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ABSTRACT. - We investigate and study smoothing metrics dg on the
space (G) of bounded positive measures on a complete, separable
locally compact metrizable group G. Via the use of a tauberian theorem
we characterize smoothing metrics metrizing the topology of weak conver-
gence in (G). Properties of P) are investigated, where P,~,
n >_ 1, denote the empirical measures for P; the limiting distribution of

(P~, P) is determined in certain instances.

Key words : Weak convergence, probability metrics, tauberian theorems, convolutions.

RESUME. - Nous étudions les métriques régularisantes dg sur l’espace
(G) des mesures positives bornées sur un groupe localement compact,

separable métrisable G. En utilisant un théorème taubérien nous caractér-
isons les métriques régularisantes qui définissent la topologie de la conver-
gence faible sur (G). Si Pn, n > 1 désignent les mesures empiriques
pour une mesure P nous étudions les propriétés de d9 (Pn, P); la loi limite
de P) est determinee dans certains exemples.
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430 S. T. RACHEV AND J. E. YUKICH

1. INTRODUCTION AND NOTATION

The study of the metrization of the space of probability measures over
a given measure space has received wide attention and by now there is a
wide variety of metrics available for study and use. See Dudley’s mono-
graph [Du2] as well as Zolotarev’s survey article [Zo]. Some of the more
interesting metrics are quite difficult to calculate and estimate, thereby
limiting their use. On the other hand, metrics of simpler structure generally
seem to have limited theoretical and practical importance. In this article
we develop the study of smoothing metrics, denoted by dg (also called
convolution metrics [Yul]). Despite their weak structure, smoothing met-
rics possess some noteworthy properties. It is shown that they are natural
choices for the metrization of weak convergence of probability measures
on groups and that they are of practical and theoretical interest in the
study of empirical measures.

First, we extend the results of [Yul], where it is shown that smoothing
metrics d9 metrize weak star convergence of probability measures. The
extended results are conveniently expressed in the language of tauberian
theory and it seems that this aspect is of independent interest, especially
from the functional analytic point of view.

Using the fact that the correspondence between positive measures and
convolution operators is bicontinuous [Si], it is proved that smoothing
metrics metrize the topology of weak star convergence of bounded positive
measures on locally compact abelian metrizable groups. In fact, the class of
smoothing metrics possessing this property is characterized via a tauberian
condition. This represents an extension of earlier work on the subject. See
section two.

Properties of P), where n > 1, denote the empirical measures
for P, are considered. The weak structure of dg is exploited to deduce
several interesting and potentially useful probabilistic estimates for

d9 (Pn, P). It is shown that if P is the uniform law on the circle then the

limiting distribution of (P,~, P) can be explicitly determined. Actu-
ally, in certain instances dg (Pn, P) may be computed exactly, making its
use in statistical problems attractive. See section three.

Notation

Throughout G denotes a separable locally compact abelian (LCA)
metrizable group. Every such group is second countable (i. e., has a
countable basis), complete and has the Lindelöf property.
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431SMOOTHING METRICS FOR MEASURES ON GROUPS

Let r denote the dual group of G; by the Pontryagin duality theorem
r is also second countable [HR], p. 381. Let ~l (G) denote the space of
all finite signed Baire measures on G, ~ + (G) the subset of non-negative
measures and ~ i (G) the subset of probability measures. Let m denote
Haar measure on G.

Let C (G) be the space of bounded continuous functions on G with
values in [R and Co (G) the subspace of functions vanishing at infinity;
equip both spaces with their canonical sup norms. For all p >_ 1 let 
be the space of real valued functions f on G such that is integrable
with respect to m.
A sequence + in ~l (G) is said to converge weak star to ~, E ~~ (G)

iff

, 
w

in this case write - f.l. The corresponding topology on ~l (G) is called
the weak star topology (weak topology by probabilists).
We point out that smoothing metrics have been previously discussed by

Kerstan and Matthes [KM], Szasz [Sz] and the authors ([RY], [Yul], [RI]).
Actually, Kolmogorov considered 21 versions of smoothing metrics as
early as 1953 [Ko]. As in [Ko], let g~ denote the density for the normal
distribution with mean 0 and variance ~2. For probability measures P
and Q on [R define

Kolmogorov observed that P n .: Q iff for all 03C3 > 0 Q) ~ 0 as

n -+ 00 [Ko]. Although A is not used in the sequel, it may be noted that
it bears close resemblance to our smoothing metrics; see (2.1).

2. SMOOTHING METRICS VIA A TAUBERIAN THEOREM

For each let where g denotes the
Fourier transform of g. A famous theorem of Wiener states that the
translates of span 21 (G) if and only if Z (g) = Q,~; see e. g.
[Rul], Theorem 7.2.5 (d). Taking this tauberian theorem as our starting
point, we first note that a similar, easier result holds in the space Co (G).
See Theorem 2.5 below. Using this tauberian theorem we deduce theorems
for weak convergence of measures in ~l + (G).
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432 S. T. RACHEV AND J. E. YUKICH

A salient feature of the theory involves the use of metric kernels, defined
as those such that Z° (g) = QS, i. e., Z (g) has empty
interior. The motivation and justification for the term metric kernel,
apparently used here for the first time, will become clear in the sequel.
For the moment, note that metric kernels always exist for second countable
LCA groups:

LEMMA 2.1. - There exist metric kernels on G.

Proof. - This appears in [Yul]. By the assumed second countability, it
is actually possible to choose g so that Z (g) = 0.

Q.E.D.

Each metric kernel g induces a smoothing metric dg on M (G) defined
by [Yul] ]

Using the condition Z° (g) = 0, it is easily seen that dg defines a norm on
Jt (G) and is thus a metric on Notice that g * {~. - v) may be
regarded as the averages of and in this sense d9 is a natural measure
of distance.

Alternatively, dg may be viewed as the difference of convolution oper-
ators. More precisely, given (G), define the associated convolution
operator T~ : Co (G) - Co (G) by

T~ is a contraction operator and dg (}~, v) is just the action of T~ - Ty on
g, evaluated in the strong operator topology on Co (G).

It is known [Si] that sequential weak star convergence of n to II can be
viewed as the convergence of T n to T~ in the strong operator topology
on Co (G); when G is the real line this equivalence is a classic result of
Feller [Fe], p. 257. Among other things, the following theorem shows that
it is enough to restrict attention to the strong convergence of T n (g) to
T~ (g) for any metric kernel g. 
The following theorem also shows that the smoothing metric dg metrizes

the topology of weak star convergence in ~/l + (G); this is possible since G
is Lindelof and hence ~~ + (G) is metrizable (Varadarajan [Va], IV, p. 49,
Teorema 13, p. 62; Dudley [Dul], §4). For the sake of simplicity, attention
is restricted to sequential convergence; nonetheless, the results remain true
in the setting of generalized sequences, or nets.
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433SMOOTHING METRICS FOR MEASURES ON GROUPS

THEOREM 2.2. - Let g be a metric kernel on G, n E I~ +, a sequence
in (G), v in ~+ (G) and ~,n (G) - v (G). The following are equivalent:

J

sequence Tn, n E ~I +, converges in the strong operator topology on Co (G) to
an operator To such that ( ~ 
The next theorem characterizes the dg-metrizability of weak star conver-

gence in (G) in terms of the metric kernels, thereby justifying the
definition and use of the term. This result represents a substantial generaliz-
ation of Theorem 2.2 of [Yul].

THEOREM 2.3. - Let g E Co (G) (~ ~1 (G). The following are equivalent
statements for the pseudo-metric d9:

(1) d9 metrizes the topology of weak star convergence in (G);
(2) g is a metric kernel, and
(3) dg (~,, v) ~ 0 if ~, ~ v.
The above theorems fail to hold if ~Z + (G) is replaced by on

the other hand, condition (1) of Theorem 2.2 implies any of the others in
this more general setting (cf. Theorem 7 of [Dul]). That the converse is
false is an immediate consequence of Theorem 11 of [Dul].
The proofs of the above theorems center around the use of an apparently

new [Ru2] tauberian theorem, one which shows that metric kernels are
precisely those functions spanning Co (G) (see Theorem 2.5 below). In this
way we obtain the equivalence of (2) and (3) of Theorem 2.2 and in this
sense d9 is a natural choice for a metric on (G).

Finally, before proving Theorems 2.2 and 2.3, let us mention an easy
but interesting consequence of Theorem 2.2: the equivalence of (2) and
(4) shows that a convolution -semigroup Qt, t > 0, on Co (G) is continuous
(i. e., Qt  I as t - 0 + in the strong operator topology on Co (G), where I
is the identity operator; c. f : Berg and Forst [BF], p. 48) if and only if

where g is any metric kernel.

Proofs of Theorem 2.2 and 2.3. As for Theorem 2.2, one could hope
to prove the implication (2) => (1) by showing that (2) implies the pointwise
convergence of Fourier transforms (t) - v (t); this argument works well
on (~k [Yul] where it is possible to show that the ~,n, n >__ 1, are uniformly
tight. Instead, we adopt a different approach, one which shows that
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434 S. T. RACHEV AND J. E. YUKICH

metric kernels span Co (G). Three auxiliary results are needed; the first is
technical.

LEMMA 2.4 ([Rul], Theorem 1.6.4). - If E is a non-empty open set in
r, there exists f E L1 (G) such that f = 0 outside E.
The next theorem does not seem to appear in the literature and may be

thought of as a companion to Wiener’s famous tauberian theorem,
described earlier.

THEOREM 2.5. - If g E Co (G) (~ ~ 1 (G), then the translates of g span
Co (G) if and only if Z° (g) = 0.

Proof - First, suppose Z° (g) = ~. Let cp E Co (G). By the well-known
isometric isomorphism between C (G) and ~l (G), there exists v (G)
such that

Define (dy) by If (dy) = 0 for every translate gx of g

then (g * ~,) (x) = 0, where we note that since g E g * p is well defined.
The uniqueness theorem for Fourier-Stieltjes transforms implies g ~, = o.
Since  ~ 0 except possibly on a set with empty interior, it follows by
unicity and continuity of Fourier-Stieltjes transforms that cp = o.

Thus, by the Hahn-Banach theorem the translates of g span Co (G).
Conversely, suppose Z (g) contains an open set E. Then by Lemma 2.4,

there exists f~L1 (G) such that =0 outside E.
Now and since g and f are both in ~1 (G) this implies that

for all xEG, showing that f is orthogonal to the span of the

translates of g.
Q.E.D.

Using Theorem 2.5 and a simple approximation argument, it is easy to
deduce the next result:

LEMMA 2.6. - Let g be a fixed metric kernel and f E Co (G). For all
E > 0 and all , 03BD~M (G) with finite total variation norm ~ - v I f there
exists a finite constant A : = A (£, ~ - v II) such that

Proof of Theorem 2.2. The equivalence of (2) and (3) follows from
Lemma 2.6. The equivalence of (1), (3) and (4) follows from a generaliz-
ation of Proposition 4.2 of Siebert [Si] to A+ (G).

Anrtales de l’Institut Henri Poincaré - Probabilités et Statistiques



435SMOOTHING METRICS FOR MEASURES ON GROUPS

Proof of Theorem 2.3. We only need to demonstrate (3) ~ (2). If (2)
is not valid, i. e., Z° (~) 7~ 0 then there is a p E Co (G) such that cp (gx) = 0
for all x. The signed measure y e ~ (G) associated with cp may be written

where ~. + E ~ + (G) and E ~t (G). Now d9 +, ~, - ) = 0,
thus ~+ = p.-, (p=0 and the conclusion follows from the Hahn-Banach
theorem and Theorem 2.5.

Q.E.D.

Theorems 2.2 and 2.3 do not extend to non-metrizable G. Indeed, when
G is non-metrizable there are no metric kernels, that is, there is no g
simultaneously satisfying g E ~1 (G), g E Co (G) and Z° (g) = Q~. If there
were such a g, then since the proof of the equivalence of (2) and (3) of
Theorem 2.2 doesn’t directly use the metrizability of G, ~ + (G) would
be metrizable. However, weak star convergence in (G) is not metriza-
ble, since the set of unit masses is homeomorphic to G (Varadarajan 
Teorema 13). We have thus proved the following result, which adds to
Wiener’s tauberian theorem:

COROLLARY 2.5. - If G is a non-metrizable LCA group then ~ there
are no metric kernels, i. e., there is no function g E ~ (G) (1 Co (G) with
Z° {g) = QS. Thus, if the translates of g span 21 (G) then (G).
As a final remark, it is of interest to note that even for non-metric

kernels g, dg occupies a role in the theory of probability metrics. Classical
metrics may be cast into the dg form, g a kernel which is not necessarily
in ~ 1 nCo. For example, for all J.l, ([a, b]), the uniform metric

I between distribution functions F~ and F~ may be repre-
sented as (b - a) du, where u denotes the uniform density on [a, b].

3. PROPERTIES OF d9; EMPIRICAL MEASURES

It is evident that dg has a relatively weak structure and one would
expect its uniform structure to be strictly weaker than, for example, that
of the Prokhorov or dual-bounded Lipschitz metric, denoted by p and P
respectively. (See Dudley’s monograph [Du2] for the definitions of p and
P and a detailed discussion of probability metrics.) Indeed, simple examples
show that dg and (3, do not, in general, induce the same uniformity.
Clearly, if g is a Lipschitz probability density on R then for all P,

(R), d9 (P, Q)  (P, Q), where C is a constant depending only
on g, but an inequality in the other direction will not hold in general. For
example, let g have support on [0, 1] and for 1 let Pn and -Qn be
probability measures on (F~ defined by
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436 S. T. RACHEV AND J. E. YUKICH

Then Qn) = Q (n - ~ ) 1/2, showing that the uniform
structure of 03B2 on R is strictly stronger than that D’Aristotile, Diaconis
and Freedman [DDF] attempt to classify the uniformities compatible with
the weak toplogy on the set of probability measures on a separable metric
space, starting with the uniformity induced by p. As we have shown in
the case of separable LCA groups, the classification of uniformities may
even start with that of d9, g a metric kernel. When however, the
uniformity of dg is not the weakest one inducing the weak topology
(see [Se] for characterizations of the weakest metrics). To see that the dg-
uniformity is not stronger than that generated by the Levy metric pL,
take Pn to be uniform on [0, n], Qn uniform on [n, 2 n] and note that

whereas 

(a) Limiting behavior of P), (T)

Throughout take G to be the circle group T and Pn the empirical
measures for the probability measure (T), i. e.

where ~i, i = l, ..., n denotes an i. i. d. sequence of random variables
with law P and bx the unit mass at x. The requirement that g be a metric
kernel implies g (k~ ~ 0 Additionally, suppose that g is of bounded
variation and has the Fourier series expansion

where an ~ 0. Since g E L2 (T), Parseval’s theorem implies £ an  oo .

Since g is of bounded variation, the restriction to T of the translates of
the 2 x-periodic extension of g to R is a Vapnik-Chervonenkis class of
functions (see [Du3], [Po] for definitions). A straightforward application
of Dudley’s CLT result [Du3] for the function-indexed empirical process
(see also Gine and Zinn [GZ1], [GZ2], Pollard [Po]) gives for all

P E ~l 1 (T)

where Gp denotes a Gaussian process indexed by the translates of g; Gp
has mean zero and covariance [Du3]:

Therefore, for any (T), c~~ P) may be approximated in

probability by the supremum of the Gaussian process Gp. A bounded and
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437SMOOTHING METRICS FOR MEASURES ON GROUPS

compact law of the iterated logarithm for d9 (P,~, P) follows

(Theorem 1.3, [DP]).
It turns out that if P denotes the uniform probability measure on [0, 2 7i:]

then the covariance structure of the limiting Gaussian process Gp process
may be given explicitly. In fact the Gp process is stationary.

THEOREM 3.I. - Let g be a metric kernel of bounded variation of the
form (3.1), i. e.,

. -

and let P denote the uniform probability measure on T. Then the limiting
Gaussian process Gp in (3.2) is stationary and has covariance structure

Proof - It is easily seen that

since 
Jo 

cos n (u - y) cos m (v - y) dy = 0, m ~ n. Expansion of cos n (u - y)

and cos n (v - y) shows that (3.4) reduces to the finite sum

1 03A3 a2n cos n (u - v).
2 n= 1

Q.E.D.

(b) The calculation and approximation of dg (Pn, P), ( ~)

For the remainder of this section, take G to be the additive group (l~.

Since dg is expressed as a supremum over translates, a relatively small
class of functions, the estimation of dg is relatively easy. That we may
estimate dg makes its use in statistical problems attractive, especially since
d~ possesses useful properties (e. g. CLT properties-see paragraph above)
not enjoyed by many other metrics. In fact, in certain instances P)
may be easily computed, where Pn are the usual empirical measures for
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P E ~l 1 (~) : in such cases, the supremum over all translates can be replaced
by the maximum over a finite number N of translates, where N = O (n).
The remainder of this section discusses ways to either probabilistically

estimate or exactly calculate the value of dg (Pn, P). As for the first,
exponential bounds for (Pn, P) may be obtained through the use of
general bounds available for the empirical process indexed by translates
of a fixed function. Such bounds hold uniformly in see

Alexander [Al] for sharp bounds with large constants and Yukich [Yu2]
for less refined bounds, but with smaller constants. Additionally, for any
law P on f~d, d >_ 1, a. s. rates of convergence of P) to the
supremum of a Gaussian process may be found. This is achieved by almost
surely approximating by an empirical Brownian bridge
related to P; by doing so one obtains a. s. rates of convergence of the
form O (n-°‘), a > 0 (see e. g. Theorem 6.3 of Massart [Ma]).
The calculation of dg (Pn, P) is facilitated by both its weak structure

and the latitude in the choice of g. As an example, if P is the uniform

measure on [0, 1] and g is the bilateral exponential 1 2exp{-|x|}, then
d9 P) can be explicitly calculated. Indeed, with probability one

Defining new random variables Y;, 1  i  3 n, by

yields with probability one

moreover, the sup is attained at an extremal point of
3n 

.

~(~= E Letting Y~, ~ 1, denote the usual order statistics,
f=i

notice that is piecewise concave up over the intervals (0,Y~),
(Y(D. Y(2))~ - ’ ~ (Y~~_~, Y~)), and clearly occurs at either 0,1
or one of the Y~ 1  x~ n. Elementary calculations show that inf 
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occurs when x assumes one of the 3 n values ..., x3 "~, where

Returning to (3.5) we thus obtain

where s~ ranges over the set of 4 n + 2 points
{ 0, 1, Xl, ..., Xn, .aCl, ... , X3 n~.
Using the same method, it is clear that if P is uniform on [a, b] then

d9 (Pn, P) reduces to a maximum over 0 (n) points. It is not known whether
similar methods can be used to calculate d9 (Pn, P) for non-uniform P:

QUESTION. - Given a law P on R, is there a metric kernel g for which
one may explicitly calculate the dg distance between P and the empirical
measure Pn?
More generally, can the dg distance between arbitrary probability meas-

ures P and Q be interpreted (or calculated) in terms of a distance between
random variables X and Y having respective marginals P and Q? For
example if d9 is replaced by the Prokhorov metric, the answer to the
question is in the affirmative as shown by Strassen’s famous theorem [St].
These observations lead to the following question.

QUESTION. - Is the dg distance between elements P and Q of M+1 (G)
equal to a "probabilistic distance" between random variables X and Y,
where X and Y have marginal distributions P and Q, respectively?

In the particular case of du defined at the end of section two, the second
question has the following solution:

where the infimum is taken over the set of all joint distributions of X and
Y with fixed marginal distributions Jl and v, and where

see [Ra].
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