, he extended the results of Mount-
ford and showed in particular that for p=2

lim inf (log t)2 (10)

tt oo

Both authors derived their results by finding an increasing unbounded
sequence of times at which the Brownian motion was relatively far from
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238 D. HOBSON

the origin, and then showing that it would sometimes take a “long” time
to leave the relevant wedge or cone. In this paper we use excursion
arguments which are specific to one-dimension to prove a more sensitive
result. '

The remainder of the paper is structured as follows. In section 2 we use
Borel-Cantelli type arguments to prove

o)
J ﬂ\/m<oo = lim inf G =00. (11)
t t1w U (1)
In section 3 we complete the proof of Theorem 1 by considering the value
of C, at the ends of “long” excursions from zero. In Section 4 we deduce
Theorem 2 by considering the map B, — B, ,.
I am pleased to acknowledge the assistance with the excursion arguments
provided by Professor Chris Rogers.

2. PROOF OF THEOREM 1 (i)

For fixed r>1, K

Cpn _
P(r"f(r")<K> FX () (12)

Then using the fact that f'is decreasing we have

;P(rn;:’('"ﬁ)<K><oo if and only if Jw%F(Kf(y))<oo

and then by the First Borel-Cantelli Lemma

j QF(Kf(y))<oo = [P’( G >K,eventually>=1.
y
For rm<t<rt!

)

C, Cn
>
(@) rrfen

and C,/tf (t)>K/r eventually, almost surely.

3. PROOF OF THEOREM 1 (ii)

In order to prove Theorem 1 (ii) we consider the excursion process of
B, from 0. The principle underlying the proof is that low values of C,/tf ()
will occur near the ends of long negative excursions. We define “long”
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excursions in an f~dependent way such that C,/tf (¢) is less than € near
the end of such excursions; the result follows if we can prove that, for
each g, there are an infinite number of long excursions.

A feature of the proof is that it is not necessary to consider combinations
of two or more large negative excursions following soon after one another.

By hypothesis f is decreasing and without loss of generality we may
assume that f(#)<1 and f(¢)|0; otherwise replace f by

f@A(oget+t) L.

First we establish some suitable notation: let L, be the local time (of B)
at 0 by time 7, and let y,=inf{7s:L,>/} so that y, is a subordinator.
Classify an excursion at local time / as a long excursion if its lifetime §
satisfies

12
&f (&)>—8—~

Classify it as a long-early excursion if also v,< /2. If t=1,_ is the time at
which a long-early excursion begins then,

C G- G <8§_‘§g_l§a. (13)

EfOTESE®) EFE®) P71

It remains to show that there is an increasing unbounded sequence of
negative long-early excursions; Theorem 1 (ii) then follows immediately.
Define

dg
(D)= e
(&=§f(€)>12/8)\/2n§3/2

=rate of long excursions at local time /. (14)

The integrand in (14) follows from the fact that the rate of excursions
whose lifetime exceeds & is (2/nE)'/? (see for example [1], p. 129, but
beware normalisations of the local time which introduce extra factors
of 2). Note that since f (§)<1

a5
N —_—
4)( )——j(g;cﬂzla)\/ﬁéyz

=<§>1/2 1 (15)
T l

For />1 let N, be the number of negative long-early excursions between
local times 1 and /. (We start counting at local time 1 to avoid the
potential complication of an infinite number of long excursions occuring
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240 D. HOBSON

immediately at time 0.) Our proof that

® dt
N,=o0 a.s. if and only if — t)=o0
y J = /1 (@)
is completed in two stages.

ProPOSITION 3.1 :

N, = a.s. < J I,.<2)0@du=c0 as.
1

Proof. — Let

1 1
V,=—J Ly, <u?, & (u) du
2)y

and define M,;=N,—V,. The rate of negative long-early excursions at local

. . | . . .
time u is a multiple 51{ na<u?y Of the rate of long excursions given in (14).

Thus V is the compensator for N and M is a martingale. We need to
prove that N = co almost surely if and only if V= oo almost surely.

M is a martingale with bounded jumps. M stopped when it first falls
to —k is a martingale bounded below; thus it converges almost surely to
a finite limit. If N = oo then the stopped martingale can only converge
by reaching —k; since k is arbitrary it follows that lim inf M,= — oco; thus
V,=o00.

Conversely if V=00 then a similar argument applied to M stopped
on first rising above k shows that lim sup M;= oo almost surely; hence
N,=0c. O

PropPoSITION 3.2:

le(vu§u2)¢(u)du=oo a.s. < fw?m=w (16)

Proof. — If V= o then certainly

J‘w(i)(u)du=oo

which can be shown by a few lines of calculus to be equivalent to the
right hand side of (16).

Conversely let K;=1,, .,2, and p,=E(V;). We prove that our integral
condition on f is equivalent to p,T oo and hence that (V_ =0, a.s.) as
required.

Note that [P’{ysga}=P{Lu§s}=P{Sugs}=P{|N|gs/ﬁ} where
L and S are the local time and maximum processes of a Brownian motion
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and N is a standard normal random variable. In particular
1 1
define c=E (K,)=P {y,<s?}, independent of s; then p,= ECJ ¢ (u) du.
1

For s<t¢
s* <2
P{Y:S—tzlysss2}=f P(Ysedu)ﬂl’{y,_s—gu}

0 P{Ysész}

and
0=sP{y |y, <5’} -P{y, =}

|, sl )]

iS
t

1A

for some constant k. This estimate can be used as follows:

Var (V,)=%f ds ¢ (s) rdu(j)(u)[E(KsKu—cz)
kc s
ds¢(s)( f u¢(u)du)

<DE(V)
for some constant D, this last line following from (15). Since p,T o we
have
v,
N
E(V)

For any large constant A we can choose s sufficiently large so that p,>2 A,
whence using Tchebyshev

P (Voo <A)SP (Voo <H/2)SP(V,<,2)
<P(|Vs—us|>1> 4Var(V) o
ho2)T BV

IIA

Thus (V= o0, a.s.) as required. [

4. ASYMPTOTIC RESULTS FOR SMALL TIMES

In this section we deduce Theorem 2. Suppose g : (0, 1] - R™ is increas-
ing.
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ProrosiTiON 4.1 ;

d
J D <o = lminf-"t—co as. 17
o+ S sito sg(s)
Proof. — By considering C /sg(rs) down the geometric sequence r "

and mirroring the proof of §2 it is possible to obtain

C,-n
—_—m>K, eventually>= 1.
rtg(r )

d
f CrKg@)<wo = [P’(
o+ §
Using g (s) increasing we have
C, > C,-n
5g(5) " r D g (D)

and Cy/sg (s)>K/r eventually. O

ri<s<yp D

ProrosiTION 4.2 :

J as g()=o0 = lim inf < =0 a.s. (18)
o+ § sio Sg(s)

Proof. — For the same reasons as in §3 we may assume that g(s)<1
and g(0+)=0. Define f:[1, c0) - [0, 1] by /' (¢)=g(s) where 7= 1/s. Then
fis decreasing. Also

é\/g(s)=oo R J ﬂ\/f(t)=oo.
o+ S t
By the results of §3 there are an infinite number of negative
excursions (7o, #,) of lifetime & =1, — 1, which satisfy both & f (£)> ,/e and
&> 1,. This second condition is not restrictive for large times since 1 (¢) | 0.

If B, is a Brownian motion then so is W,=sB,. Hence if (¢,, t,) is a
Brownian excursion for B then (s,, so) is a W-excursion, where s;,=#1,
i=0, 1. Then if C is defined relative to the Brownian motion W, and if
(2, t;) is a long excursion for B,=W_/s

C C 5

S0 I |

508(So) 81 508(So)

But C, <s, and since > ¢, and fis decreasing

§1 Ly to

= < <e
S08(0) 11 f(t0) &S (8)
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