J. VUOLLE-APIALA Time-changes of self-similar Markov processes

Annales de l'I. H. P., section B, tome 25, nº 4 (1989), p. 581-587 http://www.numdam.org/item?id=AIHPB_1989_25_4_581_0

© Gauthier-Villars, 1989, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Time-changes of self-similar Markov processes

by

J. VUOLLE-APIALA

Aarhus University, Department of Mathematics, Ny Munkegade, DK-8000 Aarhus C., Denmark

ABSTRACT. – Let X_t be a β -self-similar, $\beta > 0$, transient Markov process on $(0, \infty)$. We show that if X_{T_t} (T_t is the right continuous inverse of a continuous additive functional A_t) is an α -self-similar Markov process, $\alpha > 0$, then

$$\mathbf{A}_t = k \int_0^t \mathbf{X}_h^{1/\alpha - 1/\beta} \, dh \quad \text{for some } k > 0.$$

A result concerning time-changes of a transient Lévy process is also given.

Key words : Self-similar, Markov process, time-change, Lévy process.

Résumé. – Soit X_t un processus β-self-similaire transient et de Markov sur (0, ∞), β>0. Notons T_t l'inverse continu à droite du fonctionnelle additive A_t. Nous montrons que si X_{T_t} est un processus α-self-similaire et de Markov, $\alpha > 0$, alors

$$\mathbf{A}_t = k \int_0^t \mathbf{X}_h^{1/\alpha - 1/\beta} \, dh \quad \text{pour quelque } k > 0.$$

Un résultat concernant le changement de temps d'un processus de Lévy transient est également donné.

J. VUOLLE-APIALA

0. INTRODUCTION

 α -self-similar Markov processes (a-ssmp) on $(0, \infty)$ were introduced by J. Lamperti [5]. The process (X_t, P^x) with a state space $(0, \infty)$ is called α -ssmp, $\alpha > 0$, if there exists a Borel semigroup $(P_t(,))_{t \ge 0}$ on $(0, \infty) \times \mathscr{B}(0, \infty)$ satisfying

(i) $P_0(,) = I;$

(ii) $P_t(x, A) = P_{at}(a^{\alpha}x, a^{\alpha}A)$ for all $t > 0, a > 0, x \in (0, \infty), A \in \mathscr{B}(0, \infty)$, such that (X_t, P^x) is a time homogeneous Markov process with a transition function $(P_t(,))_{t \ge 0}$ and with sample paths that are P^x -almost surely right-continuous with left limits for all $x \in (0, \infty)$.

It was proved in [6] that every α -ssmp with "nice paths" (see Notation) on $(0, \infty)$ has a weak dual with respect to the measure $x^{1/\alpha-1} dx$. In this note we apply this result and characterize, the theory developed in [3] as a main tool, all the possible ways to time-change a transient self-similar process (in fact, an α -ssmp is transient iff it is cotransient; see Proposition) to another self-similar process. We also obtain a result concerning timechanges of a Lévy process. For simplicity, we assume $\alpha > 0$, but the results can easily be generalized to negative α .

1. – NOTATION. DEFINITIONS

Ω notes the space of all functions ω from $[0, ∞) → (0, ∞) ∪ {Δ}$ (Δ denotes the point used as a "graveyard"; we assume Δ is an isolated point), which satisfy

(a) $\omega(t) = \Delta$ for $t \ge \zeta(\omega) = \inf\{t \ge 0; \omega(t) = \Delta\};$

(b) ω is right continuous and ω or $1/\omega$ has left limits on $[0, \infty)$ at every $t \in (0, \zeta(\omega)]$.

Such Ω is called the space of "nice paths".

DEFINITION. – Let $\alpha > 0$ be given. A stochastic process (X_t, P^x) with a state space $(0, \infty) \cup \{\Delta\}$ is called α -ssmp on $(0, \infty)$ if the following is satisfied: there exists a Borel semigroup $(P_t(\cdot, \cdot))_{t\geq 0}$ on $(0, \infty) \times \mathscr{B}(0, \infty)$ with the properties:

(i) $P_0(,) = I;$

(ii) $P_t(x, A) = P_{at}(a^{\alpha} x, a^{\alpha} A)$ for all $t \ge 0, a > 0, x \in (0, \infty), A \in \mathscr{B}(0, \infty)$, such that (X_t, P^x) is a time homogeneous Markov process with a transition function $(P_t(x_t, Q^x)) \ge 0$ and $t \to X_t \in \Omega P^x$ -a.s. for $x \in (0, \infty)$.

Remark 1. – It was proved in [4] that every α -ssmp on $(0, \infty)$ automatically is strongly Markov.

A Markov process $(X_t, P^x, x \in (0, \infty))$ is said to be *in weak duality* with a Markov process $(\hat{X}_t, \hat{P}^x, x \in (0, \infty))$ with respect to a σ -finite measure η , if for all bounded f, g in $\mathscr{B}(0, \infty)$

$$\int f(x) \operatorname{E}^{x} g(\mathbf{X}_{t}) \eta(dx) = \int \widehat{\operatorname{E}}^{x} f(\widehat{\mathbf{X}}_{t}) g(x) \eta(dx), \text{ for all } t > 0.$$

Let (X_t, P^x) be in weak duality with (\hat{X}_t, \hat{P}^x) with respect to a measure η . (X_t, P^x) is said to be *transient*, if

$$\mathbf{U}f(\mathbf{x}) = \mathbf{E}^{\mathbf{x}} \left\{ \int_{0}^{\infty} f(\mathbf{X}_{t}) dt \right\} < \infty$$

for all x, all bounded, non-negative Borel functions f on $(0, \infty)$ with compact support (see alternative definitions for transience in [2]). If the dual process (\hat{X}_t, \hat{P}^x) is transient, then (X_t, P^x) is said to be *cotransient*.

Remark 2. – It was shown in [6] that an α -ssmp on $(0, \infty)$ has a weak dual, with respect to the measure $x^{1/\alpha-1} dx$, and the dual process is also an α -ssmp.

2. – THEOREMS

We assume throughout this paper that (X_t, P^x) is transient (as we shall see in Proposition, for self-similar processes the transience is equivalent to the cotransience). According to [6], (X_{T_t}, P^x) is an α -ssmp if (X_t, P^x) is β -ssmp and T_t is the right continuous inverse of an additive functional $k \int_0^t X_h^{1/\alpha - 1/\beta} dh$. We shall show that this is the only possible way to time-change (X_t, P^x) to an α -ssmp.

PROPOSITION. – Let (X_i, P^x) be a β -ssmp on $(0, \infty)$, $\beta > 0$. Then it is transient iff it is cotrasient.

Proof. – According to [4] (Th. 2.3) and [5] (Th. 4.1), there is one to one correspondence between a β -ssmp X_t on $(0, \infty)$ and a Lévy process Z_t on $(-\infty, +\infty)$ (that is, Z_t is a strong Markov process which have stationary independent increments and right continuous paths with left limits) defined by Z_t = log X_{T_i}, where T_t is the right continuous inverse of an additive functional

$$\int_0^t \mathbf{X}_h^{-1/\beta} \, dh.$$

It is also easily seen that X_t is transient iff Z_t is transient. Now for Z_t there exists a weak dual \hat{Z}_t with respect to the Lebesgue measure such that also \hat{Z}_t is a Lévy process. As shown in [6], starting from \hat{Z}_t one can construct a β -ssmp \hat{X}_t , which is a weak dual to X_t with respect to the

measure $x^{1/B-1} dx$. Now \hat{X}_t is transient iff \hat{Z}_t is transient and so it suffices to show that \hat{Z}_t is transient iff it is cotransient. If (Z_t, Q^z) is a Lévy process then Z_t under Q^z has the same distribution as $z + Z_t$ under Q^0 and thus easy calculations show that \hat{Z}_t under \hat{Q}^z has the same distribution as $z - Z_t$ under Q^0 . This shows that Z_t is transient iff \hat{Z}_t is transient and gives thus the assertion.

In the proof of the following theorem actually cotransience (and not transience) is used.

THEOREM 2.1. – Let (X_t, P^x) be a transient β -ssmp on $(0, \infty)$, $\beta > 0$, and let A_t be a continuous additive functional of X_t with T_t as the right continuous inverse, i.e.

$$\mathbf{T}_t = \inf\{s \ge 0; \mathbf{A}_s > t\}.$$

If the process $(X_{T_{t}}, P^{x})$ is α -ssmp, then there exists k > 0 such that

$$\mathbf{A}_{t}(\boldsymbol{\omega}) = k \int_{0}^{t} \mathbf{X}_{h}^{1/\alpha - 1/\beta}(\boldsymbol{\omega}) \, dh, \quad for \ all \ t < \zeta(\boldsymbol{\omega}).$$

Proof. – As mentioned in Remark 2, (X_t, P^x) has a weak dual (\hat{X}_t, \hat{P}^x) with respect to the measure $x^{1/\beta-1} dx$ such that also (\hat{X}_t, \hat{P}^x) is β -ssmp. Let A_t be a continuous additive functional of X_t and let (X_{T_t}, P^x) , T_t is the right continuous inverse of A_t , be an α -ssmp. Let further v_A be the Revuz measure corresponding to A_t . According to the result of Getoor and Sharpe [3]

$$\int v_{A}(dx)f(x) \hat{U}(x, dy) = E^{y} \left\{ \int_{0}^{\infty} f(X_{t}) dA_{t} \right\} y^{1/\beta - 1} dy \qquad (2.1)$$

for any bounded, non-negative Borel function f with compact support.

The right side of (2.1) is equal to $E^{y}\left\{\int_{0}^{\infty} f(X_{T_{t}}) dt\right\} y^{1/\beta-1} dy$, which, because of the α -self-similarity of $(X_{T_{t}}, P^{x})$, is equal to

$$E^{a^{\alpha_{y}}} \left\{ \int_{0}^{\infty} f\left(a^{-\alpha} X_{T_{at}}\right) dt \right\} y^{1/\beta - 1} dy$$

$$= a^{-1} E^{a^{\alpha_{y}}} \left\{ \int_{0}^{\infty} f\left(a^{-\alpha} X_{T_{t}}\right) dt \right\} y^{1/\beta - 1} dy$$

$$= a^{-1} E^{a^{\alpha_{y}}} \left\{ \int_{0}^{\infty} f\left(a^{-\alpha} X_{t}\right) dA_{t} \right\} y^{1/\beta - 1} dy \quad (2.2)$$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

584

From (2.1) and (2.2) we obtain, by substituting $z = a^{\alpha} y$,

$$\int \mathbf{v}_{\mathbf{A}}(dx)f(x)\,\hat{\mathbf{U}}(x,\,d(a^{-\alpha}z))$$

$$=a^{-\alpha/\beta-1}\,\mathbf{E}^{z}\left\{\int_{0}^{\infty}f(a^{-\alpha}\mathbf{X}_{t})\,d\mathbf{A}_{t}\right\}z^{1/\beta-1}\,dz$$

$$=a^{-\alpha/\beta-1}\int \mathbf{v}_{\mathbf{A}}(d(a^{\alpha}x))f(x)\,\hat{\mathbf{U}}(a^{\alpha}x,\,dz) \quad (2.3)$$

The β -self-similarity of (\hat{X}_t, \hat{P}^x) implies

$$\hat{U}(x, d(a^{-\alpha}z)) = \int_0^\infty \hat{P}^x \left\{ \hat{X}_t \in d(a^{-\alpha}z) \right\} dt$$
$$= \int_0^\infty \hat{P}^{a^{\alpha_x}} \left\{ \hat{X}_{a^{\alpha/\beta}t} \in dz \right\} dt = a^{-\alpha/\beta} \hat{U}(a^{\alpha}x, dx)$$

This, together with (2.3), gives

$$v_{A}(dx) \hat{U}(a^{\alpha} x, dz) = a^{-1} v_{A}(d(a^{\alpha} x)) \hat{U}(a^{\alpha} x, dz)$$
(2.4)

Because X_t is cotransient we have $Uf(x) < +\infty, \forall x$. Thus

$$\mathbf{v}_{\mathbf{A}}(d(ax)) = a^{1/\alpha} \mathbf{v}_{\mathbf{A}}(dx), \qquad \forall a > 0.$$
(2.5)

Applying the well-known uniqueness result for a Haar measure we obtain

$$v_{\rm A}(dx) = kx^{1/\alpha - 1} dx = k(x^{1/\alpha - 1/\beta}) x^{1/\beta - 1} dx$$
, for some $k > 0$,

which gives

$$\mathbf{A}_t = k \int_0^t \mathbf{X}_h^{1/\alpha - 1/\beta} \, dh \text{ for some } k > 0.$$

Remark. – The special case of Theorem 1 is $\alpha = \beta$, which gives $A_t = kt$. This means that the only possible way to time-change a transient β -ssmp to another β -ssmp is a linear time-change.

In [5] J. Lamperti introduced a continuous additive functional

$$\mathbf{A}_t(\boldsymbol{\omega}) = \int_0^t \mathbf{X}_h^{-1/\beta}(\boldsymbol{\omega}) \, dh,$$

where (X_t, P^x) is a β -ssmp on $(0, \infty)$. He showed that if T_t is the right continuous inverse of A_t , then the time-changed process (X_{T_t}, P^x) is a strong Markov process on $(0, \infty)$ such that it is *multiplicatively invariant*, *i.e.*

 $Q_t(x, A) = Q_t(ax, aA), \text{ for all } t > 0, a > 0, X \in (0, \infty), A \in \mathscr{B}(0, \infty),$

where $Q_t(,)$ is a transition function for (X_{T_t}, P^x) .

The following theorem says that this, possibly multiplied by a constant, is the only way to time-change (X_i, P^x) to a multiplicatively invariant

Vol. 25, n° 4-1989.

process:

THEOREM 2.2. – Let (X_t, P^x) be a transient β -ssmp on $(0, \infty)$ and let A_t be a continuous additive functional of (X_t, P^x) and T_t the right continuous inverse of A_t . If (X_{T_t}, P^x) is multiplicatively invariant, then there exists k > 0 such that

$$\mathbf{A}_t = k \int_0^t \mathbf{X}_t^{-1/\beta} \, dh \quad \text{for all } t < \xi.$$

The proof is similar to that of Theorem 2.1 and will therefore be omitted.

Finally, we shall present a result concerning time-changes of a Lévy process. It was already remarked by Lamperti [5] that (Y_t) is a multiplicatively invariant strong Markov process with "nice paths" (see Notation) on $(0, \infty)$ iff $(Z_t) = (\log Y_t)$ is a Lévy process on $(-\infty, -\infty)$. We will show

THEOREM 2.3. – The only possible way to time-change a transient Lévy process on $(-\infty, +\infty)$ to another Lévy process is a linear time-change $t \rightarrow kt, k > 0$.

We need the following Lemma:

LEMMA. – Let (Y_t, P^x) be a transient, multiplicatively invariant strong Markov process with "nice paths" (see Notation) on $(0, \infty)$. Then the only possible way to time-change (Y_t, P^x) to another process of the same type is a linear time-change $t \rightarrow kt, k > 0$.

Proof. – What we have to show is, that if A_t is a continuous additive functional of (Y_t) with T_t as the right continuous inverse and (Y_{T_t}, P^x) is multiplicatively invariant, then there exists k>0 such that $A_t = kt$ for all $t < \xi$. According to [6], (Y_t, P^x) has a weak dual with respect to the measure $x^{-1} dx$. We can now show, by the same way as in Theorem 2.1, that A_t has a Revuz measure

 $v_A(dx) = kx^{-1} dx$, for some k > 0,

which gives the assertion.

Proof of Theorem 2.3. – Let (Z_t, Q^z) be a transient Lévy process on $(-\infty, +\infty)$. Then, as remarked in the proof of Proposition, the weak dual (\hat{Z}_t, \hat{Q}^z) , which also is a Lévy process, is transient. Now $(\exp Z_t, Q^{\log x}), x>0$, is multiplicatively invariant and has, as shown in [6], a weak dual $(\exp \hat{Z}_t, \hat{Q}^{\log x})$ with respect to the measure $x^{-1} dx$. It is easily seen that (Z_t) is transient iff $(\exp Z_t)$ is transient and so, according to Lemma, $(\exp Z_t)$ cannot be time-changed to another multiplicatively invariant process with "nice paths" otherwise than by the linear time change $t \to kt$, k>0. Thus one to one correspondence between the class of Lévy

586

processes and the class of multiplicatively invariant processes with "nice paths" gives the assertion.

REFERENCES

- [1] R. M. BLUMENTHAL and R. K. GETOOR, Markov Processes and Potential Theory, New York, Academic Press, 1968.
- [2] R. K. GETOOR, Transience and Recurrence of Markov Processes, Séminaire de Probabilités XIV, 1978/79, pp. 397-409.
- [3] R. K. GETOOR and M. J. SHARPE, Naturality, Standardness and weak Duality for Markov Processes, Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 67, 1984, p. 1-62.
- [4] S. E. GRAVERSEN and J. VUOLLE-APIALA, α-Self-Similar Markov Processes, Prob. Th. Rel. Fields, Vol. 71, 1986, pp. 149-158.
- [5] J. W. LAMPERTI, Semi-Stable Markov Processes I, Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 22, 1972, pp. 205-225.
- [6] J. VUOLLE-APIALA and S. E. GRAVERSEN, Duality Theory for Self-Similar Processes, Ann. Inst. Henri Poincaré, Probabilités et Statistiques, Vol. 22, (3), 1986, pp. 323-332.

(Manuscript received November 22th, 1988) (accepted June 15th, 1989.)