MICHEL TALAGRAND Approximating a helix in finitely many dimensions

Annales de l'I. H. P., section B, tome 28, nº 3 (1992), p. 355-363 http://www.numdam.org/item?id=AIHPB_1992_28_3_355_0

© Gauthier-Villars, 1992, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Approximating a helix in finitely many dimensions

by

Michel TALAGRAND

Équipe d'Analyse, Tour 46, U.A. au C.N.R.S. n° 754, Université Paris-VI, 75230 Paris Cedex 05, France

ABSTRACT. – Consider $\alpha \in]0, 1[$. We prove that there exists a constant K (α), depending on α only, such that for $p \ge 1$, there exists a map F from \mathbb{R} to \mathbb{R}^p such that for s, $t \in \mathbb{R}$, we have

 $| || F(s) - F(t) ||/| s - t|^{\alpha} - 1 | \leq K(\alpha)/p^{\alpha}.$

RÉSUMÉ. – Pour $\alpha \in]0, 1[$, il existe une constante K (α), dependant de α seulement, telle que pour $p \ge 1$, il existe une application F de \mathbb{R} dans \mathbb{R}^p telle que, pour tous réels *s*, *t* on ait

$$| \parallel \mathbf{F}(s) - \mathbf{F}(t) \parallel || |s - t| - 1 \mid \leq \mathbf{K}(\alpha)/p^{\alpha}.$$

A.M.S. 1980 classification numbers primary 461320, 60617.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203 Vol. 28/92/03/355/09/\$ 2,90/© Gauthier-Villars

M. TALAGRAND

1. INTRODUCTION

A helix is a map h from \mathbb{R} to a Hilbert space H such that ||h(s)-h(t)|| = ||h(s-t)|| for $s, t \in \mathbb{R}$. Within isometries, a helix is determined by the function

(1)
$$\psi(t) = ||h(t)||^2$$

It is a theorem of I. J. Shoenberg that the functions $\psi(t)$ given by (1) are exactly the functions of negative type. In this note, we are interested in the case $||h(t)|| = |t|^{\alpha}$, for a certain $\alpha \in [0, 1[$. The case $\alpha = 1/2$ corresponds to Wilson's helix, that is realized by Brownian motion.

P. Assouad and L. A. Shepp raised the question whether the helix corresponding to $||h(t)|| = |t|^{1/2}$ (Wilson's helix) can be approximated in the *p*-dimensional euclidean space. This was settled by J. P. Kahane [2] who obtained the following result. (Throughout the paper, ||.|| denotes the euclidean norm.)

THEOREM 1 (J. P. Kahane). – There exists a universal constant K such that for $p \ge 1$, there exists a map F from \mathbb{R} to \mathbb{R}^p such that

$$\forall s, t \in \mathbb{R}, \quad 1 - \frac{K}{p} \leq \frac{\|F(s) - F(t)\|}{|s - t|^{1/2}} \leq 1 + \frac{K}{p}.$$

On the other hand, P. Assouad [1] proved that for all $\alpha \in [0, 1]$, $p \ge p_0$, there exists a map F from \mathbb{R} to \mathbb{R}^p such that

(2)
$$\forall s, t \in \mathbb{R}, \quad \frac{1}{K} \leq \frac{\|F(s) - F(t)\|}{|s - t|^{\alpha}} \leq K$$

where K depends on α only. The estimate of (2) does not improve when $p \rightarrow \infty$. The purpose of the present note is to improve upon (2).

THEOREM 2. – Given $\alpha \in]0, 1[$, there exists a constant K (α), depending on α only, such that for $p \ge 1$, there exists a map F from \mathbb{R} to \mathbb{R}^p that satisfies

(3)
$$\forall s, t \in \mathbb{R}, \quad 1 - \frac{\mathrm{K}(\alpha)}{p^{\alpha}} \leq \frac{\|\mathrm{F}(s) - \mathrm{F}(t)\|}{|s - t|^{\alpha}} \leq 1 + \frac{\mathrm{K}(\alpha)}{p^{\alpha}}.$$

In the case $\alpha = 1/2$, this gives an error in K/\sqrt{p} , and unfortunately does *not* recover the error K/p of Kahane's Theorem 1. It is not difficult to see that this error K/p is of optimal order in Kahane's theorem; but when $\alpha \neq 1/2$, we do not have a nontrivial lower bound for the error in (3).

2. THE APPROACH

We fix $\alpha \in [0, 1[$, and $p \ge 1$. For convenience, we assume that p is a multiple of 4 (so that $p \ge 4$). We set, for $n \ge 0$,

$$\mathbf{D}_n = \left\{ \frac{i}{p \, 2^n}; \, 0 \leq i \leq p \, 2^n \right\}.$$

For $0 \leq q \leq 2^{n+1} - 2$, we set

$$I_{n,q} = \left[\frac{q}{2^{n+1}}, \frac{q+2}{2^{n+1}}\right].$$

Thus $I_{n,q} \subset [0,1] = I_{0,0}$. For $n \ge 1$, $0 \le q \le 2^{n+1} - 2$, we find $l(q) (= l_n(q))$ such that $I_{n,q} \subset I_{n-1,l(q)}$. When $0 < q < 2^{n+1} - 2$, and when q is even, there are two possible choices. We make an arbitrary choice; the construction will actually not depend on that choice.

Consider a map $t \to x(t)$ from \mathbb{R} to a Hilbert space H that satisfies $||x(t) - x(s)|| = |t - s|^{\alpha}$. We first construct affine maps $\theta_{n,q}$ from H to \mathbb{R}^{p} that satisfy

(4)
$$\forall s, t \in \mathbf{D}_n \cap \mathbf{I}_{n,q}, \quad \left\| \theta_{n,q}(x(t)) - \theta_{n,q}(x(s)) \right\| = |t-s|^{\alpha}$$

(5)
$$\forall t \in \mathbf{D}_{n-1} \cap \mathbf{I}_{n,q}, \quad \theta_{n,q}(x(t)) = \theta_{n-1,l(q)}(x(t)).$$

We proceed to this easy construction, by induction over *n*. A basic observation is that $D_n \cap I_{n,q}$ has p+1 points. The affine span of these points is isometric to \mathbb{R}^p ; thus for each *n*, *q*, one can find an affine map $\xi_{n,q}$ from H to \mathbb{R}^p that satisfies

$$\forall s, t \in \mathbf{D}_n \cap \mathbf{I}_{n, q}, \quad \left\| \xi_{n, q} \left(x \left(t \right) \right) - \xi_{n, q} \left(x \left(s \right) \right) \right\| = \left| t - s \right|^{\alpha}.$$

We take $\theta_{0,0} = \xi_{0,0}$. If all the maps $\theta_{n,q}$ have been constructed, for a certain *n* and for all $q \leq 2^{n+1}-2$, we take $\theta_{n+1,q} = U \circ \xi_{n+1,q}$, where U is an isometry of \mathbb{R}^p such that $U(\xi_{n+1,q}(x(t))) = \theta_{n,l(q)}(x(t))$ for $t \in D_{n-1} \cap I_{n,q}$. By isometry we mean that ||U(x) - U(y)|| = ||x-y|| for $x, y \in \mathbb{R}^p$. The existence of U follows from the following elementary fact, that will be used repeatedly: if S is a map from a subset A of \mathbb{R}^p to \mathbb{R}^p such that ||S(x) - S(y)|| = ||x-y|| for $x, y \in A$, then we can find an isometry U of \mathbb{R}^p such that U(x) = S(x) for $x \in A$.

For the simplicity of notation, we will write $x_{n,q,t} = \theta_{n,q}(x(t))$. The idea of the preceding construction is that the points $x_{n,q,t}$, $t \in D_n \cap I_{n,q}$ have the correct position with respect to each other. Also, a certain degree of consistency is obtained through (5). One would like to have $F(t) = x_{n,q,t}$ for $t \in D_n \cap I_{n,q}$. The problem is that it is not possible to insure that $x_{n,q,t} = x_{n,q+1,t}$ for $t \in D_n \cap I_{n,q} \cap I_{n,q+1}$. To solve that difficulty, for $t \in I_{n,q}$, we will construct an isometry $R_{n,q,t}$ of \mathbb{R}^p . We require the following

properties.

(6) For $t \in D_n \cap I_{n, q} \cap I_{n, q+1}$, we have $R_{n, q, t}(x_{n, q, t}) = R_{n, q+1, t}(x_{n, q+1, t}).$

(7) For
$$t \in D_{n-1} \cap I_{n,q,y} = x_{n,q,t} = x_{n-1,l(q),t}$$
, we have
 $R_{n,q,t}(y) = R_{n-1,l(q),t}(y).$

(8) For $s, t \in I_{n, q}, x, y \in \mathbb{R}^{p}$, we have

$$\|\mathbf{R}_{n, q, s}(x) - \mathbf{R}_{n, q, s}(y) - (\mathbf{R}_{n, q, t}(x) - \mathbf{R}_{n, q, t}(y))\| \leq K \|x - y\| |t - s|.$$

(There, as in the sequel, K is a constant depending on α only, that is not necessarily the same at each occurence; on the other hand, K_1 , K_2 ,... denote specific constants depending on α only).

(9) If
$$x = x_{n, q, u}$$
 for $u \in I_{n, q} \cap D_n$, then for $s, t \in I_{n, q} \cap D_n$, we have

$$\left\| R_{n, q, s}(x) - R_{n, q, t}(x) \right\| \leq K \frac{2^{n(1-\alpha)}}{p^{\alpha}} |s-t|.$$

(10) For t in $[(q+1)2^{-n-1}, (q+2)2^{-n-1}]$, the isometry $R_{n,q,t}^{-1} \circ R_{n,q+1,t}$ does not depend on t.

The construction of these isometries will be done in section 3; but, before, we provide motivation by proving Theorem 2.

For $t \in D_n \cap I_{n, q}$, we set

(11)
$$F(t) = R_{n, q, t}(x_{n, q, t}).$$

Given *n*, there are two consecutive values of *q* for which $t \in I_{n,q}$; if follows from (6) that the value of F(t) does not depend on which value of *q* we use. Also, it follows from (7) that the value of F(t) does not depend on which value of *n* we consider. Thus, (11) actually defines F(t) for $t \in D = \bigcup_{n \in I} D_n$.

Consider now
$$u, v \in D_n$$
 such that $|u-v| \leq 2^{-n-1}$. Thus $u, v \in I_{n,q}$ for some q . Let $\tau = (q+1)2^{-n-1}$. It follows from (4), since $R_{n,q,\tau}$ is an isometry, that

$$||\mathbf{R}_{n, q, \tau}(x_{n, q, u}) - \mathbf{R}_{n, q, \tau}(x_{n, q, v})|| = |u - v|^{\alpha}.$$

Thus, by (9), used for s=u, $t=\tau$, and for s=v, $t=\tau$, we have

(12)
$$\| \| \mathbf{F}(u) - \mathbf{F}(v) \| - \| u - v \|^{\alpha} \| \le \| \mathbf{R}_{n, q, u}(x_{n, q, u}) - \mathbf{R}_{n, q, \tau}(x_{n, q, u}) \| + \| \mathbf{R}_{n, q, v}(x_{n, q, v}) - \mathbf{R}_{n, q, \tau}(x_{n, q, v}) \| \le \mathbf{K} \frac{2^{-n\alpha}}{p^{\alpha}}$$

It follows in particular that

(13)
$$\|F(u) - F(v)\| \leq K 2^{-n\alpha}$$
.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

LEMMA. – For s, $t \in D$, we have $||F(s) - F(t)|| \leq K |s-t|^{\alpha}$.

Proof. - Consider the largest *n* such that $|s-t| \leq 2^{-n}$, so that $2^{-n} \leq 2|s-t|$. We observe that, given $s \in [0, 1]$, we can find $u \in D_n$ such that $|s-u| \leq 2^{-n}/p \leq 2^{-n-2}$. We thus construct sequences (u_k) , $(v_k) \ k \geq n$, such that $u_k, v_k \in D_{k-2}, |u_k-s| \leq 2^{-k}, |v_k-u| \leq 2^{-k}$. Thus $|u_n-v_n| \leq 2^{-n+2}, |u_k-u_{k+1}|, |v_k-v_{k+1}| \leq 2^{-k+1}$. We can and do assume that $u_k = s, v_k = t$ for *k* large enough. Then

$$\| F(u) - F(v) \| \leq \| F(u_n) - F(v_n) \| + \sum_{k \geq n} (\| F(u_k) - F(u_{k+1}) \| + \| F(v_k) - F(v_{k+1}) \|).$$

By (13), this implies that

$$\|\mathbf{F}(u) - \mathbf{F}(v)\| \leq \mathbf{K} 2^{-\alpha n} \leq \mathbf{K} |s-t|^{\alpha}. \quad \Box$$

The lemma implies in particular that F can be extended by continuity to the closure of D, *i. e.* to [0, 1], and that

(14)
$$\|F(s) - F(t)\| \leq K |s-t|^{\alpha}$$

for *s*, $t \in [0, 1]$.

Consider now $s, t \in [0, 1]$ and the largest n such that $|s-t| \leq 2^{-n-1}$, so that $2^{-n} \leq 4|s-t|$. Consider q such that $s, t \in I_{n,q}$. Thus we can find $u, v \in I_{n,q} \cap D_n$ such that $|s-u| \leq 2^{-n}/p$, $|t-v| \leq 2^{-n}/p$. By (14), we have

$$\|\mathbf{F}(s)-\mathbf{F}(u)\| \leq \frac{\mathbf{K} 2^{-n\alpha}}{p^{\alpha}}; \qquad \|\mathbf{F}(t)-\mathbf{F}(v)\| \leq \frac{\mathbf{K} 2^{-n\alpha}}{p^{\alpha}}.$$

Thus

$$\left| \left\| \mathbf{F}(s) - \mathbf{F}(t) \right\| - \left\| \mathbf{F}(u) - \mathbf{F}(v) \right\| \right| \leq \frac{\mathbf{K} 2^{-n\alpha}}{p^{\alpha}}.$$

From (12), we have

$$\left\| \mathbf{F}(u) - \mathbf{F}(v) \right\| - \left| u - v \right|^{\alpha} \le \frac{\mathbf{K} \, 2^{-n\alpha}}{p^{\alpha}}.$$

Thus, since $|s-t| \ge 2^{-n-2}$, we have

(15)
$$\left|\frac{\|\mathbf{F}(s)-\mathbf{F}(t)\|}{|s-t|^{\alpha}}-1\right| \leq \frac{\mathbf{K}}{p^{\alpha}} + \left|\frac{|u-v|^{\alpha}}{|s-t|^{\alpha}}-1\right|.$$

We have $||u-v|-|s-t|| \leq 2^{-n+1}/p$. Using that $|(1+x)^{\alpha}-1| \leq K|x|$ for $|x| \leq 4$, we get that

$$\left|\frac{|u-v|^{\alpha}}{|s-t|^{\alpha}}-1\right| \leq \frac{K}{p} \leq \frac{K}{p^{\alpha}}.$$

Thus, we have constructed a map F from [0, 1] to \mathbb{R}^p such that

(16)
$$\forall s, t \in [0, 1], \quad \left| \frac{\|\mathbf{F}(s) - \mathbf{F}(t)\|}{|s - t|^{\alpha}} - 1 \right| \leq \frac{K}{p^{\alpha}}.$$

There is no loss of generality to assume F(1/2)=0. Consider an ultrafilter \mathscr{U} on \mathbb{N} , and define

$$G(t) = \lim_{n \to \mathcal{U}} n^{\alpha} F\left(\frac{1}{2} + \frac{t}{n}\right).$$

The limit exists since, from (14) and $F\left(\frac{1}{2}\right) = 0$, we have
 $n^{\alpha} \|F\left(\frac{1}{2} + \frac{t}{n}\right)\| \le K |t|^{\alpha}.$

Moreover it is immediate to check that, for $s, t \in \mathbb{R}$, we have $||| G(s) - G(t) ||/| s - t|^{\alpha} - 1 | \leq K/p^{\alpha}$. This completes the proof of Theorem 2.

The reader has observed that conditions (8) and (10) have not been used. Condition (8) is used during the construction as a preliminary step for conditions (9). Condition (10) helps to keep control of the situation as the induction continues.

3. CONSTRUCTION

The construction proceeds by induction on *n*. For $t \in [0, 1]$, we set $\mathbf{R}_{0, 0, t}$ = Identity. We now perform the induction step from n-1 to *n*. Consider $q, -1 \le q \le 2^{n+2} - 2$, and set

$$\tau = (q+1)2^{-n-1}, \quad \tau' = (q+2)2^{-n-1}, \quad I = [\tau, \tau']$$

For $t \in I$, we construct isometries $T_{n, q, t}$, $S_{n, q, t}$ of \mathbb{R}^{p} , such that the following holds (where we set l(-1)=0)

(17)
$$T_{n, q, \tau} = R_{n-1, l(q), \tau}; \qquad S_{n, q, \tau'} = R_{n-1, l(q+1), \tau'}$$

(18)
$$\forall t \in I \cap D_n, \quad T_{n, q, t}(x_{n, q, t}) = S_{n, q, t}(x_{n, q+1, t})$$

(19) For $t \in D_{n-1} \cap I$, we have $T_{n, q, t}(x_{n, q, t}) = R_{n-1, l(q), t}(x_{n, q, t})$ $S_{n, q, t}(x_{n, q+1, t}) = R_{n-1, l(q+1), t}(x_{n, q+1, t}).$ (20) For $s, t \in I, x, y \in \mathbb{R}^{p}$, we have $\|T_{r-q, q}(x) - T_{r-q, t}(y) - (T_{r-q, t}(x) - T_{r-q}(y))\| \le K_{t} 2^{n} |s-t| \|x-y\|$

$$\| \mathbf{1}_{n, q, s}(x) - \mathbf{1}_{n, q, s}(y) - (\mathbf{1}_{n, q, t}(x) - \mathbf{1}_{n, q, t}(y)) \| \ge \mathbf{K}_{1} 2^{-1} \| x - y \| \| \mathbf{S}_{n, q, s}(x) - \mathbf{S}_{n, q, s}(y) - (\mathbf{S}_{n, q, t}(x) - \mathbf{S}_{n, q, t}(y)) \| \le \mathbf{K}_{1} 2^{n} \| s - t \| \| x - y \|.$$

(21) For $u, s, t \in I \cap D_n$, $x = x_{n, q, u}, y = x_{n, q+1, u}$, we have

$$\| \mathbf{T}_{n, q, s}(x) - \mathbf{T}_{n, q, t}(x) \| \leq \mathbf{K}_{2} \frac{2^{n(1-\alpha)}}{p^{\alpha}} |s-t|$$

$$\| \mathbf{S}_{n, q, s}(y) - \mathbf{S}_{n, q, t}(y) \| \leq \mathbf{K}_{2} \frac{2^{n(1-\alpha)}}{p^{\alpha}} |s-t|.$$

(22) For $t \in I$, the isometry $T_{n,q,t}^{-1} \circ S_{n,q+1,t}$ does not depend on t.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

Before we proceed to the construction of the isometries $T_{n,q,t}$, $S_{n,q,t}$, we show how to construct the isometries $R_{n,q,t}$ for $0 \le q \le 2^{n+1} - 2$. For $t \in [q 2^{-n-1}, (q+1)2^{-n-1}]$ we set $\mathbf{R}_{n,q,t} = \mathbf{S}_{n,q-1,t}$; for $t \in \overline{[(q+1)2^{-n-1}]}$, $(q+2)2^{-n-1}$, we set $R_{n,q,t} = T_{n,q,t}$. Condition (17) ensures that $S_{n,q-1,\tau} = T_{n,q,\tau}$, so that $R_{n,q,\tau}$ is well defined. It is simple to see that conditions (6) to (10) follow from conditions (18) to (22) respectively.

We now construct the isometries $T_{n,q,t}$, $S_{n,q,t}$. Set l=l(q), l'=l(q+1). Thus, we either have l' = l or l' = l+1. For $t \in [(l+1)2^{-n}, (l+2)2^{-n}]$, we have by induction hypothesis and (10) that, if l' = l+1,

(23)
$$\mathbf{R}_{n-1,l,t}^{-1} \circ \mathbf{R}_{n-1,l',t} = \text{Constant isometry} := \mathbf{V}.$$

If l'=l, the above also holds, for V=identity. We set for simplicity A = R_{n-1, l}, r; B = R_{n-1, l', τ}. It is simple to see that $\tau \in [(l+1)2^{-n}, (l+2)2^{-n}];$ thus, by (23), we have A⁻¹ • B = V.

Given $t \in I \cap D_{n-1}$, we have

$$\mathbf{R}_{n-1, l, t}(x_{n-1, l, t}) = \mathbf{R}_{n-1, l', t}(x_{n-1, l', t}).$$

This is obvious if l' = l; if l' = l + 1, this follows from (6). Remembering that $R_{n-1,l,t}^{-1} \circ R_{n-1,l',t} = V = A^{-1} \circ B$, we get

$$\forall t \in I \cap D_{n-1}, A(x_{n-1, l, t}) = B(x_{n-1, l', t})$$

It then follows from (5) that

(24)
$$\forall t \in I \cap D_{n-1}, A(x_{n,q,t}) = B(x_{n,q+1,t}).$$

Since A, B are isometries, it follows from (4) that

$$\forall s, t \in \mathbf{I} \cap \mathbf{D}_{n}, \quad \left\| \mathbf{A}(x_{n,q,s}) - \mathbf{A}(x_{n,q,t}) \right\| = \left\| \mathbf{B}(x_{n,q+1,s}) - \mathbf{B}(x_{n,q+1,t}) \right\|.$$

Thus, there exists an isometry U of \mathbb{R}^p such that

(25)
$$\forall t \in I \cap D_n, \quad U \circ A(x_{n,q,t}) = B(x_{n,q+1,t}).$$

Since card I \cap D_n = p/2 + 1 < p, we can assume that det U = 1 (by composing if necessary U by a reflection through a hyperplane containing the points A $(x_{n, q, t})$, $t \in I \cap D_{n}$.) It is then clear that we can find a semi-group U(t) of isometries of \mathbb{R}^{p} , with U(1) = U, such that

(26)
$$\begin{cases} \forall a, b \in \mathbb{R}, \quad \forall x, y \in \mathbb{R}^{q}, \\ \| U(a)(x) - U(a)(y) - U(b)(x) + U(b)(y) \| \leq K_{3} |b-a| \| x - y \| \end{cases}$$

(actually one can take $K_3 = 2\pi$).

For $t \in I$, we set

$$\mathbf{T}_{n, q, t} = \mathbf{R}_{n-1, l, t} \circ \mathbf{A}^{-1} \circ \mathbf{U}(\boldsymbol{\varphi}(t)) \circ \mathbf{A}$$

$$\mathbf{S}_{n, q, t} = \mathbf{R}_{n-1, l', t} \circ \mathbf{B}^{-1} \circ \mathbf{U}(\boldsymbol{\varphi}(t) - 1) \circ \mathbf{B}$$

where $\varphi(t) = 2^{n+1} (t-\tau)$. Thus $\varphi(\tau) = 0$, $\varphi(\tau') = 1$. Thus (17) holds.

It remains to prove (18) to (22).

M. TALAGRAND

Proof of (18). – It follows from (25) that, for $t \leq D_n \cap I$, we have $A(x_{n,q,t}) = U^{-1} \circ B(x_{n,q+1,t})$

so that

(27)
$$U(\varphi(t)) \circ A(x_{n,q,t}) = U(\varphi(t) - 1) \circ B(x_{n,q+1,t}).$$

Since $R_{n-1, l, t}^{-1} \circ R_{n-1, l', t} = A^{-1} \circ B$, we have

$$\mathbf{R}_{n-1, l', t} \circ \mathbf{B}^{-1} = \mathbf{R}_{n-1, l, t} \circ \mathbf{A}^{-1},$$

and, combined with (27) and the definition of $T_{n, q, t}$, $S_{n, q, t}$, this implies (18).

Proof of (19). – We consider only the case of $T_{n,q,t}$, and leave the other case to the reader. By (24), (25), we have

$$t \in I \cap D_{n-1} \Rightarrow U \circ A(x_{n,q,t}) = A(x_{n,q,t})$$

so have

$$\mathbf{U}(s) \circ \mathbf{A}(x_{n,q,t}) = \mathbf{A}(x_{n,q,t})$$

for all $s \in \mathbb{R}$. Thus

$$\mathbf{A}^{-1} \circ \mathbf{U}(\boldsymbol{\varphi}(t)) \circ \mathbf{A}(x_{n,q,t}) = x_{n,q,t},$$

which implies the result.

Proof of (20). – We prove this inequality for the constant $K_1 = 4K_3$, where K_3 occurs in (26) and we again consider only the case of $T_{n, q, t}$. We have

$$\| \mathbf{T}_{n, q, s}(x) - \mathbf{T}_{n, q, s}(y) - (\mathbf{T}_{n, q, t}(x) - \mathbf{T}_{n, q, t}(y)) \| \leq (\mathbf{I}) + (\mathbf{II})$$

where

$$\begin{aligned} (I) &= \left\| \mathbf{R}_{n-1, l, t} \circ \mathbf{A}^{-1} \circ \mathbf{U}(\varphi(t)) \circ \mathbf{A}(x) - \mathbf{R}_{n-1, l, t} \circ \mathbf{A}^{-1} \circ \mathbf{U}(\varphi(t)) \circ \mathbf{A}(y) \\ &- \mathbf{R}_{n-1, l, t} \circ \mathbf{A}^{-1} \circ \mathbf{U}(\varphi(s)) \circ \mathbf{A}(x) + \mathbf{R}_{n-1, l, t} \circ \mathbf{A}^{-1} \circ \mathbf{U}(\varphi(s)) \circ \mathbf{A}(y)) \right\| \\ (II) &= \left\| \mathbf{R}_{n-1, l, t}(x') - \mathbf{R}_{n-1, l, t}(y') - \mathbf{R}_{n-1, l, s}(x') + \mathbf{R}_{n-1, l, s}(y') \right\| \end{aligned}$$

for $x' = A^{-1} \circ U(\varphi(s)) \circ A(x)$, $y' = A^{-1} \circ U(\varphi(s)) \circ A(y)$. Since A and $U(\varphi(s))$ are isometries, we have ||x'-y'|| = ||x-y||. We observe that (8) holds with the same value $K = K_1$ of the constant K than (20); thus, by induction hypothesis, we have

$$(II) \leq K_1 2^{n-1} |s-t| ||x-y||.$$

Since $R_{n-1, l, t} \circ A^{-1}$ is an isometry, we have (I) = $\| U(\varphi(t)) \circ A(x) - U(\varphi(t)) \circ A(y) - U(\varphi(s)) \circ A(x) + U(\varphi(s)) \circ A(y) \|$. Since $\| A(x) - A(y) \| = \|x - y\|$, $|\varphi(t)| \le 2^{n+1} |s - t|$, by (26) we have (I) $\le K_3 2^{n+1} |s - t| \|x - y\|$.

Thus

$$(I) + (II) \leq (K_1 2^{n-1} + K_3 2^{n+1}) |s-t| ||x-y|| \leq K_1 2^n |s-t| ||x-y||$$

since $K_1 = 4 K_3$.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

362

Proof of (21). – We prove (21) for $K_2 = 2^{\alpha} K_1 (1 - 2^{-(1-\alpha)})^{-1}$, and again we consider only the case of T. We proceed by induction, observing that (9) holds with the same constant K_2 . We find v in $I \cap D_{n-1}$ with $|u-v| \leq 2^{-n+1}/p$. We set $z = x_{n,q,v}$. We have

$$\| \mathbf{T}_{n, q, s}(x) - \mathbf{T}_{n, q, t}(x) \| \leq (\mathbf{I}) + (\mathbf{II})$$

where

$$(\mathbf{I}) = \| \mathbf{T}_{n, q, s}(z) - \mathbf{T}_{n, q, t}(z) \| (\mathbf{II}) = \| \mathbf{T}_{n, q, t}(x) - \mathbf{T}_{n, q, t}(z) - (\mathbf{T}_{n, q, s}(x) - \mathbf{T}_{n, q, s}(z)) \|.$$

We recall that by (24), (25)

$$\mathbf{U} \circ \mathbf{A}(z) = \mathbf{B}(x_{n, q+1, v}) = \mathbf{A}(z),$$

so that, by definition of $T_{n, q, t}$

$$(\mathbf{I}) = \| \mathbf{R}_{n-1, l(q), s}(z) - \mathbf{R}_{n-1, l(q), t}(z) \|$$

and, by induction hypothesis,

(I)
$$\leq K_2 \frac{2^{(n-1)(1-\alpha)}}{p^{\alpha}} \cdot |s-t|.$$

If we recall that (20) holds for the constant K_1 we have

$$(II) \leq K_1 2^n |s-t| ||x-z||.$$

Since, by (4),

$$||x-z|| = |u-v|^{\alpha} \leq 2^{(-n+1)\alpha}/p^{\alpha},$$

we have (II) $\leq K_1 2^{\alpha} 2^{n(1-\alpha)} | s-t | p^{-\alpha}$. Thus

$$(\mathbf{I}) + (\mathbf{II}) \leq \frac{2^{n(1-\alpha)}}{p^{\alpha}} [2^{\alpha} \mathbf{K}_{1} + \mathbf{K}_{2} 2^{-(1-\alpha)}] | s-t | = \frac{2^{n(1-\alpha)}}{p^{\alpha}} \mathbf{K}_{2} | s-t |.$$

Proof of (22). – We have, for $t \in J$,

$$T_{n, q, t}^{-1} \circ S_{n, q, t} = A^{-1} \circ U(-\varphi(t)) \circ A \circ R_{n-1, l, t}^{-1} \circ R_{n-1, l', t} \circ B^{-1} \circ U(\varphi(t) - 1) \circ B.$$

Since, by (23), we have $R_{n-1, l, t}^{-1} \circ R_{n-1, l', t} = A^{-1} \circ B$, we have

$$T_{n,q,t}^{-1} \circ S_{n,q,t} = A^{-1} \circ U(-\phi(t)) \circ U(\phi(t) - 1) \circ B = A^{-1} \circ U^{-1} \circ B,$$

and this does not depend on t.

The proof is complete.

REFERENCES

- P. ASSOUAD, Plongements Lipschitziens dans Rⁿ, Bull. Soc. Math. Fr., Vol. 111, 1983, pp. 429-448.
- [2] J. P. KAHANE, Hélices et quasi-hélices, Adv. Math., Vol. 7 B, 1981, pp. 417-422.

(Manuscript received February 13, 1991.)