## Annales de l'I. H. P., Section B

## Michel Talagrand

# Approximating a helix in finitely many dimensions 

Annales de l'I. H. P., section B, tome 28, no 3 (1992), p. 355-363
[http://www.numdam.org/item?id=AIHPB_1992_28_3_355_0](http://www.numdam.org/item?id=AIHPB_1992_28_3_355_0)
© Gauthier-Villars, 1992, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

# Approximating a helix in finitely many dimensions 

by<br>Michel TALAGRAND<br>Équipe d'Analyse, Tour 46, U.A. au C.N.R.S. $\mathrm{n}^{\circ}$ 754, Université Paris-VI, 75230 Paris Cedex 05, France

Abstract. - Consider $\alpha \in] 0,1[$. We prove that there exists a constant $\mathrm{K}(\alpha)$, depending on $\alpha$ only, such that for $p \geqq 1$, there exists a map F from $\mathbb{R}$ to $\mathbb{R}^{p}$ such that for $s, t \in \mathbb{R}$, we have

$$
\left|\|\mathrm{F}(s)-\mathrm{F}(t)\| /|s-t|^{\alpha}-1\right| \leqq \mathrm{K}(\alpha) / p^{\alpha}
$$

Résumé. - Pour $\alpha \in] 0$, $1[$, il existe une constante $\mathrm{K}(\alpha)$, dependant de $\alpha$ seulement, telle que pour $p \geqq 1$, il existe une application F de $\mathbb{R}$ dans $\mathbb{R}^{p}$ telle que, pour tous réels $s, t$ on ait

$$
|\|\mathrm{F}(s)-\mathrm{F}(t)\|| /|s-t|-1 \mid \leqq \mathrm{K}(\alpha) / p^{\alpha}
$$

[^0]
## 1. INTRODUCTION

A helix is a map $h$ from $\mathbb{R}$ to a Hilbert space $H$ such that $\|h(s)-h(t)\|=\|h(s-t)\|$ for $s, t \in \mathbb{R}$. Within isometries, a helix is determined by the function

$$
\begin{equation*}
\psi(t)=\|h(t)\|^{2} \tag{1}
\end{equation*}
$$

It is a theorem of I. J. Shoenberg that the functions $\psi(t)$ given by (1) are exactly the functions of negative type. In this note, we are interested in the case $\|h(t)\|=|t|^{\alpha}$, for a certain $\left.\alpha \in\right] 0,1[$. The case $\alpha=1 / 2$ corresponds to Wilson's helix, that is realized by Brownian motion.
P. Assouad and L. A. Shepp raised the question whether the helix corresponding to $\|h(t)\|=|t|^{1 / 2}$ (Wilson's helix) can be approximated in the $p$-dimensional euclidean space. This was settled by J. P. Kahane [2] who obtained the following result. (Throughout the paper, $\|$.$\| denotes$ the euclidean norm.)

Theorem 1 (J. P. Kahane). - There exists a universal constant K such that for $p \geqq 1$, there exists a map F from $\mathbb{R}$ to $\mathbb{R}^{p}$ such that

$$
\forall s, t \in \mathbb{R}, \quad 1-\frac{\mathrm{K}}{p} \leqq \frac{\|\mathrm{~F}(s)-\mathrm{F}(t)\|}{|s-t|^{1 / 2}} \leqq 1+\frac{\mathrm{K}}{p} .
$$

On the other hand, P. Assouad [1] proved that for all $\alpha \in] 0,1], p \geqq p_{0}$, there exists a map F from $\mathbb{R}$ to $\mathbb{R}^{p}$ such that

$$
\begin{equation*}
\forall s, t \in \mathbb{R}, \quad \frac{1}{\mathrm{~K}} \leqq \frac{\|\mathrm{~F}(s)-\mathrm{F}(\mathrm{t})\|}{|s-t|^{\alpha}} \leqq \mathrm{K} \tag{2}
\end{equation*}
$$

where K depends on $\alpha$ only. The estimate of (2) does not improve when $p \rightarrow \infty$. The purpose of the present note is to improve upon (2).

Theorem 2. - Given $\alpha \in] 0,1[$, there exists a constant $\mathrm{K}(\alpha)$, depending on $\alpha$ only, such that for $p \geqq 1$, there exists a map F from $\mathbb{R}$ to $\mathbb{R}^{p}$ that satisfies

$$
\begin{equation*}
\forall s, t \in \mathbb{R}, \quad 1-\frac{\mathrm{K}(\alpha)}{p^{\alpha}} \leqq \frac{\|\mathrm{F}(s)-\mathrm{F}(t)\|}{|s-t|^{\alpha}} \leqq 1+\frac{\mathrm{K}(\alpha)}{p^{\alpha}} . \tag{3}
\end{equation*}
$$

In the case $\alpha=1 / 2$, this gives an error in $\mathrm{K} / \sqrt{p}$, and unfortunately does not recover the error $\mathrm{K} / p$ of Kahane's Theorem 1. It is not difficult to see that this error $\mathrm{K} / p$ is of optimal order in Kahane's theorem; but when $\alpha \neq 1 / 2$, we do not have a nontrivial lower bound for the error in (3).

## 2. THE APPROACH

We fix $\alpha \in] 0,1[$, and $p \geqq 1$. For convenience, we assume that $p$ is a multiple of 4 (so that $p \geqq 4$ ). We set, for $n \geqq 0$,

$$
\mathrm{D}_{n}=\left\{\frac{i}{p 2^{n}} ; 0 \leqq i \leqq p 2^{n}\right\}
$$

For $0 \leqq q \leqq 2^{n+1}-2$, we set

$$
\mathrm{I}_{n, q}=\left[\frac{q}{2^{n+1}}, \frac{q+2}{2^{n+1}}\right]
$$

Thus $\mathrm{I}_{n, q} \subset[0,1]=\mathrm{I}_{0,0}$. For $n \geqq 1,0 \leqq q \leqq 2^{n+1}-2$, we find $l(q)\left(=l_{n}(q)\right)$ such that $\mathrm{I}_{n, q} \subset \mathrm{I}_{n-1, l(q)}$. When $0<q<2^{n+1}-2$, and when $q$ is even, there are two possible choices. We make an arbitrary choice; the construction will actually not depend on that choice.

Consider a map $t \rightarrow x(t)$ from $\mathbb{R}$ to a Hilbert space $H$ that satisfies $\|x(t)-x(s)\|=|t-s|^{\alpha}$. We first construct affine maps $\theta_{n, q}$ from H to $\mathbb{R}^{p}$ that satisfy

$$
\begin{gather*}
\forall s, t \in \mathrm{D}_{n} \cap \mathrm{I}_{n, q}, \quad\left\|\theta_{n, q}(x(t))-\theta_{n, q}(x(s))\right\|=|t-s|^{\alpha}  \tag{4}\\
\forall t \in \mathrm{D}_{n-1} \cap \mathrm{I}_{n, q}, \quad \theta_{n, q}(x(t))=\theta_{n-1, l(q)}(x(t)) . \tag{5}
\end{gather*}
$$

We proceed to this easy construction, by induction over $n$. A basic observation is that $\mathrm{D}_{n} \cap \mathrm{I}_{n, q}$ has $p+1$ points. The affine span of these points is isometric to $\mathbb{R}^{p}$; thus for each $n, q$, one can find an affine map $\xi_{n, q}$ from H to $\mathbb{R}^{p}$ that satisfies

$$
\forall s, t \in \mathrm{D}_{n} \cap \mathrm{I}_{n, q}, \quad\left\|\xi_{n, q}(x(t))-\xi_{n, q}(x(s))\right\|=|t-s|^{\alpha}
$$

We take $\theta_{0,0}=\xi_{0,0}$. If all the maps $\theta_{n, q}$ have been constructed, for a certain $n$ and for all $q \leqq 2^{n+1}-2$, we take $\theta_{n+1, q}=\mathrm{U} \circ \xi_{n+1, q}$, where U is an isometry of $\mathbb{R}^{p}$ such that $\mathrm{U}\left(\xi_{n+1, q}(x(t))\right)=\theta_{n, l(q)}(x(t))$ for $t \in \mathrm{D}_{n-1} \cap \mathrm{I}_{n, q}$. By isometry we mean that $\|\mathrm{U}(x)-\mathrm{U}(y)\|=\|x-y\|$ for $x, y \in \mathbb{R}^{p}$. The existence of U follows from the following elementary fact, that will be used repeatedly: if S is a map from a subset A of $\mathbb{R}^{p}$ to $\mathbb{R}^{p}$ such that $\|\mathbf{S}(x)-\mathbf{S}(y)\|=\|x-y\|$ for $x, y \in \mathrm{~A}$, then we can find an isometry U of $\mathbb{R}^{p}$ such that $\mathrm{U}(x)=\mathbf{S}(x)$ for $x \in \mathrm{~A}$.

For the simplicity of notation, we will write $x_{n, q, t}=\theta_{n, q}(x(t))$. The idea of the preceding construction is that the points $x_{n, q, t}, t \in \mathrm{D}_{n} \cap \mathrm{I}_{n, q}$ have the correct position with respect to each other. Also, a certain degree of consistency is obtained through (5). One would like to have $\mathrm{F}(t)=x_{n, q, t}$ for $t \in \mathrm{D}_{n} \cap \mathrm{I}_{n, q}$. The problem is that it is not possible to insure that $x_{n, q, t}=x_{n, q+1, t}$ for $t \in \mathrm{D}_{n} \cap \mathrm{I}_{n, q} \cap \mathrm{I}_{n, q+1}$. To solve that difficulty, for $t \in \mathrm{I}_{n, q}$, we will construct an isometry $\mathrm{R}_{n, q, t}$ of $\mathbb{R}^{p}$. We require the following
properties.
(6) For $t \in \mathrm{D}_{n} \cap \mathrm{I}_{n, q} \cap \mathrm{I}_{n, q+1}$, we have

$$
\mathrm{R}_{n, q, t}\left(x_{n, q, t}\right)=\mathrm{R}_{n, q+1, t}\left(x_{n, q+1, t}\right)
$$

(7) For $t \in \mathrm{D}_{n-1} \cap \mathrm{I}_{n, q}, y=x_{n, q, t}=x_{n-1, l(q), t}$, we have

$$
\mathrm{R}_{n, q, t}(y)=\mathrm{R}_{n-1, l(q), t}(y)
$$

(8) For $s, t \in \mathrm{I}_{n, q}, x, y \in \mathbb{R}^{p}$, we have

$$
\left\|\mathbf{R}_{n, q, s}(x)-\mathbf{R}_{n, q, s}(y)-\left(\mathbf{R}_{n, q, t}(x)-\mathbf{R}_{n, q, t}(y)\right)\right\| \leqq \mathrm{K}\|x-y\||t-s|
$$

(There, as in the sequel, $K$ is a constant depending on $\alpha$ only, that is not necessarily the same at each occurence; on the other hand, $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots$ denote specific constants depending on $\alpha$ only).
(9) If $x=x_{n, q, u}$ for $u \in \mathrm{I}_{n, q} \cap \mathrm{D}_{n}$, then for $s, t \in \mathrm{I}_{n, q} \cap \mathrm{D}_{n}$, we have

$$
\left\|\mathrm{R}_{n, q, s}(x)-\mathrm{R}_{n, q, t}(x)\right\| \leqq \mathrm{K} \frac{2^{n(1-\alpha)}}{p^{\alpha}}|s-t|
$$

(10) For $t$ in $\left[(q+1) 2^{-n-1},(q+2) 2^{-n-1}\right]$, the isometry $\mathrm{R}_{n, q, t}^{-1}{ }^{\circ} \mathrm{R}_{n, q+1, t}$ does not depend on $t$.

The construction of these isometries will be done in section 3; but, before, we provide motivation by proving Theorem 2.

For $t \in \mathrm{D}_{n} \cap \mathrm{I}_{n, q}$, we set

$$
\begin{equation*}
\mathrm{F}(t)=\mathrm{R}_{n, q, t}\left(x_{n, q, t}\right) \tag{11}
\end{equation*}
$$

Givne $n$, there are two consecutive values of $q$ for which $t \in \mathrm{I}_{n, q}$; if follows from (6) that the value of $\mathrm{F}(t)$ does not depend on which value of $q$ we use. Also, it follows from (7) that the value of $\mathrm{F}(t)$ does not depend on which value of $n$ we consider. Thus, (11) actually defines $\mathrm{F}(t)$ for $t \in \mathrm{D}=\bigcup_{n \geqq 0} \mathrm{D}_{n}$.

Consider now $u, v \in \mathrm{D}_{n}$ such that $|u-v| \leqq 2^{-n-1}$. Thus $u, v \in \mathrm{I}_{n, q}$ for some $q$. Let $\tau=(q+1) 2^{-n-1}$. It follows from (4), since $\mathrm{R}_{n, q, \tau}$ is an isometry, that

$$
\left\|\mathrm{R}_{n, q, \tau}\left(x_{n, q, u}\right)-\mathrm{R}_{n, q, \tau}\left(x_{n, q, v}\right)\right\|=|u-v|^{\alpha} .
$$

Thus, by (9), used for $s=u, t=\tau$, and for $s=v, t=\tau$, we have

$$
\begin{align*}
&\left|\|\mathrm{F}(u)-\mathrm{F}(v)\|-|u-v|^{\alpha}\right| \leqq\left\|\mathrm{R}_{n, q, u}\left(x_{n, q, u}\right)-\mathrm{R}_{n, q, \tau}\left(x_{n, q, u}\right)\right\|  \tag{12}\\
&+\left\|\mathrm{R}_{n, q, v}\left(x_{n, q, v}\right)-\mathrm{R}_{n, q, \tau}\left(x_{n, q, v}\right)\right\| \leqq \mathrm{K} \frac{2^{-n \alpha}}{p^{\alpha}}
\end{align*}
$$

It follows in particular that

$$
\begin{equation*}
\|\mathrm{F}(u)-\mathrm{F}(v)\| \leqq \mathrm{K} 2^{-n \alpha} \tag{13}
\end{equation*}
$$

Lemma. - For $s, t \in \mathrm{D}$, we have $\|\mathrm{F}(s)-\mathrm{F}(t)\| \leqq \mathrm{K}|s-t|^{\alpha}$.
Proof. - Consider the largest $n$ such that $|s-t| \leqq 2^{-n}$, so that $2^{-n} \leqq 2|s-t|$. We observe that, given $s \in[0,1]$, we can find $u \in \mathrm{D}_{n}$ such that $|s-u| \leqq 2^{-n} / p \leqq 2^{-n-2}$. We thus construct sequences $\left(u_{k}\right),\left(v_{k}\right) k \geqq n$, such that $u_{k}, v_{k} \in \mathrm{D}_{k-2},\left|u_{k}-s\right| \leqq 2^{-k},\left|v_{k}-u\right| \leqq 2^{-k}$. Thus $\left|u_{n}-v_{n}\right| \leqq 2^{-n+2}$, $\left|u_{k}-u_{k+1}\right|,\left|v_{k}-v_{k+1}\right| \leqq 2^{-k+1}$. We can and do assume that $u_{k}=s, v_{k}=t$ for $k$ large enough. Then

$$
\|\mathrm{F}(u)-\mathrm{F}(v)\| \leqq\left\|\mathrm{F}\left(u_{n}\right)-\mathrm{F}\left(v_{n}\right)\right\| \sum_{k \leqq n}\left(\left\|\mathrm{~F}\left(u_{k}\right)-\mathrm{F}\left(u_{k+1}\right)\right\|+\left\|\mathrm{F}\left(v_{k}\right)-\mathrm{F}\left(v_{k+1}\right)\right\|\right) .
$$

By (13), this implies that

$$
\|\mathrm{F}(u)-\mathrm{F}(v)\| \leqq \mathrm{K} 2^{-\alpha n} \leqq \mathrm{~K}|s-t|^{\alpha} .
$$

The lemma implies in particular that F can be extended by continuity to the closure of D , i.e. to $[0,1]$, and that

$$
\begin{equation*}
\|\mathrm{F}(s)-\mathrm{F}(t)\| \leqq \mathrm{K}|s-t|^{\alpha} \tag{14}
\end{equation*}
$$

for $s, t \in[0,1]$.
Consider now $s, t \in[0,1]$ and the largest $n$ such that $|s-t| \leqq 2^{-n-1}$, so that $2^{-n} \leqq 4|s-t|$. Consider $q$ such that $s, t \in \mathrm{I}_{n, q}$. Thus we can find $u, v \in \mathrm{I}_{n, q} \cap \mathrm{D}_{n}$ such that $|s-u| \leqq 2^{-n} / p,|t-v| \leqq 2^{-n} / p$. By (14), we have

$$
\|\mathrm{F}(s)-\mathrm{F}(u)\| \leqq \frac{\mathrm{K} 2^{-n \alpha}}{p^{\alpha}} ; \quad\|\mathrm{F}(t)-\mathrm{F}(v)\| \leqq \frac{\mathrm{K} 2^{-n \alpha}}{p^{\alpha}}
$$

Thus

$$
|\|\mathrm{F}(s)-\mathrm{F}(t)\|-\|\mathrm{F}(u)-\mathrm{F}(v)\|| \leqq \frac{\mathrm{K} 2^{-n \alpha}}{p^{\alpha}}
$$

From (12), we have

$$
\left|\|\mathrm{F}(u)-\mathrm{F}(v)\|-|u-v|^{\alpha}\right| \leqq \frac{\mathrm{K} 2^{-n \alpha}}{p^{\alpha}}
$$

Thus, since $|s-t| \geqq 2^{-n-2}$, we have

$$
\begin{equation*}
\left|\frac{\|\mathrm{F}(s)-\mathrm{F}(t)\|}{|s-t|^{\alpha}}-1\right| \leqq \frac{\mathrm{K}}{p^{\alpha}}+\left|\frac{|u-v|^{\alpha}}{|s-t|^{\alpha}}-1\right| . \tag{15}
\end{equation*}
$$

We have $\|u-v|-| s-t\| \leqq 2^{-n+1} / p$. Using that $\left|(1+x)^{\alpha}-1\right| \leqq K|x|$ for $|x| \leqq 4$, we get that

$$
\left|\frac{|u-v|^{\alpha}}{|s-t|^{\alpha}}-1\right| \leqq \frac{\mathrm{K}}{p} \leqq \frac{\mathrm{~K}}{p^{\alpha}}
$$

Thus, we have constructed a map F from $[0,1]$ to $\mathbb{R}^{p}$ such that

$$
\begin{equation*}
\forall s, t \in[0,1], \quad\left|\frac{\|\mathrm{F}(s)-\mathrm{F}(t)\|}{|s-t|^{\alpha}}-1\right| \leqq \frac{\mathrm{K}}{p^{\alpha}} . \tag{16}
\end{equation*}
$$

There is no loss of generality to assume $F(1 / 2)=0$. Consider an ultrafilter $\mathscr{U}$ on $\mathbb{N}$, and define

$$
\mathrm{G}(t)=\lim _{n \rightarrow u} n^{\alpha} \mathrm{F}\left(\frac{1}{2}+\frac{t}{n}\right) .
$$

The limit exists since, from (14) and $F\left(\frac{1}{2}\right)=0$, we have

$$
n^{\alpha}\left\|\mathrm{F}\left(\frac{1}{2}+\frac{t}{n}\right)\right\| \leqq \mathrm{K}|t|^{\alpha}
$$

Moreover it is immediate to check that, for $s, t \in \mathbb{R}$, we have $\left|||\mathrm{G}(s)-\mathrm{G}(t)|| /|s-t|^{\alpha}-1\right| \leqq \mathrm{K} / p^{\alpha}$. This completes the proof of Theorem 2.

The reader has observed that conditions (8) and (10) have not been used. Condition (8) is used during the construction as a preliminary step for conditions (9). Condition (10) helps to keep control of the situation as the induction continues.

## 3. CONSTRUCTION

The construction proceeds by induction on $n$. For $t \in[0,1]$, we set $\mathrm{R}_{0,0, t}=$ Identity. We now perform the induction step from $n-1$ to $n$. Consider $q,-1 \leqq q \leqq 2^{n+2}-2$, and set

$$
\tau=(q+1) 2^{-n-1}, \quad \tau^{\prime}=(q+2) 2^{-n-1}, \quad \mathrm{I}=\left[\tau, \tau^{\prime}\right]
$$

For $t \in \mathrm{I}$, we construct isometries $\mathrm{T}_{n, q, t}, \mathrm{~S}_{n, q, t}$ of $\mathbb{R}^{p}$, such that the following holds (where we set $l(-1)=0$ )

$$
\begin{align*}
& \mathrm{T}_{n, q, \tau}=\mathrm{R}_{n-1, l(q), \tau} ; \quad \mathrm{S}_{n, q, \tau^{\prime}}=\mathrm{R}_{n-1, l(q+1), \tau^{\prime}}  \tag{17}\\
& \forall t \in \mathrm{I} \cap \mathrm{D}_{n}, \quad \mathrm{~T}_{n, q, t}\left(x_{n, q, t}\right)=\mathrm{S}_{n, q, t}\left(x_{n, q+1, t}\right) \tag{18}
\end{align*}
$$

For $t \in \mathrm{D}_{n-1} \cap \mathrm{I}$, we have

$$
\begin{gather*}
\mathrm{T}_{n, q, t}\left(x_{n, q, t}\right)=\mathrm{R}_{n-1, l(q), t}\left(x_{n, q, t}\right)  \tag{19}\\
\mathrm{S}_{n, q, t}\left(x_{n, q+1, t}\right)=\mathrm{R}_{n-1, l(q+1), t}\left(x_{n, q+1, t}\right)
\end{gather*}
$$

(20) For $s, t \in \mathrm{I}, x, y \in \mathbb{R}^{p}$, we have
$\left\|\mathrm{T}_{n, q, s}(x)-\mathrm{T}_{n, q, s}(y)-\left(\mathrm{T}_{n, q, t}(x)-\mathrm{T}_{n, q, t}(y)\right)\right\| \leqq \mathrm{K}_{1} 2^{n}|s-t|\|x-y\|$
$\left\|\mathrm{S}_{n, q, s}(x)-\mathrm{S}_{n, q, s}(y)-\left(\mathrm{S}_{n, q, t}(x)-\mathrm{S}_{n, q, t}(y)\right)\right\| \leqq \mathrm{K}_{1} 2^{n}|s-t|\|x-y\|$.
(21) For $u, s, t \in \mathrm{I} \cap \mathrm{D}_{n}, x=x_{n, q, u}, y=x_{n, q+1, u}$, we have

$$
\begin{aligned}
& \left\|\mathrm{T}_{n, q, s}(x)-\mathrm{T}_{n, q, t}(x)\right\| \leqq \mathrm{K}_{2} \frac{2^{n(1-\alpha)}}{p^{\alpha}}|s-t| \\
& \left\|\mathrm{S}_{n, q, s}(y)-\mathrm{S}_{n, q, t}(y)\right\| \leqq \mathrm{K}_{2} \frac{2^{n(1-\alpha)}}{p^{\alpha}}|s-t|
\end{aligned}
$$

(22) For $t \in \mathrm{I}$, the isometry $\mathrm{T}_{n, q, t}^{-1}{ }^{\circ} \mathrm{S}_{n, q+1, t}$ does not depend on $t$.

Before we proceed to the construction of the isometries $\mathrm{T}_{n, q, v}, \mathrm{~S}_{n, q, v}$, we show how to construct the isometries $\mathrm{R}_{n, q, t}$ for $0 \leqq q \leqq 2^{n+1}-2$. For $t \in\left[q 2^{-n-1},(q+1) 2^{-n-1}\right]$ we set $\mathrm{R}_{n, q, t}=\mathrm{S}_{n, q-1, t}$; for $t \in\left[(q+1) 2^{-n-1}\right.$, $\left.(q+2) 2^{-n-1}\right]$, we set $\mathrm{R}_{n, q, t}=\mathrm{T}_{n, q, t}$. Condition (17) ensures that $S_{n, q-1, \tau}=T_{n, q, \tau}$, so that $R_{n, q, \tau}$ is well defined. It is simple to see that conditions (6) to (10) follow from conditions (18) to (22) respectively.

We now construct the isometries $\mathrm{T}_{n, q, t}, \mathrm{~S}_{n, q, t}$ Set $l=l(q), l^{\prime}=l(q+1)$. Thus, we either have $l^{\prime}=l$ or $l^{\prime}=l+1$. For $t \in\left[(l+1) 2^{-n},(l+2) 2^{-n}\right]$, we have by induction hypothesis and (10) that, if $l^{\prime}=l+1$,

$$
\begin{equation*}
\mathrm{R}_{n-1, l, t}^{-1} \circ \mathrm{R}_{n-1, l^{\prime}, t}=\text { Constant isometry }:=\mathrm{V} \tag{23}
\end{equation*}
$$

If $l^{\prime}=l$, the above also holds, for $\mathrm{V}=$ identity. We set for simplicity $\mathrm{A}=\mathbf{R}_{n-1, l, \tau} ; \mathbf{B}=\mathbf{R}_{n-1, l^{\prime}, \tau}$. It is simple to see that $\tau \in\left[(l+1) 2^{-n},(l+2) 2^{-n}\right]$; thus, by (23), we have $A^{-1} \circ \mathrm{~B}=\mathrm{V}$.

Given $t \in \mathrm{I} \cap \mathrm{D}_{n-1}$, we have

$$
\mathrm{R}_{n-1, l, t}\left(x_{n-1, l, t}\right)=\mathrm{R}_{n-1, l^{\prime}, t}\left(x_{n-1, l^{\prime}, t}\right)
$$

This is obvious if $l^{\prime}=l$; if $l^{\prime}=l+1$, this follows from (6). Remembering that $\mathrm{R}_{n-1, l, t^{\circ}}^{\circ} \mathrm{R}_{n-1, l^{\prime}, t}=\mathrm{V}=\mathrm{A}^{-1} \circ \mathrm{~B}$, we get

$$
\forall t \in \mathrm{I} \cap \mathrm{D}_{n-1}, \quad \mathrm{~A}\left(x_{n-1, t, t}\right)=\mathrm{B}\left(x_{n-1, l^{\prime}, t}\right) .
$$

It then follows from (5) that

$$
\begin{equation*}
\forall t \in \mathrm{I} \cap \mathrm{D}_{n-1}, \quad \mathrm{~A}\left(x_{n, q, t}\right)=\mathrm{B}\left(x_{n, q+1, t}\right) . \tag{24}
\end{equation*}
$$

Since A, B are isometries, it follows from (4) that

$$
\forall s, t \in \mathrm{I} \cap \mathrm{D}_{n}, \quad\left\|\mathrm{~A}\left(x_{n, q, s}\right)-\mathrm{A}\left(x_{n, q, t}\right)\right\|=\left\|\mathrm{B}\left(x_{n, q+1, s}\right)-\mathrm{B}\left(x_{n, q+1, t}\right)\right\|
$$

Thus, there exists an isometry U of $\mathbb{R}^{p}$ such that

$$
\begin{equation*}
\forall t \in \mathrm{I} \cap \mathrm{D}_{n}, \quad \mathrm{U} \cdot \mathrm{~A}\left(x_{n, q, t}\right)=\mathrm{B}\left(x_{n, q+1, t}\right) . \tag{25}
\end{equation*}
$$

Since card $\mathrm{I} \cap \mathrm{D}_{n}=p / 2+1<p$, we can assume that $\operatorname{det} \mathrm{U}=1$ (by composing if necessary $U$ by a reflection through a hyperplane containing the points $\mathrm{A}\left(x_{n, q, t}\right), t \in \mathrm{I} \cap \mathrm{D}_{n}$. It is then clear that we can find a semi-group $\mathrm{U}(t)$ of isometries of $\mathbb{R}^{p}$, with $\mathrm{U}(1)=\mathrm{U}$, such that

$$
\left\{\begin{array}{c}
\forall a, b \in \mathbb{R}, \quad \forall x, y \in \mathbb{R}^{q},  \tag{26}\\
\|\mathrm{U}(a)(x)-\mathrm{U}(a)(y)-\mathrm{U}(b)(x)+\mathrm{U}(b)(y)\| \leqq \mathrm{K}_{3}|b-a|\|x-y\|
\end{array}\right.
$$

(actually one can take $\mathrm{K}_{3}=2 \pi$ ).
For $t \in \mathrm{I}$, we set

$$
\begin{gathered}
\mathrm{T}_{n, q, t}=\mathrm{R}_{n-1, l, t} \circ \mathrm{~A}^{-1} \circ \mathrm{U}(\varphi(t)) \circ \mathrm{A} \\
\mathrm{~S}_{n, q, t}=\mathrm{R}_{n-1, l^{\prime}, t^{\circ}} \mathrm{B}^{-1} \circ \mathrm{U}(\varphi(t)-1)^{\circ} \mathrm{B}
\end{gathered}
$$

where $\varphi(t)=2^{n+1}(t-\tau)$. Thus $\varphi(\tau)=0, \varphi\left(\tau^{\prime}\right)=1$. Thus (17) holds.
It remains to prove (18) to (22).

Proof of (18). - It follows from (25) that, for $t \leqq \mathrm{D}_{n} \cap \mathrm{I}$, we have

$$
\mathrm{A}\left(x_{n, q, t}\right)=\mathrm{U}^{-1} \circ \mathrm{~B}\left(x_{n, q+1, t}\right)
$$

so that

$$
\begin{equation*}
\mathrm{U}(\varphi(t)) \circ \mathrm{A}\left(x_{n, q, t}\right)=\mathrm{U}(\varphi(t)-1) \circ \mathrm{B}\left(x_{n, q+1, t}\right) \tag{27}
\end{equation*}
$$

Since $\mathrm{R}_{n-1, l, t}^{-1}{ }^{\circ} \mathrm{R}_{n-1, l^{\prime}, t}=\mathrm{A}^{-1} \circ \mathrm{~B}$, we have

$$
\mathrm{R}_{n-1, l^{\prime}, t^{\circ}} \mathrm{B}^{-1}=\mathrm{R}_{n-1, l, t^{\circ}} \mathrm{A}^{-1}
$$

and, combined with (27) and the definition of $\mathrm{T}_{n, q, t}, \mathrm{~S}_{n, q, t}$, this implies (18).
Proof of (19). - We consider only the case of $\mathrm{T}_{n, q, t}$, and leave the other case to the reader. By (24), (25), we have

$$
t \in \mathrm{I} \cap \mathrm{D}_{n-1} \Rightarrow \mathrm{U} \cdot \mathrm{~A}\left(x_{n, q, t}\right)=\mathrm{A}\left(x_{n, q, t}\right)
$$

so have

$$
\mathrm{U}(s) \circ \mathrm{A}\left(x_{n, q, t}\right)=\mathrm{A}\left(x_{n, q, t}\right)
$$

for all $s \in \mathbb{R}$. Thus

$$
\mathrm{A}^{-1} \circ \mathrm{U}(\varphi(t)) \circ \mathrm{A}\left(x_{n, q, t}\right)=x_{n, q, t}
$$

which implies the result.
Proof of (20). - We prove this inequality for the constant $K_{1}=4 K_{3}$, where $K_{3}$ occurs in (26) and we again consider only the case of $T_{n, q, t}$. We have

$$
\left\|\mathrm{T}_{n, q, s}(x)-\mathrm{T}_{n, q, s}(y)-\left(\mathrm{T}_{n, q, t}(x)-\mathrm{T}_{n, q, t}(y)\right)\right\| \leqq(\mathrm{I})+(\mathrm{II})
$$

where

$$
\begin{aligned}
(\mathrm{I})= & \| \mathrm{R}_{n-1, l, t}^{\circ} \mathrm{A}^{-1} \circ \mathrm{U}(\varphi(t)) \circ \mathrm{A}(x)-\mathrm{R}_{n-1, l, t} \circ \mathrm{~A}^{-1} \circ \mathrm{U}(\varphi(t)) \circ \mathrm{A}(y) \\
& \left.-\mathrm{R}_{n-1, l, t}^{\circ} \mathrm{A}^{-1} \circ \mathrm{U}(\varphi(s)) \circ \mathrm{A}(x)+\mathrm{R}_{n-1, l, t} \mathrm{~A}^{-1} \circ \mathrm{U}(\varphi(s)) \circ \mathrm{A}(y)\right) \| \\
& (\mathrm{II})=\left\|\mathrm{R}_{n-1, l, t}\left(x^{\prime}\right)-\mathrm{R}_{n-1, l, t}\left(y^{\prime}\right)-\mathrm{R}_{n-1, l, s}\left(x^{\prime}\right)+\mathrm{R}_{n-1, l, s}\left(y^{\prime}\right)\right\|
\end{aligned}
$$

for $\quad x^{\prime}=\mathrm{A}^{-1} \circ \mathrm{U}(\varphi(s)) \circ \mathrm{A}(x), y^{\prime}=\mathrm{A}^{-1} \circ \mathrm{U}(\varphi(s))^{\circ} \mathrm{A}(y)$. Since A and $\mathrm{U}(\varphi(s))$ are isometries, we have $\left\|x^{\prime}-y^{\prime}\right\|=\|x-y\|$. We observe that (8) holds with the same value $K=K_{1}$ of the constant $K$ than (20); thus, by induction hypothesis, we have

$$
(\mathrm{II}) \leqq \mathrm{K}_{1} 2^{n-1}|s-t|\|x-y\|
$$

Since $\mathrm{R}_{n-1, l, t^{\circ}} \mathrm{A}^{-1}$ is an isometry, we have
$(\mathrm{I})=\left\|\mathrm{U}(\varphi(t))^{\circ} \mathrm{A}(x)-\mathrm{U}(\varphi(t)) \circ \mathrm{A}(y)-\mathrm{U}(\varphi(s)) \circ \mathrm{A}(x)+\mathrm{U}(\varphi(s)) \circ \mathrm{A}(y)\right\|$.
Since $\|\mathbf{A}(x)-\mathbf{A}(y)\|=\|x-y\|,|\varphi(t)| \leqq 2^{n+1}|s-t|$, by (26) we have

$$
(\mathrm{I}) \leqq \mathrm{K}_{3} 2^{n+1}|s-t|\|x-y\| .
$$

Thus

$$
(\mathrm{I})+(\mathrm{II}) \leqq\left(\mathrm{K}_{1} 2^{n-1}+\mathrm{K}_{3} 2^{n+1}\right)|s-t|\|x-y\| \leqq \mathrm{K}_{1} 2^{n}|s-t|\|x-y\|
$$

since $K_{1}=4 K_{3}$.

Proof of (21). - We prove (21) for $\mathrm{K}_{2}=2^{\alpha} \mathrm{K}_{1}\left(1-2^{-(1-\alpha)}\right)^{-1}$, and again we consider only the case of T . We proceed by induction, observing that (9) holds with the same constant $\mathrm{K}_{2}$. We find $v$ in $\mathrm{I} \cap \mathrm{D}_{n-1}$ with $|u-v| \leqq 2^{-n+1} / p$. We set $z=x_{n, q, v}$. We have

$$
\left\|\mathrm{T}_{n, q, s}(x)-\mathrm{T}_{n, q, t}(x)\right\| \leqq(\mathrm{I})+(\mathrm{II})
$$

where

$$
\begin{gathered}
(\mathrm{I})=\left\|\mathrm{T}_{n, q, s}(z)-\mathrm{T}_{n, q, t}(z)\right\| \\
(\mathrm{II})=\left\|\mathrm{T}_{n, q, t}(x)-\mathrm{T}_{n, q, t}(z)-\left(\mathrm{T}_{n, q, s}(x)-\mathrm{T}_{n, q, s}(z)\right)\right\| .
\end{gathered}
$$

We recall that by (24), (25)

$$
\mathrm{U} \circ \mathrm{~A}(z)=\mathrm{B}\left(x_{n, q+1, v}\right)=\mathrm{A}(z),
$$

so that, by definition of $T_{n, q, t}$

$$
(\mathrm{I})=\left\|\mathrm{R}_{n-1, l(q), s}(z)-\mathrm{R}_{n-1, l(q), t}(z)\right\|
$$

and, by induction hypothesis,

$$
(\mathrm{I}) \leqq \mathrm{K}_{2} \frac{2^{(n-1)(1-\alpha)}}{p^{\alpha}} \cdot|s-t|
$$

If we recall that (20) holds for the constant $\mathrm{K}_{1}$ we have

$$
(\mathrm{II}) \leqq \mathrm{K}_{1} 2^{n}|s-t|\|x-z\|
$$

Since, by (4),

$$
\|x-z\|=|u-v|^{\alpha} \leqq 2^{(-n+1) \alpha} / p^{\alpha}
$$

we have (II) $\leqq \mathrm{K}_{1} 2^{\alpha} 2^{n(1-\alpha)}|s-t| p^{-\alpha}$. Thus

$$
(\mathrm{I})+(\mathrm{II}) \leqq \frac{2^{n(1-\alpha)}}{p^{\alpha}}\left[2^{\alpha} \mathrm{K}_{1}+\mathrm{K}_{2} 2^{-(1-\alpha)}\right]|s-t|=\frac{2^{n(1-\alpha)}}{p^{\alpha}} \mathrm{K}_{2}|s-t| .
$$

Proof of (22). - We have, for $t \in \mathrm{~J}$,

$$
\stackrel{\mathrm{T}_{n, q, t}^{-1} \circ \mathrm{~S}_{n, q, t}}{=\mathrm{A}^{-1} \circ \mathrm{U}(-\varphi(t))^{\circ} \mathrm{A} \circ \mathrm{R}_{n-1, l, t^{-1}}^{\circ} \mathrm{R}_{n-1, l^{\prime}, t^{\circ}} \mathrm{B}^{-1} \circ \mathrm{U}(\varphi(t)-1) \circ \mathrm{B} . . . . . .}
$$

Since, by (23), we have $\mathrm{R}_{n-1, l, t}^{-1}{ }^{\circ} \mathrm{R}_{n-1, l^{\prime}, t}=\mathrm{A}^{-1} \circ \mathrm{~B}$, we have

$$
\mathrm{T}_{n, q, t}^{-1} \circ \mathrm{~S}_{n, q, t}=\mathrm{A}^{-1} \circ \mathrm{U}(-\varphi(t))^{\circ} \mathrm{U}(\varphi(t)-1)^{\circ} \mathrm{B}=\mathrm{A}^{-1} \circ \mathrm{U}^{-1} \circ \mathrm{~B}
$$

and this does not depend on $t$.
The proof is complete.

## REFERENCES

[1] P. Assouad, Plongements Lipschitziens dans $\mathbb{R}^{n}$, Bull. Soc. Math. Fr., Vol. 111, 1983, pp. 429-448.
[2] J. P. Kahane, Hélices et quasi-hélices, Adv. Math., Vol. 7 B, 1981, pp. 417-422.
(Manuscript received February 13, 1991.)

Vol. 28, n ${ }^{\circ}$ 3-1992.


[^0]:    A.M.S. 1980 classification numbers primary 461320, 60617.

