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Asymptotic periodicity of some stochastically
perturbed dynamical systems

T. KOMOROWSKI

Michigan State University East Lansing, MI 48824, U.S.A

Ann. Inst. Henri Poincaré,

Vol. 28, n° 2, 1992, p. 178. Probabilités et Statistiques

ABSTRACT. - In the paper we investigate asymptotic behavior of a
Markov chain given by a difference stochastic equation Xn + 1= S (Xn) + ~n.
We prove asymptotic periodicity of the Markov chain under the following
assumptions: (H l) S : V - V is a Borel measurable transformation defined
on a cone V c IRd, bounded on bounded subsets of V, (H2) there is a

norm 1.1 I defined in IRd such that lim inf and (H3)

~ ~n }n &#x3E; o is a sequence of i.i.d., random variables such that the distribuant
of Ço has a density having the first absolute moment

r (x) dx  m. Furthermore sufficient conditions for asymptotic stabil-

ity are given. Obtained theorems are applied to prove asymptotic stability
of a model of cell cycle given in [11] by J. Tyrcha.

Key words : Markov Chain, Markov Operator, Asymptotic Periodicity, Asymptotic Stabil-
ity.

RESUME. - Dans ce texte, j’etudie la conduite asymptotique d’une
chaine de Markov donnée par l’équation Xn + 1= S (Xn) + ~n. Je prouve la
périodicité asymptotique de la chaine de Markov avec les hypotheses
suivantes : (HI) S: V  Vest une transformation mesurable de Borel

définie sur un cone V ~ bornée sur les sous-ensembles bornes

de V, (H2) il existe une norme ~ . ~ définie sur IRd telle que

Classification A.M.S. : 60 J 05.
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166 T. KOMOROWSKI

lim inf and (H3) {~}~o est une suite de variables-

aléatoires independantes identiquement distribuées avec une loi de densité

~:V~[R+ ayant le premier moment absolu Jv des condi-

tions de stabilité asymptotique sont données. Les theoremes obtenus sont
appliques pour prouver la stabilité asymptotique d’un modèle de cycle
d’une cellule, donne dans [11] par J. Tyrcha.

1. INTRODUCTION

The subject of interest of this article is a difference equation with
stochastic perturbation of the form

Here S is a transformation of a certain cone V in [Rd into itself and

f ~" ~n &#x3E; o is so-called "white noise" i. e. a sequence of independent ident-
ically distributed (i.i.d.) in the cone random variables. The system defined
by equation ( 1 . 1 ) generates a Markov chain { Xn ~n &#x3E; o provided that Xo

are independent. The problem of asymptotic behavior of
Markov chains was extensively investigated by many authors see [1], [2],
[7], [9] for reference. The main tool for finding some stability properties
of (I . 1 ) is the method of Lyapunov function. Generally saying this method
consists in constructing a positive function 2: V - [R+, called a Lyapunov
function, such that

(ii) ~ ~ (Xn) ~n &#x3E; 1 is a supermartingale i. e. in particular it decreases in

average sense.

Whenever we can find such a function and verify that

must be recurrent to a sufficiently large ball. Under some
additional hypotheses about the chain as for example is
Harris (see [7]) we can conclude 1 is asymptotically periodic
in the sense of [7]. For more details about the method of Lyapunov
function see [2] and [3]. A typical assumption one may admit to show the
existence of Lyapunov function for the above system is some growth
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167ASYMPTOTIC PERIODICITY

condition imposed on S. One of the simplest possible may be

where 0(xl Then the Lyapunov function (x)=| x I will

satisfy the condition of theorem 3, p. 86 in [2]. By adding some assumption
about the white noise, for example one may suppose that the distribuant
of Ço has nonvanishing Radon derivative with respect to the Lebesgue
measure, asymptotic periodicity in the sense of [7] can be established.

In our paper we investigate the case a =1. We prove asymptotic periodic-
ity of the Markov chain given by system ( 1 .1 ) under the following
assumptions:

(HI) S : V ~ V is a Borel measurable transformation defined on a cone
V ~ bounded on any bounded subset of V.

(H2) There is a norm 1.1 defined in IRd such that

(H3) {~}~o is a sequence of i.i.d. random variables such that the
distribuant of Ço has a density g : V -~ R + satisfying

In this case x E V does not have to satisfy ( 1. 2) any more.

However by studying the sequence of averages  E 2 (Xn) we can
N n=o

prove that

if A is sufficiently large. This proves is recurrent to a ball
with a sufficiently large radius. Combining this result with the fact that
transitions of probability are absolutely continuous with
respect to the Lebesgue measure we can show that { X" ~n &#x3E; o is positive
Harris recurrent and therefore periodic. This is the contents of our main
result stated in theorem 4. 3. In section 5 we apply this theorem in order
to get some asymptotic stability results about system ( 1 . 1 ) under various
conditions concerning the transformation S and density g. Some of these
results are related to previous results obtained by other authors see [5],
[6] and numerous papers due to H. J. Kushner. For instance theorem 5 . 2
corresponds to proposition 5. 1 in [5] which concerns a more general
system given by:

Vol. 28, n° 2-1992.



168 T. KOMOROWSKI

It is proven there that ( 1. 3) is asymptotically stable provided the following
hold:

(i ) S is C1 and the deterministic system i = S (Xn, 0) is freely evolv-
ing.

(ii) {çn} n ~ 0 are i.i.d. random variables such that Ço possesses a

density g which is lower semicontinuous, 0 E supp g.
(iii) ( 1. 3) is weakly stochastically controllable (see [5] for a definition).
In our case we obtain a similar result for ( 1.1 ), which, for simplicity, is

stated on the real line. We do not have to assume that the system is

weakly stochastically controllable. Moreover the hypotheses about lower
semicontinuity of the density and differentiability of S can also be dropped.
The main difference between this paper and those mentioned above is

that the method we used here does not require any topological type
considerations. This yields the fact that we do not have to make

assumptions about topological regularity of the transformation S and
density g. Instead we use only some fairly general hypotheses about meas-
urability of S and g to obtain asymptotic periodicity of the corresponding
Markov chain.

2. NOTATIONS

Suppose that (X, Z, m) is a a-finite measure space. By L1 (X) we denote
the set of all real functions integrable with respect to m defined apart
from a set of measure zero. All nonnegative elements f~L1 (X) satisfying

are called densities. The set of all densities is denoted by D (X). A linear
operator P : L 1 (X) ~ L1 (X) is called a Markov operator if

P (D (X)) ~ D (X). A density f is said to be invariant for P if P f = f.
Suppose that V is called a cone if for any x, y E V, ~,, ~. &#x3E;_ 0 we

have Since now all sets denoted by V will be cones, so we
will not repeat this assumption in the sequel.
Assume that S : V -~ V is a transformation. be a sequence

of independent random variables identically distributed in V with a density

g having a finite first absolute moment If Xo is

independent of all ~ ~ 0 we can generate a sequence of random variables
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169ASYMPTOTIC PERIODICITY

being a Markov chain. Its transition operator P : L 1 (V) - L 1 (V) is defined
by the formula

3. A FIXED POINT THEOREM

The theorem presented below resembles somewhat classical theorems
concerning the existence of invariant densities for Markov operators given
in [ 1 ], [10]. However, mainly for the sake of transparency, we formulate
and prove it below.

THEOREM 3 .1. - Suppose that is a 7-finite measure space and
P : L1 (X) - L1 (X) is a Markov operator. Assume that P satisfies the

following two conditions
(Cl) there is fo E D, A c X with m [A]  + oo such that

(C2) for every E &#x3E; 0 there such that

if only m [E]  b.
Then there exists a density f* such that
(i) Pf* =f*
(ii) m [supp _f* n A] &#x3E; o.

Proof. - Consider a subspace L ~ 1 °° spanned by two elements

u = (I , 1,...), a = (al, a2, ... ), where

Define a linear functional ~ : L - R by

Vol. 28, n° 2-1992.
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It is obvious 

According to the Hahn-Banach theorem 0 can be extended to the entire
space 1 °° in such a way that the condition

is preserved. From (3 .1 ) we deduce

Setting E = ~ ~ a and choosing ð according to condition (C2) we see that
2

if m [E]  8 then

Using the arguments identical to those used in [ 10] we conclude our
proof. 0

4. ASYMPTOTIC PERIODICITY OF ITERATES

First we prove the following

THEOREM 4. 1. - Assume that g : V -~ f~ + is a density having the f irst

absolute moment m x ~ g (x) dx finite. Suppose that S satisfies the follo-

wing conditions:
(i ) S : V -~ V and it is bounded in any bounded subset of a cone V.

(ii ) lim inf [/ x S (x) IJ &#x3E; m.

j x j - + ~o

Then a Markov operator P : L’ (V) - L’ (V) given by

has an invariant density.

Remark. - A similar result was obtained by A. G. Pakes in [8]. However
the author considered only the case of irreducible and aperiodic Markov
chains with a discrete state space. D

Proo, f : - On the contrary suppose that P has no invariant density.
Then choose fo E D (V) and consider a sequence of iterates 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Denote by:

we have

From (4. 5)

and

From (ii ) we can find such A &#x3E; 0 that for x ~ V and 

For any E &#x3E; 0 we can find 8&#x3E;0 such that

Vol. 28, n° 2-1992.
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Then for any fED (V) we have

Hence P satisfies condition (C2). Using Theorem 3.1 we deduce that

and in consequence

Let m  p j. For a certain No we have

for N~No. Compiling (4 . 6) and (4 . 7) we obtain

The above condition cannot be met by any This
contradiction shows that P has to posses an invariant density. D

Suppose now that aV is a set of all invariant densities of P. Let fo e D (V)
be strictly positive in V. Set

There exists such a f* E av that

To see this one may apply a standard procedure which consists in taking
a sequence of whose supports Sn satisfy
f +00 -
J 
r f0 (x) dx ~ a. we obtain a required density.

The following lemma will be essential for us in the sequel.

LEMMA 4 . 2. - For any density fE D (V) we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - First notice that for any f such that supp fE X* we have
supp P f  X* (see [ 12], p. 132, lemma 3 .11 ). From the above we conclude
that U  where U = P*. Hence we obtain

Suppose that

For any E &#x3E; 0 we can find such a no that

Let

We have

Vol. 28, n° 2-1992.
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Notice that

here A is such that if y E V. However the last
term in (4. 9) is equal to zero by virtue of Theorem 3 . 1 and the fact that
X* is maximal in the sense of (4. 8). Thus

Applying once again considerations from the proof of Theorem 4. 1 we
obtain

where WN, MN, VN are defined identically as their correspondents WN,
MN, VN in (4 . 2)-(4 . 4). The only difference is that h is put instead of fo in
those formulas. Hence

In view of (4.10) we see that there is No such that for 

Choosing E &#x3E; 0 so small that

we can find such a N 1 that for N~N~ 1

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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This shows that such a sequence does not exist. The above contradiction
concludes the proof. D
Now we confine our considerations to V n X*. Define an operator

_ , -.-

where P* f = P f. Since P* f* = f*, the operator P* is conservative. P* is
an operator given by a stochastic kernel. Summing up these facts we infer
that P* is a Harris operator. From the general theory of Harris operators
(see for instance [ 1 ], p. 98, [7], pp. 109-119) there exist densities

gl, g2, ... , gd, functions ... , (V n X*) and a permutation
ex: {1,2,...,d} ~ {1,2,...,d} such that P* may be written in the form

where The functions gl,g2, ... ,gd and the operator

Q have the following properties
~~=0. i ~ j so g; have disjoint supports.

(P2) i =1, ... , d.
(P3) P~Q/~0, n -~ + oo .

Markov operators having the decomposition as in (4 . 11 ) are called

asymptotically periodic (see [13], pp. 86-90). In case when d=1 an operator
is said to be asymptotically stable. From the foregoing and Lemma 4. 2
we obtain.

THEOREM 4. 3. - Under the assumptions made in Theorem 4. 1 the
Markov operator P given by (4. 1 ) is asymptotically periodic.
Proof - We have

However this condition is equivalent to the fact that P may be represented
in the form given in (4 . 11 ). D

5. ASYMPTOTIC STABILITY

Below we give some conditions which allow us to admit d=1 in (4 . 11 ).
Throughout this paragraph we assume that S and g satisfy assumptions
given in Theorem 4.1. We start with the following

THEOREM 5 . 1. - Suppose that there is Mo such that g (x) &#x3E; 0 for
Then P given by (4 . 1 ) is asymptotically stable.

Vol. 28, n° 2-1992.
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Proof. - By virtue of Theorem 4 . 3 we have gl, ... , gd as in (4.11).
Let L ~ Mo be so large that

The above shows that d=1. D

Another theorem concerns the case V = I~ + .

THEOREM 5 . 2. - Suppose that S is continuous, S (0)= 0, S (x)  x for
x &#x3E; o. Assume additionally that there is 8&#x3E; 0 such that g (x) &#x3E; 0, x E [0,8].
Then P given by (4. 1 ) is asymptotically stable.

Proof. - Let gl, g2, ... , gd be as in (4 .11). There is such a that

where the equality is satisfied up to a certain set of the Lebesgue measure
zero. Let xo e be such that for any h &#x3E; 0

Consider an open subset G of ( f~ + )a + ~ consisting of (x, yi, ... , y~) satis-
fying

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Additionally if for xl we can choose y°, ... , yfl such that

(xl, y? , ..., E G then

in a certain neighborhood of yfl. Choose (xl, yl, ..., yk) E G for which

and

Hence from (5 .1 ) and (5 . 2) it follows that there exists a certain neighbor-
hood of xi in which gl (x) &#x3E; 0. Additionally

+00

Proceeding this reasoning we find a set A = U (ai, bi) which satisfies
i= 1

(i) +00

(ii ) if x E A then g 1 (x) &#x3E; 0.
Let x E [0,8] then we have such a yk E A that yk  x. Finding

we deduce that

From (5.1) gl (x) &#x3E; o, x E [o, õ]. Because gl was arbitrarily chosen from
the ... , gk } we see that d =1 in (P 1 ). D

Example. - Consider a Markov operator P : L 1 [0, + oo ) - L~ [0, + oo )
given by

with the kernel

where Q and À are nondecreasing continuously differentiable functions
satisfying 

.

Vol. 28, n° 2-1992.
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Such a class of operators was studied by J. Tyrcha in [11]. These oper-
ators play an essential role in the mathematical model of the cell cycle
given there. In [4] it is shown that P is the transition operator for the
following Markov chain

where {~}~o is a sequence of independent random variables with the
common density x &#x3E; 0. Denoting we obtain

where S=QÀ -1 Q-l. Now if lim inf then
x - + 00

lim inf [x - S (x)] = lim inf[Q "A (x) - Q (x)] &#x3E; 1= E ço. From this we see that

the transition operator as well as the one for are

asymptotically stable. This result was obtained in a different way by
J. Tyrcha in [11]. 0
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