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A strong invariance theorem for the tail empirical
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ABSTRACT. - The tail empirical process is defined to be for each
integer n > 1 a (n) -1~2 (n) s), 0 __ s _ 1, where a" is the uniform empirical
process based on n independent uniform (0,1) random variables and a (n)
is a sequence of positive constants such that a (n) - 0 and na (n) - oo as
n - 00. The tail empirical process converges weakly to a standard Wiener
process on [0, 1]. A strong approximation to the tail empirical process by
a sequence of Gaussian processes in obtained which, among other results,
leads to a functional law of the iterated logarithm for the tail empirical
process. These results have application to the study of the almost sure
limiting behavior of sums of extreme values.

Key words : Uniform empirical process, strong approximation, functional law of the
iterated logarithm.

RESUME. - Le processus empirique de queue est défini, pour tout n >__ 1,
par a (n) -1~2 an (a (n) s), 0 _ s __ l, où a" est le processus empirique uniforme
base sur n variables aléatoires indépendantes et uniformes sur ( 0, 1 ), et
a (n) est une suite de constantes positives telles que a (n) - 0 et na (n) - 00
quand n - oo. Le processus empirique de queue converge faiblement sur
[o, 1] vers un processus de Wiener standard. On obtient une approximation
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492 D. M. MASON

forte du processus empirique de queue par une suite de processus gaussiens.
Ceci mène, entre autres résultats, à une loi fonctionnelle du logarithme
itere pour le processus empirique de queue. Ces résultats peuvent être
appliques à l’étude du comportement asymptotique presque sur de sommes
de valeurs extremes.

1. INTRODUCTION AND STATEMENTS OF THE RESULTS

Let U1, U2, ..., be a sequence of independent uniform (0,1) random
variables and for each integer n >_ 1 let

where 1 (x _y) denotes the indicator function, be the empirical distribution
function based on the first n of these uniform (0,1) random variables. The
uniform empirical process will be written

Throughout this paper a (n) will denote a sequence of positive constants
such that for all integers n >_ 1, 0  a (n)  l, and a (n) -~ 0 and
k (n) : = na (n) - oo as n - oo .

In this paper we shall be concerned with the tail empirical process
defined in terms of a sequence a (n) to be

An easy application of Theorem 1 of Mason and van Zwet ( 1987) shows
that on a rich enough probability space there exist a sequence of indepen-
dent uniform (0,1) random variables and a sequence of Brownian bridges
B1, B2, ..., such that for any sequence a (n)

Writing for each integer n >__ 1

where Wn is a standard Wiener process on [0, 1], we see that ( 1. 1) leads
to
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Next, by observing that a (n)-1~2 Wn (a (n) s), 0  s _ 1, is a standard Wiener
process, it is clear that (1.3) implies w~ converges weakly in D [0, 1] to a
standard Wiener process. [This weak convergence fact is implicit in the
work of Cooil ( 1985) and M. Csorgo and Mason ( 1985).]
What is known about the almost sure behavior of the supremum of the

tail empirical process can be summarized as follows [cf. Einmahl and
Mason ( 1988 a) and Kiefer ( 1972).]
Assume that the sequence a (n) satisfies

(here and elsewhere T denotes non-decreasing and ~ non-increasing), and
set

I (n) = 2 log log (max (n, 3)).
( 1. 4 . i) Whenever o (k (n)) = log log n, then

( 1. 4 . ii) Whenever k (n) ~ c log log n for some 0  c  oo, then

where 1 and Pc (log P,-1)+1 =c’~.
(1.4. iii) Whenever k (n) = o (log log n), then

It is proven in Komlos, Major and Tusnady [KMT] (1975), that
on a rich enough probability space there exist a sequence of independent
uniform (0,1) random variables U2, ..., and a sequence of indepen-
dent Brownian bridges B2, ..., such that

Writing Bm as in ( 1. 2) for each m >__ 1 and noting that by the law of the
iterated logarithm

we obtain after some algebra that on the probability space of ( 1. 5), with
probability one,
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which for sequences a (n) satisfying

yields

Thus if we knew that for sequences a (n) satisfying (A)

then part, but not all, of ( 1. 4 . i) would follow from strong invariance,
that is, for sequences a (n) satisfying (A) and (1.7) the lim sup statement
in (1.4. i) would be a consequence of ( 1. 8) and (1.9).
The main purpose of this paper is to completely characterize those

sequences a (n) satisfying (A) for which the strong approximation statement
(1 . 8) holds on a suitably constructed probability space or for which it

cannot hold on any probability space. It turns out that the condition

o (k (n)) = log log n of ( 1. 4 . i) is in a certain sense necessary and sufficient
for ( 1. 8). Theorem 2, below, implies that ( 1. 9) is true for all sequences

a (n) satisfying (A). Thus ( 1. 4 . i) follows from Theorem 2 in combination
with our strong approximation Theorem 1. Since the KMT ( 1975) strong
approximation (1.5) only yields (1.8) for sequences a (n) satisfying (1.7),
we see that our Theorem 1 constitutes an improvement to their strong
approximation in the tails, i. e. when o (k (n)) = log log n but ( 1. 7) does not
hold.

We now state our results.

THEOREM 1. - Let a (n) satisfy (A). Whenever o (k (n)) = log log n, there
exist a sequence of independent uniform (0, 1) random variables U1, U2, ...,
and a sequence of independent standard Wiener processes W1, W2, ...,
sitting on the same probability space such that with probability one

Our next theorem provides the functional law of the iterated logarithm
version of ( 1. 9).

Let B [0, 1] denote the space of bounded real-valued functions defined
on [0, 1] with the usual supremum norm and K [0, 1] denote the set of
absolutely continuous functions f E B [0, 1] such that
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For any sequence a (n) and sequence of independent standard Wiener
processes Wi, W2, ..., set for integers n >_ 1

THEOREM 2. - Let a (n) satisfy (A), then with probability one the sequence
I (n)-1~2 X" is relatively compact in B [0, 1] with set of limit points equal to
K [0, 1].
An immediate consequence of Theorem 2, ( 1. 4. ii) and ( 1. 4. iii) is the

following corollary, which shows that a strong approximation to the tail
empirical process of the type given in Theorem 1 is not possible when
k (n)/log log n -~ c E [0, oo ) .

COROLLARY 1. - Let a (n) satisfy (A) and k (n) = c" log log n where c" -~ c
as n ~ oo with 0  c  oo, then for any sequence of independent uniform
(0, 1) random variables U 1, U2, ..., and sequence of independent standard
Wiener processes W1, W2, ..., sitting on the same probability space with
probability one

where 0  y (c)  oo when 0  c  oo and y (0) = oo .
Our second corollary gives the functional law of the iterated logarithm

version of ( 1. 4 . i). It follows readily from Theorem 1 and Theorem 2, and
may be viewed as the Finkelstein (1971) theorem for the tail empirical
process.

COROLLARY 2. - Let a (n) satisfy (A) and o (k (n)) = log log n, then with
probability one the sequence I (n) -1~2 w" is relatively compact in B [0, 1] with
set of limit points equal to K [0, 1].
Remark 1. - From ( 1. 4. ii) and ( 1. 4 . iii) it is easy to see that Corollary 2

no longer holds when a (n) satisfies the conditions of Corollary 1 in the
sense that K [0, 1] is no longer the set of limit points of I (n) -1~2 wn.

In order to motivate our final three corollaries, consider now the follow-
ing weighted versions of the tail empirical process defined for integers
n >_ 1 and 0  v  1 /2 to be

Using Theorem 2 of Mason and van Zwet ( 1987), along with ( 1. 2), it is
straight-forward to show that on a rich enough probability space there
exist a sequence of independent uniform (0,1) random variables U1,
U2, ..., and a sequence of standard Wiener processes Wi, W2, ..., such
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that

which of course implies that converges weakly in D[0,1] to WI -1~2 + v~
where here and elsewhere in this paper W denotes a standard Wiener
process and I the identity function on [0, 1]. [Again this weak convergence
result is implicit in Cooil (1985) and M. Csorgo and Mason (1985).]

For any sequence a (n) satisfying (A) and 0  v  1/2 set for integers n >_ 3

As a special case of Theorem 1 of Einmahl and Mason (1988 a) one
obtains

according as the following series is finite or infinite

It is natural then to consider the strong approximation analogue of
Theorem 1 for these weighted tail empirical processes. The following corol-
lary provides this analogue.

COROLLARY 3. - Let a (n) satisfy (A) and 0  v  1 /2.
(I) Whenever the series in (1. 14) is finite, then on the probability space

of Theorem 1 with probability one

(II) Whenever the series in (l. 14) is infinite, then for any sequence of
independent uniform (0, 1 ) random variables U 1, U2, ..., and sequence of
independent Wiener processes VV 1, W2, ..., sitting on the same probability
space with probability one

( 1. 16) lim sup sup I (n) -1~2
0~s~1

For any 0  v  1 /2, let
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and for any sequence a (n) and 0vlj2 set for integers n >_ 1

Our next corollary provides the functional law of the iterated logarithm
version of Theorem 2 for the sequence of processes 

COROLLARY 4. - Let a (n) satisfy (A) and 0  v  1/2, then with probability
one the sequence I (n)-1~2 is relatively compact in B [0, 1] with set of
limit points equal to K~"~ [0, 1].
As our final corollary we obtain the functional law of the iterated

logarithm form of (1.13), whose proof is immediate from Corollaries 3
and 4. This corollary may be viewed as the James ( 1975) theorem for the
weighted tail empirical process.

COROLLARY 5. - Let a (n) satisfy (A) and 0  v  1/2, then whenever the
series in ( 1. 14) is finite with probability one the sequence l (n) -1 ~2 is

relatively compact in B [0, 1] with set of limit points equal to [0, 1].
Remark 2. - Whenever the series in ( 1.14) is infinite, it is obvious from

( 1 . 13) that Corollary 5 does not hold.

Remark 3. - The statements of Theorem 1 and Corollary 2 remain true
when in the definition of w~ the uniform empirical process a" is replaced
by the uniform quantile process The resulting process is called the tail
quantile process. These results are contained in Einmahl and Mason

( 1988 b).
For applications of these results to the derivation of functional laws of

the iterated logarithm for sums of extreme value processes the interested
reader is referred to Mason ( 1988).

2. PROOFS

Proof of Theorem 1. - First we must establish a number of lemmas,
some of which may be of separate interest.
From now on we write for integers b (n) _ (k (n) l (n)) -1~2 and [x]

will denote the integer part of x.

LEMMA 1. - Let a (n) satisfy (A) and o (k (n)) = log log n, then for each
there exist a sequence of independent uniform (0, 1) random

variables U1, U2, ..., and a sequence of independent standard Wiener
processes W1, W2, ..., sitting on the same probability space (Q, A, P) such

Vol. 24, n° 4-1988.
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that

where nr = 

Proo f - Let m1 =nl and ... For each integer
construct using Theorem 1 of Mason and van Zwet ( 1987) indepen-

dent uniform (0,1) random variables U~l ~, ..., and a standard Wiener

process sitting on the same probability space (Qr’ Ar, Pr) such that
for universal positive constants C, K and A independent of r

for all 0 ~ x  oo and 1 _ k _ mr, where is the empirical processes based
on ..., which by an elementary bound for the tail of the
standard normal distribution [cf. Feller ( 1968)] gives

for universal positive constants K1, K2, ~,1 and A2. We can assume that

where W~l ~, ..., are independent standard Wiener processes.
Now set
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is less than r-2 for all large enough r. Hence by the Borel-Cantelli lemma
in combination with the fact that as r - 00

we have shown (2. 3).

CLAIM 2. - For each integer k >_ 1,

and

Proof - First consider (2. 4). Notice that

Theref ore f or any E > 0

which is less than or equal to

This expression is for all large enough r less than or equal to

The Borel-Cantelli lemma completes the proof of (2. 4).
Turning to (2. 5), we have by a straightforward application of Inequality

2 on p. 444 of Shorack and Wellner ( 1986) that for any £ > 0

This completes the proof of Claim 2.

Vol. 24, n° 4-1988.
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To finish the proof of Lemma 1, we note that for each integer k >_ 1

which by Claims 1 and 2 is almost surely less than or equal to 2 ~, - k~2.
Since k can be chosen arbitrarily large we have (2. 1).
For any integer n >_ 1 set

and

LEMMA 2. - For any 0  a  1, integer n ? 1 and E > 0

and if, in addition, s > 2 (2 

Proof. - First, (2. 8) follows from the Banach space version of Levy’s
inequality for sums of independent symmetric random variables [cf
Theorem 2 . 6 of Araujo and Gine ( 1980)]. Next we turn to (2 . 9). Choose
any 0  a  1 and with ro = 0 be a denumeration of the
rationals in [0, a]. For integers 1  j _ n and k >-1 set

and
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Notice that

and by Chebyshev’s inequality and the choice of E

Proceeding now as in the proof of Lemma 2 . 3 of James ( 1975) we obtain
(2. 9).
For any 1  ~,  oo write for integers r >_ 1

and

where n, = [~,~].

LEMMA 3. - Let a (n) satisfy (A), then for each 1  ~,  o0

and if, in addition, o (k (n)) = log log n, then

Proof - First consider (2 . 10). Choose any E > 0. By Lemma 2

which for all large enough r is less than

and noting that for all x > o,

we see that the previous expression is for all large r

An application of the Borel-Cantelli lemma finishes the proof of (2.10).

Vol. 24, n° 4-1988.
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Assertion (2. 11) is proven similarly, applying at the appropriate step
Inequality 2 on p. 444 of Shorack and Wellner ( 1986).

LEMMA 4. - Let a (n) satisfy (A) and o (k (n)) = log log n, then for every
E > 0 there exist a sequence of independent uniform (o,1 ) random variables
U1, U2, ..., and a sequence of independent standard Wiener processes W1,
W 2, ..., sitting on the same probability space such that

Proof - Choose any E > 0 and such that 3 (~, -1) 1~2  E. Let
U2, ..., and Wi, W2, ..., be constructed as in Lemma 1. Observe

that since a (n) ~, 0 and b (n) 1 0 for any integers r ~ 1 and nr  n  nr+ 1

Obviously now, ( 2 .12) follows from (2.1), ( 2 . 10) and ( 2 .11 ) combined
with the above inequality.
Lemma 4 allows us to apply a trick of Major (1976) [cf. also p. 397-

398 of Gaenssler and Stute (1977) and p. 261-262 of Philipp and Stout
(1986)] to construct a sequence of independent uniform (0,1) random
variables Ui, U2, ..., and a sequence of independent standard Wiener
processes W2, ..., sitting on the same probability space so that (1.10)
holds. For the sake of brevity these details are omitted. This completes
the proof of Theorem 1.

Proof of Theorem 2. - The proof of Theorem 2 is based on Theorem 1
of Lai ( 1974). For any 1  À  oo, set for integers r >_ 1

where nr = and X nr is as in ( 1. 11).

LEMMA 5. - Let a (n) satisfy (A), then for any 1  ~,  oo with probability
one the sequence l (nr) -1~2 y~ is relatively compact in B [0,1] with set of
limit points equal to K [o,1].

Proof - First note that each Yr is a standard Wiener process on [o,1].
For each integer let Fr denote the a-field generated by
~ Ym (s) : 1, 1  r ~. Obviously we have for each r, k = 1 , 2, ...,
and Os 1
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Since

the assertion of the lemma follows from Theorem 1 of of Lai ( 1974).
For any 1  ~,  oo set for integers r >_ 1

where nr = [~,’~.

LEMMA 6. - Let a (n) satisfy (A), then for any 

Proof - Recall the definitions of X" in (1.11) and S" in ( 2 . 6) . Notice
that

First, by Lemma 3 we have

Observe that

and hence

Statement (2. 15) in combination with Lemma 5 gives

CLAIM 3:

Vol. 24, n° 4-1988.
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Proof - We see that

and

Since for all large enough r

we have for any E > 0 and all large enough r

which by Lemma 1. 2 . 1 on p. 29 of M. Csorgo and Revesz ( 1981) is

for some constant 0  e (E, A)oo depending on only E > 0 and A>I. The
Borel-Cantelli lemma completes the proof of (2. 17).
From statements (2.14), (2. 15) and (2. 17) we conclude (2. 13), finishing

the proof of Lemma 6.
as ~, ,~ 1, the assertion of Theorem 2 follows from an

easy argument based on Lemmas 5 and 6. [See, for instance, Section 3 of
Lai ( 1974).]

Proofs of Corollaries 3 and 4. - We require the following two lemmas.

LEMMA 7. - Let a (n) satisfy (A) and 0  v  1/2.

Proof - From Orey and Pruitt (1973) or Wichura (1973) [cf. also
Theorem 1.12 . 2 on p. 61 of M. Csorgo and Revesz ( 1981)] it is easy to
conclude using a change of time scale with Sn as in (26) that
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Now

where

Since g" (~) -~ 0 as n -~ oo and 6 10, ( 2 . 18) follows from ( 2 19) and
inequality (2. 20).

LEMMA 8. - Let a (n) satisfy (A) and 0  v  1 /2. Whenever the series in
( 1. 14) is finite.

Proof - It is clear that the series in ( 1.14) being finite implies by the
( 1.13) statement in this case that

which gives ( 2 . 21 ) .
The first part of Corollary 3 obviously follows from Lemmas 7 and 8

and Theorem 1, i. e. here we necessarily have o (k (n)) = log log n. Corollary
4 is a consequence of Lemma 7 and Theorem 2. Finally, the second part
of Corollary 3 is implied by Corollary 4 and the fact that the lim sup in
( 1. 13) is infinite almost surely when the series in ( 1. 14) is infinite.
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