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Bin-packing problems for a renewal process
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ABSTRACT. - A sequence Xl, X2, ... of i. i. d. (0,l]-valued random
variables is distributed into blocks successively as follows. A block starting
with Xk ends with X k + j iff Xk + ... 1  Xk + ... 
Analyzing this procedure, which is known as Next-Fit algorithm for bin
packing, we ask, e. g., for the asymptotic behavior of the number of Xi’s
placed in the n-th block and of the sum of the variables Xn, Xn-l’ ...
which are placed in the same block as Xn at the time Xn enters (both as
n - oo ).

Key words : Bin packing, renewal process, Markov chain with continuous state space.

RESUME. - Une suite Xl, X2, ... de variables aleatoires indépendantes,
équidistribuées et à valeurs dans (0,1] ] est partagée successivement aux
blocs. Le bloc qui commence avec Xk se termine avec Xk+ j si, et seulement
si, Xk + ... 1  Xk + ... Pour de grandes valeurs de
n on etudie le comportement asymptotique du nombre des variables
aléatoires placees dans le n-ième bloc et de la somme des variables

Xn, Xn _ 1, ... qui sont placees dans le meme bloc que Xn, avant que 
arrive. L’application au problème de « bin-packing » est exposee.

Mots clés : Processus de renouvellement, bin-packing, chaine de Markov avec une espace
réelle des états.

Classification A.M.S. : 60 K 05, 60 J 20.
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208 W. STADJE

1. INTRODUCTION

Let Xl, X2, ... E (0,1] be independent random variables with the com-
mon distribution function F. Let Xo E [0, ~ ~ be independent of all Xn, n >__ 1.
We consider the partitioning of the corresponding renewal process

+ ... + X into blocks of total length at most 1. Thus if

and

the first block has length Sn, the second one has length Xn + ~ + ... + X n + k?
and so on. The following questions will be treated:

(a) What is the asymptotic behavior of the number of X/s placed in
the n-th block, as n -; oo ?

(b) How large is the probability that a given initial value x of Xo will
eventually lead to an increase of the number of blocks (compared with
Xc=0)?

(c) How can one describe the limiting behavior of the portion of the
current block which is occupied just after the placement of X~?
A more intuitive description of these problems can be given in terms of

a storage procedure. A sequence of storage demands of random sizes
X1, X2, ... are to be satisfied by stores which are all of size 1. Xo units
of the first store are already occupied. The demands may not be broken
into pieces. Hence, if 1 and 1  the demands Xl, ..., Xn are
successively placed in the first store, Xn + 1 becomes the first amount to be
placed in the second store, and so on. The language of "stores" and
"demands" will be used throughout.

This storage procedure is closely related to the so-called bin-packing
problem in which for a given set A of real numbers in (0, 1] and an
infinite set of bins, each with capacity I, one wants to "store" the members
of A in a minimal number of bins [see, e. g., Johnson (1974), Johnson
et al. (1974), and Coffman (1978)]. There is an abounding number of
applications of the bin-packing problem to computer science and industry,
e. g. stock cutting or the assignment of tracks in disks. These and manyfurther examples are discussed in Johnson et al. (1974) and Coffman
(1976). In the probabilistic analysis of bin packing the model explainedabove has been introduced by Coffman et al. (1980) and further studied
by Ong et al. (1986) under the name "Next-Fit algorithm". In Coffman
et al. (1980) the expected performance of this rule is bounded by the(unknown) expected optimal number of bins; Ong et al. (1986) show thatthe ratio of the expected number of bins to the number of stored demands
converges to a constant. In these papers one can also find some explicit
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209BIN-PACKING PROBLEMS FOR A RENEWAL PROCESS

results in the cases of uniform or truncated exponential demand distribu-
tions.
Our analysis of the storage process is based on the investigation of two

Markov chains involved. First consider the store in which the n-th demand

Xn is placed. Let Un be the amount stored there immediately before the
(n + l)-th demand arrives. Taking into account the recursion

denotes the indicator function of the event A) it is seen that o

is a homogeneous Markov chain. Further, let in be the number of demands
placed in the n-th store, and define V 1= Uo, ‘Tn + 1- ~~ 1 + ... + ~n + ~ ~ ~ ~ 1.

V~ is the size of the first demand placed in the n-th store. Since obviously

the sequence (Vn)n > 1 also forms a homogeneous Markov chain.
In section 2 we give a detailed analysis of o. It turns out that it

is an aperiodic Harris chain whose behavior is independent of the initial
value in a very strong sense. The limiting distribution function M (x) of

o is characterized by an integral equation. Asymptotically, M is
the distribution function of the load an arriving demand will find in the
current store. Coffman et al. (1980) study the ergodic behavior of the
related Markov chain where Ln is the sum of all demands placed
in the n-th store.

In section 3 we determine the probability p (u) that a single demand of
size u is responsible for the need of an additional store. p (u) can be
considered as a measure of the load caused by a demand u which is more
informative than its mere size. In fact, if u  u’, but p (u) and p (u’) are
close to each other [even p (u) = p (u’) is possible], the sequences of demands
starting with u or u’, respectively, need the same number of stores with
high probability. Therefore the function p (u) in a sense provides a more
reasonable basis for assessing the costs due to the storage of a demand.

Finally, section 4 deals with the calculation of the mean number of
demands placed together in a store. E (rj obviously is a measure for the
"real" capacity of the n-th store with respect to the underlying demand
process. An asymptotic formula for is derived using martingale
arguments. In the case of the uniform distribution some results on the
sequence (i,~)n > 1 can be found in Coffman et al. (1980).
We note that it may happen that with probability 1 every store is

charged with the same number of demands, although the Xi are not
constant. The situation is cleared in the following lemma. [x] denotes the
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210 W. STADJE

integer part of x >_ 0. Let W be the set of points of increase of the
distribution function F and a = inf W, P = sup W.

LEMMA. - Assume Xo = 0. 03C41 is almost surely constant iff one of the
following two conditions holds:

(i) [a 1] = .

(ii) oc-1=[a-1]=a-1+ 1 
Proof. - We can restrict our attention to the case 0  a  P. Clearly,

[a-1] is an upper bound and [~i-1] is a lower bound for the number of
demands placed in a store, and we always have P (i 1= [[i -1 ]) > 0. If

a) > 0, it follows that > 0. Thus in this case condition

(i) is necessary and sufficient. Now let If is not an

integer, we again have > 0. But if is an integer,
and Thus is neces-

sary and sufficient for i 1= Const. almost surely.
In what follows we shall always assume that Ti 1 is not almost surely

constant, i. e., that neither (i) nor (ii) of the lemma holds.

2. THE MARKOV CHAIN (Un)n  o

We retain the notation of section 1 and start by studying the homogen-
eous Markov chain o defined by ( 1.1 ) and the initial condition

Uo = u. pUn denotes the distribution of Un. For background on Markov
chains with continuous state space see Asmussen (1987, chapter VI.3),
Laslett et al. (1987), and Tweedie (1975).

THEOREM 1. - o is an aperiodic Harris chain. PUn converges in
total variation to the probability measure whose distribution function M
is uniquely determined by the equation

Proof. - (1) o is a Harris chain. In order to show this, we must
find a probability measure À on [0, 1], an E > 0 and a recurrent "regener-
ation set" R c [0, 1] such that

for all u E R and all Borel subsets B of (0,1]. First we assume that a > 0.
Then define E = P (X 1 > a) and

It is easily checked that, for u E R,
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211BIN-PACKING PROBLEMS FOR A RENEWAL PROCESS

Further we have to show that R is recurrent, i. e. P (t (R)  ~| Uo = u) = 1
for all Me[0,1), where i (R) is the first entrance time for R. This follows
immediately from the easily verified fact that there exists a y > 0 with the
following property: For every Me[0,1] ] there is a ... , [a -1 ] ~ such
that

Now let a=0. In this case every interval in [0, 1] is recurrent. Choose a
a > 0 such that P (Xl> a) > 0 and define R, E and ~ as R, E and but
with a replaced by a. Then again P (U 1 E B E (B) for all u E R
and all Borel subsets B of [0, 1]. (2.2) is proved.

(2) o is PX1-irreducible (according to the definition in Tweedie
(1975)), i. e., for every Me [0, 1] and every Borel set B c [0, 1] satisfying

eB) > 0 there exists a positive integer n such that

The probability in question is not smaller than

If a.=infW > 0, this latter probability is positive for ( 1- u) + 1].
If a = 0, it is positive for all sufficiently large n.

(3) o is aperiodic. This will follow from a much stronger property
which we shall prove next. Let Un (u) and Un (u’) be the Markov chains
generated by the same sequence Xi, X2, ... via the recurrence relation
(1.1), but with different initial values u and u’. Then

Note that Uk (u) = Uk (u’) for some k implies Un (u) = Un (u’) for all n >__ k.
(2.3) follows if we can show that there exists an 11 > 0 and a k E Fl such
that

Since Un (u) ~ Un (u’) for all n implies U~k (u) ~ Uik (u’) for all (2.4)
entails [for the moment using the abbreviation U~ = Uik (u), Ui = U~k (u’)]

P (Un (u) ~ Un (u’) for all n) _ P (U~ ~ U...., U~)

for all j E and hence P (Un (u) ~ Un (u’) for all n) = 0 proving (2.3). It
remains to show how 11 and k can be found such that (2.4) holds.
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For this purpose we choose y, b E [a, ~3] with the following properties:
(i) 0  y  8.
(ii) [y-1] ~ [b-1].
(iii) y and 8 are points of increase of F.
We call a demand "small", if its size falls into the interval (y - E, y + E),

and "large", if its size falls into (b - E, 8+8). Here E > 0 is taken small
enough to ensure that i small and j large demands can be placed in the
same store iff  1 (in the case when y and 3 are atoms of pXl,
only demands of size exactly equal to y or 8 will be called small or large,
respectively). This choice of E makes it possible to treat small and large
demands as if they were constantly equal to y and 3, respectively. By (iii),
small and large demands occur with positive probability.
We consider two storage processes in parallel, the first one with initial

value u and the second one with initial value u’. Let u  u’. We start by a
sequence of small demands of length m, where we choose m large enough
to guarantee that in both storage processes at least the second store is

maximally filled. Thus in both processes there is a store containing the
maximal number N = [y-1] of small demands. Looking at the last stores
of both processes there are two possibilities: Either they contain the same
number of small demands; then Um (u) = Um (u’). Or the last store of the
second process takes a lead of say I small demands. In this second case

we have ..., N -1 ~ . Now we shall show how to diminish I to 1-1
by continuing with small and large demands.

First note that if a store contains the maximal number N of small

demands, r = [( 1- N ~)/(b - y)] is the maximal number of small demands

in it which can be replaced by large ones. Now continue both processes
until in the second process the current store and an additional one is

filled. Two subcases must be distinguished:
1. subcase. r > 0. Replace 2 r small demands by large ones. For this

purpose choose the r small demands which are placed as the first ones in
the last store of the second process, and the r small demands which are

the last ones of the preceding store. By the construction, this replacement
does not change the number of demands in the stores of the second

process, but it does in the first process. The lead of the second process is
reduced from 1 to l -1.

2. subcase. r = o. Replace the small demand which is the last one in the
last maximally filled store of the first process by a large demand. This

large demand then has to be placed as the first demand in the next store
of the first process so that again the lead of the second process is reduced.

These considerations complete the proof of (2.4).
Now let de pl be the period of the Markov chain. Then there is a

partition [0, 1] = E 1 U ... U Ed U N of the state space into a transient set
N and non-empty sets E1, ..., Ed for which P (U 1 E Ei+ 1 for
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!== 1, 2, ... (where we identify Ed+ 1 with Ei 1 and so on). Assume d >_ 2.
Choose U’ E E2. By (2.3),

On the other hand, by the choice of u and u’,

But this contradicts (2.5). It follows that d=1. o is aperiodic.
(4) o is ergodic. We only have to verify Doeblin’s condition

[Tweedie (1975), p. 386]: There exists a probability measure 8 on [0, 1], a
positive integer n and a S > 0 such that, whenever 8 (B) ~ b,

Note that

where

and

as claimed.

(5) It now follows from the ergodic theorem for Markov chains that
there is a uniquely determined invariant probability measure which is also
the limit in total variation of Let M be its distribution function. The

invariance is characterized by the property that if M is the distribution
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function of Uo, then also

The Theorem is completely proved.

3. THE PROBABILITY OF A SINGLE DEMAND TO INCREASE
THE NUMBER OF STORES

We compare the cases Uo = 0 and Uo = u E [0, 1). If Uo = u, does this
necessitate the use of additional stores? Let pm (u) be the probability that
in the case Uo = u more stores are needed than in the case Uo = 0, if m

demands must be satisfied. Obviously pm (u) is non-decreasing with respect
to u, non-increasing with respect to m and pm (0) = 0, pm ( 1 ) =1,
pl (u) = 1 - F (1 - u). Let p (u) = lim pm (u).

LEMMA. - If Uo = u, at most one more store is needed than in the case

Uo = 0..
Proof. - For the moment do not use the first store at all, but start

storing Xi, ..., Xm in the second store. Suppose that one ends up with
the store. Now try to transpose the first X 1 units from the

second to the first store. If this is not possible (i. e., > 1), one needs
n + 1 stores if Uo = u. Otherwise proceed by trying to shift the next X2
units from the second to the first store, and so on. Clearly this procedure
leads to the placement of the m demands generated if Uo = u, which,
consequently, needs at most n + 1 stores. But given Uo = 0, exactly n stores
are needed.

THEOREM 2. - p (u) satisfies the integral equation

Proof. - Conditioning on X 1 we obtain

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



215BIN-PACKING PROBLEMS FOR A RENEWAL PROCESS

For if Xl > 1- u, the storage process really starts with the second store
so that one store (the first one) is needed additionally. But if

X 1= x E (0,1- u], Xi is placed in the first store, and the probability that
one extra store is needed (relative to X2, ..., Xm) is equal to the probabil-
ity that one extra store is necessary under the condition that u + x units
in the first store are occupied minus the corresponding probability given
that x units of the first store are occupied. This proves (3.2). Since p (u) is
the monotone limit of as moo, (3.1) follows from (3.2) by
Lebesgue’s dominated convergence theorem.
The recursion (3.2) also provides a convenient method for the approxi-

mate determination of p (u), since an exact solution of (3.1) usually does
not seem possible.

4. THE MEAN NUMBER OF DEMANDS IN A STORE

in has been defined to be the number of demands placed in the n-th
store. In this section we shall derive the limit of the expected value E 

THEOREM 3:

Example. - Let us consider the uniform case F (x) = x, 0 -- x  1. Using
Theorem 2 it is easily checked that p (u) = u (2 - u). A straightforward
calculation then yields lim E (rj = 3/2.

n -. 00

This limit has already been derived by Coffman et al. (1980) by a
different method.

Proof of Theorem 3. - Let Tn be the number of the store in which the

n-th demand placed. Let  = 10 p(x)dF(x) and denote by d n the cy-field

generated by Xo, ..., Xn, To, ..., Tn. We shall show that

Vol. 26, n° 1-1990.
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is a martingale relative to o. Indeed, we have

where we have used Theorem 2 for the last equation. Next we must
consider Vn, the size of the first demand placed in the n-th store. The
Markov chain (Vn)n > 1 is Pxl-irreducible (this is seen similarly as for

o) and aperiodic (since where Nn is the number of the
first demand placed in the n-th store, and Nn  oo, we even have
lim P (Vn (v) = Vn (v’)) =1 for all v, v’ E [o, 1 ]). Again Doeblin’s condition

n -i o0

is satisfied, because

where r = P (X 1 + ... + Xn __ 1 )  1 for sufficiently large n and
8 (B) = P (X 1 E B). Setting ~ _ ( 1- r)/(n + 1 ) we obtain

.__ _ , __

Thus pVn converges in total variation to a probability measure x.
Let Xl, X2, ... be independent random variables with distribution

function F which are also independent of Xi, X2, ... Then in has the
same distribution as inf ~k >__ 1 ... + Xk > l~. It follows easily
that in converges in distribution to 1 + ... + Xk > 1 ~
where P~ _ ~ and V ist independent of the Xi. Since in is stochastically
smaller than we further have

> j) __ C p’ for some constants C > 0 and pe(0, 1) (see Shiryayev
(1984), p. 601). This implies that 1 is uniformly integrable. Conse-
quently 

-

It remains to determine E (T).
I ( Xo + ... +Xk > 1 ~ and assume that Xo has the

distribution ~c. Then We have
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because the optional stopping theorem can be applied to o and a;
this follows from a well-known result of martingale theory [Shiryayev
(1984), p. 459], since E(a)  oo and

(4.3) is tantamount to

E (Ta) + E (p (U~)) - ~ E (a) = E (To) + E (p (Uo)). (4.4)
As To= I, T~=2 and U~ has the same distribution as U1 (note that
Ua = v2 and Uo = V l)’ (4.4) yields The Theorem is proved.
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