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Vol. 24, n° 2, 1988, p. 269-294. Probabilités et Statistiques

ABSTRACT. - This paper introduces a stochastic gradient algorithm
based on the Gibbs sampler in order to compute the maximum likelihood
estimator for Gibbsian fields with finite number of states. It is then shown

that it is possible to couple this algorithm with an annealing algorithm,
so that estimation and restoration can be done at the same time in image
processing.

RESUME. - Ce papier introduit un algorithme de gradient stochastique
base sur l’échantillonneur de Gibbs, convergeant vers l’estimateur de maxi-
mum de vraisemblance pour un modèle de Gibbs à nombre d’etats fini. Il

est ensuite montré qu’il est possible sous certaines conditions de coupler
cet algorithme avec un algorithme de recuit, et de mener ainsi de front

des procedures d’apprentissage et de restauration en imagerie.

1. INTRODUCTION

In image processing, one deals with a picture composed of elements
called pixels. It is a useful approach to consider it as a realization of

a random process. The picture is then modelized by a stochastic field
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270 L. YOUNES

x =(Xs’ seD), where D is a set of sites (which are generally pixels), and
Xs takes its values in a set E~ which is assumed to be finite all through
this paper (if s is a pixel E~ may be the set of grey levels or colours).
Geman and Geman [3] have extended the set of sites to non observable
elements such as edge location, label carriers, etc.

If we will call an element of Q a configuration, or a state and
s

the law of the field is a probability 1t on Q. If for all (x) > 0 then the
field is a Gibbsian field i. e. of the kind:

H is an energy function and Z is a constant. The energy function is often

given by qualitative properties, or by local specifications on the probability
7t (Hammersley-Clifford theorem); in most cases one construct the gibbsian
field by giving oneself the energy function at first. This is why one usually
takes this kind of notation for the law of a the field (in particular,
introducing the constant Z).
The Gibbsian model is then: (1to, 9 E 8), 8 c IRV with

These models have been used in other domains than image processing: in
spatial statistic ([1]) or in statistical physics (Ising models).
The complexity of the normalizing constant, Z(e) makes the estimation

of 8 difficult. Besag [1] and Guyon ([4], [5]) have studied some methods
of pseudolikelihood or coding that avoid dealing with Z ( 8); these methods,
that have the drawback of computing only a pseudo likelihood maximum,
have the advantage to be almost entirely analytically computable. We
propose here a stochastic gradient algorithm, which uses the Gibbs sam-
pler, in order to estimate the maximum likelihood estimator, when the
model is exponential (i. e. H (8, X) = ~ a (X ), 8 ~, 8 = ~‘’). Exponential
models are almost exclusively used in practice; they cover Besag’s auto-
models [1] and all the models proposed by Geman in image restoration.
The presentation of this algorithm and conditions for convergence are
exposed in parts 2, 3 and 4.

In image restoration Geman and Geman have introduced annealing
algorithms to obtain maximum a posteriori estimator, in a Bayesian con-
text. In this case the aim is - roughly speaking - to maximize no

more in 8, but in X among all available configurations which are in finite
number by assumption. For this one must start with a configuration X °,
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271ESTIMATION FOR GIBBSIAN FIELDS

and form from it a sequence X" of configurations in this manner: one
gives oneself a sequence u (n) of sites and a sequence (Tn) of "temperatures"
T" > 0; at step n X" is known and one gets by renewing only the
value at site u (n) so that for all s ~ u (n)~ ~ is chosen in a

stochastic way: the probability of X:: = x is the probability of Yu ~n~ = x
conditional to for where Y follows the Gibbsian law of

energy: H (8, . )/T". If T" decreases slowly to 0 and if u (n) visits each site
infinitely often, with a finite period, Geman and Geman have shown that
the sequence X" converges in distribution to the uniform law on the set
of configurations on which 1to is maximum.

In practice it will a priori be necessary to work in two steps. One must
first estimate the parameter 9 and then make an annealing with the
estimated 9. If, for the estimation of 8 one uses an iterative algorithm
(such as the one proposed in this paper) one can think of making the
annealing at the same time in the following way: the estimation algorithm
provides a sequence 8n of parameters which converges to the estimated
parameter 8*; so. at step n of the estimation algorithm 8n is known and
one can use at step n of a parallel annealing algorithm the energy
H (., instead on H (., 9*)/Tn which is still unknown. We show in

part 5 that under some conditions on 8n and H ( 8, . .), the annealing
algorithm still converges in law to the uniform law on the set where

( . ) is maximum.

2. PRESENTATION OF THE ESTIMATION ALGORITHM

2.1. Presentation of the model

We recall that D is the set of sites and we note N its cardinal. The field
on D is X = (Xs; seD) and we assume that for each s, XS takes its values
in a finite set E of cardinal L (for notation simplicity we assume that this
set is the same for each site. The set of all configurations is then:

We note A = card (Q) = LN.

Vol. 24, n° 2-1988.



272 L. YOUNES

The law of X is given by:

a : SZ --> RV is a known sufficient statistic ( . , . ) is the scalar product

If x=(xs; sED)EO and if s e D we will note

The probability for conditional to for u ~ s is then:

2.2. Equation to solve

Given a realisation xo of the field, we want to find the maximum
likelihood estimator of 8. This leads to maximize ~8 (xo) in 8. the function
(8 - Log (xo)) is concave; its differential is:

and its second derivative is: - vare ( oc ( . )) .
We need then to solve:

In the following we will always assume that:
~ For all e, Vare(a(.)) is positive definite.
~ There exists e. with 

2.3. Gibbs sampler

The Gibbs sampler is an algorithm that simulates Gibbsian fields. It is
an annealing algorithm at constant temperature. Its law converges to the
law For it we need to visit each site infinitely often with a finite period.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



273ESTIMATION FOR GIBBSIAN FIELDS

This leads to define a sequence of sites e ~I) such that:

We then define a family of transition probabilities on Q by: for x, 

This expression generally depends only of the values of ys in a small
neibourghood of site u (k).
X(A) is the characteristic function of the set A. We will also note X(P)

if P is any property and it will be equal to 1 if P is true and 0 if not. For
any sequence (ak) we will note ak as well as a (k).
We now put:

and:

We have (cf. [3]): lim for all x ~ 03A9 and all n E N.

2.4. Estimation algorithm

The stochastic gradient algorithm is defined by:

U > 0 is a constant ensuring a. s. convergence. (Xn) is then an inhomo-

geneous Markov chain.
We can rewrite the algorithm in the standard form:

Vol. 24, n° 2-1988.



274 L. YOUNES

with:

2.5. First estimates

In the following we will use the constants:

Jl estimates the variation of a when one changes the value at one site
only. It is generally far smaller than (po.
We can already note that:

And we can deduce the deterministic bound:

In the paper we use the matrix norm associated to the euclidian norm.
If A is an (n, d) matrice A and K, we have ) ) A ( _ ( nd) 1 ~2 K.
If u is n, 1 and v is 1, n, we have:

tA is the transposed matrice of A.
Finally if f is any function from Q to we will call

xeQ). There will be no risk of confusion between
the different norms we use here.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



275ESTIMATION FOR GIBBSIAN FIELDS

3. PRELIMINAR RESULTS

3.1. Weak ergodicity

3.1.1. Inhomogeneous Markov chains

We shall first state a weak ergodicity lemma. Similar results have already
been shown by Geman [3] or by Mitra et al. [8]. This lemma will be used
several times in the following. We prove it here again for the sake of
clarity and because we stated it in a larger context than in [3] or [8]. For
it we will need some additional notations that will be used again in part 5.
We also recall some property of inhomogeneous markov chains that can
be found in (Isaacson-Madsen; [6]).
~ For a sequence ( ~n; n >_ 1) of stochastic matrices and a row vector

fo - ( fo (x); with 0 and (fO is an initial law)
we note:

If g° is an other initial law we note gk and k.
The Markov chain associated to the [?~ is called weakly ergodic if:
for all m, fO, gO :

It will be strongly ergodic if there exists a row vector q with:

~ The ergodic coefficient of a stochastic matrice P is by definition

We have:

If we note ~’"~ k = ~m + 1... the chain is weakly ergodic iff.
V m : 0 ( k) ~ 0 if k - oo .

Vol. 24, n° 2-1988.



276 L. YOUNES

~ If there exists a sequence of invariant vectors Wn such that Wn (FD n = 
~r" (x) >_ 0, ~ ~" (x) = l, the chain is strongly ergodic if:

x

. In our context ~" _ ( Pe’~n~ 1 (x, y); x, where 9" = 8 (n) is a

sequence of parameters that will be of two types.
(i) 8" = 9 for all n.
(ii) 9n=lln/Tn where T~ decreases, with T" >__ JlNA/Logn A

for large enough n. The case (i) is included in case (ii) but we will need
more precise results for it.
We can now state the lemma:

3.1. 2. LEMMA. - If 03B8n is of type (i) or (ii) the chain is weakly ergodic.
In case (i) we have for m - k >_ R:

3.1. 3. Proof of lemma 3.2 : The proof is based on two points;
( . ) we have:

where this is obvious.

(..)let’sput:
in case (i)

in case (ii)

For both cases d" is decreasing and we have dn ~ be (n) for all n.
We have:

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



277ESTIMATION FOR GIBBSIAN FIELDS

We then have:

because P~(i)’~(i)+i(z, z’) ~ d~ ~ 
We get (20) by doing this again for ~ ’ ’ ’ ? ~N’
We now have:

In case (i):

and hence:

so that we can conclude with the help of properties ( 17); (since

In case (ii) we obtain:

Properties ( 17) lead us again to the desired result.

3. 2. Poisson equation

3.2.1. Introduction

In [7] Métivier and Priouret have presented a method for showing
convergence for markovian stochastic (gradient) algorithms. In particular
they introduced a solution to a Poisson equation related to the markov
chain. This is the method we will use here, with the slight difference that
we deal with inhomogeneous Markov chains. It is easy to see that Metivier

Vol. 24, n° 2-1988.



278 L. YOUNES

and Priouret’s results generalize to the inhomogeneous case. But these
results do not enable us to obtain the almost sure convergence of (6J; we
shall need more precise estimates for it. However, we first show the

existence of that solution 4nd give some properties. We will here only
apply case (i) of lemma 3.1. 2.

Then for each 8 there exist functions pe, k E (~ from Q to (~a such that:

If exists then 8p/8A exists.
3. 2. 3. Proof - Let’s first remark that:

so that ~8 ( . ) is an invariant vector for the chain This is easy to check.

We define

and

By (7) and (20) we have:

So according to lemma 3.1. 2 for k >_ R:

where x), ..
This shows that crk, converges to 0 if k, l -~ oo and then the series in

the definition of p~ converges.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



279ESTIMATION FOR GIBBSIAN FIELDS

Let’s now assume that exists; we want to show that p is diffe-
rentiable in e. We have

We will differentiate each term in the series in (22), and show that the
obtained series converges unif ormely on each compact set of 
We have:

This leads to the study of three series, one for each term of (23).
By using the lemma 3.1. 2 we can easily see that the first two converge.
The third one leads to a little more calculation. We shall first study

Cv~ x)I ae.
We have:

where

Then:

so that:

(with xp = y).

Vol. 24, n° 2-1988.



280 L. YOUNES

We arrange this sum in the following way: £ £ L L to

i

obtain:

(for k = p we have the convention 
We need then to show that the series with general term:

converges. Using (25) we can write:

Using our assumption on ç we can replace £ § (0, x) by:

which can be estimated by: 2 Me ( ~) r (9)«p - k»R~ -1 for p - k >_ R according
to (20) and to lemma 3 .1. 2. Using again lemma 3 .1. 2, we see that we
can estimate Zp by:

where K is independent of 8 and p. This proves the convergence of Zp
and then the differentiability of p in e.

We have x) = Ee (a ( . )) - a (x) so that .))=0. We also see
that g and its differential are bounded independently of e. We have then
proved the existence of functions vo that verify:

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



281ESTIMATION FOR GIBBSIAN FIELDS

If we look at the preceding proof with a little care, we can find estimates
for the v and their derivatives; we have:

[use (22) and the above remarks]. Here K~ is a constant independant of k
and6.

[use (24), and the estimate of Zp].
Let’s go back to the algorithm (8); because of (15), (27), (28) and the

expression of r (8) given in lemma 3 .1. 2 we can find a priori estimates
for C1 (8,~ and C2 (8n):
we have

then:

and we can see that there is a constant C such that Pn is equivalent to

In the same way, we get

equivalent to C’ n2 ~ N where C’ is another constant.
We now state the convergence theorem.

4. ALMOST SURE CONVERGENCE OF THE ESTIMATION
ALGORITHM

4.1. THEOREM. - Let’s consider the algorithm given in (8):

Vol. 24, n° 2-1988.
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where is obtained from Xn according to the method of the Gibbs
sampler ( see 2. 3) :

Let 9. be the solution of Ee [a ( . )] = ao.
We have the following convergence result:
If U > then 8" - 9. a. s. and there exists an Eo > 0 such that

a. s. : for s  Eo.

4.2. Proof. - The proof is in two steps; the first one deals with the
stochastic part of the algorithm; it uses some methods exposed in [7]
(proposition 3.1) but requires some care because we do not have a priori
constant bounds for the ve. We obtain here a stronger result than the one
we would have had by applying directly the theorems in [7], which estimates
the probability of non convergence of 
The second part of the proof uses deterministic estimates to reach the

conclusion. There are some technical calculations that are needed to obtain
the second fact of the theorem.

4. 2.1. First step

Let and by assumption we have E 1 > 0. We
will first show that for almost all trajectory, (X~), and for all E  E1:

converges if n - 00

One can see that, if (31) is true for one value of s, then it is true for

any smaller value. So, by considering E of the kind E 1-1 /n, one only
needs to prove that (31) is true for almost all trajectory, with fixed E.

Let’s put

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



283ESTIMATION FOR GIBBSIAN FIELDS

We cut Sn, m in Si + S 2 : Sn, m = Si + S~ where:

and

Let’s consider now the Markov process X" on We call Fn the o-
algebra generated by Xi, ..., X" and we note E the expectation according
to the law of this process. 9k is mesurable and we have:

So,

is an F-martingale moreover we have:

(3k is equivalent to C ka when k -~ oo; moreover, I ~ 8k - e* (’  C" Log k
where C" is a constant. We then have:

and this is the general term of a convergent series, because we assumed
that E  1 /2 - a. is bounded, ~" converges a. s. and S 1 - 0
a. s. if n, m - 00.
We can write S2:

then:

Vol. 24, n° 2-1988.
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But ~wk,k+03B8(k) 1 I I _ 9* ~~ Cte ka Log k. We can deduce from this that
the first two terms of (32) vanish if ~, ~ -~ oo . We decompose the sum in
(32) into several sums whose general terms are:

We have:

so that ~3k Log k Cte Logk/k2-E-a 2 _ E - a > 1 and hence £ ~k
converges
On the other hand:

~ for any B)/:

converges.
~ Because of the bounds on the derivatives of ve we have

2022 Finally I ~03BE4k~ ~ Cte 03B2k/k2-~ and 03A3 03BE4k converges.
We have then shown that S2 -+ 0 if n, m - oo and which concludes the

first step of the proof.

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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4. 2. 2. End of the proof

Recall that h (6) = Ee (oc) - ao is the differential of a concave function;
we then have:

Moreover, if 8 is in a convex compact set, Q, such that 9. E Q we have
for 8eQ:

where b ( Q) for 9 e Q.
We note We will show that we can take

Eo =min (E1/2, b*/U).
The estimates we are going to make in the following depends on the

trajectories of the process (XJ. So, we now assume that we are given a
trajectory, and thus that the Xn are fixed - such that (31) is true for all

8  8i.
Let no be a positive integer and b >_ 0 and let’s assume that for all

n _> no 03B8n is in a convex set Q such that and for all 6 e Q,
(we can always take b = 0).

We have

and then:

[Cf. (32) and ( 14).] 
’

Let E be a positive number with s  
Let’s put: (On = nE II I 8n - 9* ~ ~ and

Vol. 24, n° 2-1988.
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We have for n >_ no:

One can easily prove the following facts:
If b > E U:

~ (35)
2022 there exists an nl > Vk, n for all k ~ n1 and n >__ k.
Let 11 be a positive number.
The first step of the proof shows that:

Po:

and

(we have 2 E and then 2 - 2 E > 1).
If we apply (34) with E = b = 0 we see that 8" is bounded, so for any

choice of no, we can take Q compact and assume b > 0.
We now assume that E  b/U and take max (no, ni).
According to (35) for large enough n, the quantity:

is smaller than 11.
Let

Annales de I’Institut Henri Poincaré - Probabilites et Statistiques
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and

and

we can make the same kind of estimates and show Cte 11.
So, we have shown that if no is given, and Q is a convex compact set

with and 03B8n ~ Q for all n > no, then: for 

c~ -~ 0 a. s.
We now know that 8n - e* a. s. So by choosing no large enough, we

can take Q as near to e* as we want and then choose b (Q) to be any
number > b*.
So we can take any E  Eo = min (El/2, b*/U).
The proof of theorem 4. 1 is complete.

Vol. 24, n° 2-1988.
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5. ANNEALING

5.1. Goals

As announced in the introduction, we now examine the possibility
of coupling estimation and annealing. The exponential case

(H ( 9, x) = ( a ( x), 8 )) is the one of main interest and it is the one we have
studied since the beginning of this paper; so, in order to keep the same
notations, we will state the result in this case and give a detailed proof of
it. We will then show how it can be generalized to other energy functions
and give the main ideas of the proof. So, until part 5. 5 we still keep in
the exponential case.
A classic annealing algorithm boils down to defining a markovian

process Yn with values in Q, by:

(as explained in part 1 we take at each step the conditional probability
associated to the Gibbsian field of energy H (8*, . )/Tn =  a ( . ), 8*/T" ~).

Let’s note Ma for the set where ~8 ( . ) is maximum in the present case:

We will put M* for We know [3] that (36) defines a strongly ergodic
markov chain as soon as Tn decreases slowly enough to 0; the limit law is
the uniform law on M*.
We wonder here wether we can replace in (36) 9. by 8n where 9n

converges to 8*. We would like it to be true in particular for the sequence
obtained with the estimation algorithm described in this paper. The follow-
ing theorem gives this result, under some additional hypothesis. To have
lighter expressions we will call 11n the sequence that converges to 8* and

5. 2 THEOREM. - Let be a sequence that converges to 8*. We

put 8" = 11n/T n (T" >_ 0) and we define a Markov process ~n by:

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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~ We assume that there exists constants C > 0, E > 0, A > II such

that:

~ We also assume:

Then the chain defined by (37) is strongly ergodic and its limit law is
the uniform law on M*, noted x*.

5.3. Remarks on the hypothesis

The conditions HI on 11n are verified by the sequence of the estimation
algorithm we propose here. They are also true for gradient type algorithm
for which the step is of the same order as 1/n.
The condition on Tn is the one that is usually given in annealing

algorithm. This condition needs only to be true for large enough n, and
the conclusion of the theorem are still valid if we assume: Tn >_ N/Log n

provided that has small oscillations i. e.:

The condition H2 is a stability hypothesis on Ma for e near 8*. One
can easily see that it is equivalent to M8 = M* in the neighbourghood of
9*. The set of 8 for which H2 is false is negligible in [RV because it is

included in the union of the hyperplans orthogonal to the for

and In addition it is always true for 0e (~ (v =1); this

enables us to see that the result for the algorithm (36) is a consequence of
theorem 5 . 2 (put ~" =1 for all n).

5.4. Proof of theorem 5.2

We can first remark that 8" satisfies to the conditions given in

lemma 3.1.2, case (ii) and hence the chain defined by (37) is strongly
ergodic. As the ~ce ~n~ are invariant vectors for this chain we only need to

Vol. 24, n° 2-1988.
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show ( cf. [6]) :

[it is easy to see from H 1 that lim ~e ~n~ (x) = ~* (x)].
n

Because of H2 we have M,~n = M* for large enough n and then
for large enough n (we have for any 8 and any

I > 0). To show (38) we will use the differential of in 8 which is:

and then:

where i" E en+ 1~~
Conditions HI show us and this implies

that

This implies that there exists a positive constant c > 0 with

for all x ~ M *. Indeed we have:

Let Q be a compact neighborhood of 9* such that for 8eQ.
Let p = inf ~ a (x) - a (y), (we can notice
that H2 implies 8* ~ 0).
For 03B8 ~ Q and 1 > 0 we have then (x) _ exp ( - l p). If n is large

enough to have we use (40) to get:

We can know use (39) and HI to see that (38) is true for x ft M*
Consider now x E M* and let 8 be such that Ma = M*. We have:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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[because of condition H2, for all y e M* we have a (x) = oc (y)]. This implies
that:

and we obtain (38) for x E M*.
This ends the proof of theorem 5. 2.

5.5. Extension to nonexponentiai cases

One can see that theorem 5.2 can be extended to more general energy
functions. Here we don’t have anymore: H (8, . )/T,~ = H {9/Tn, . ) so nota-
tions will be more complicated.
We define the probabilities and conditional probabilities ~e, t as in (1)

and (2), replacing «(1(9), .) by t H {9, . ) and then the analog of (5) gives
us transition probabilities noted Pe; r + 1 (x, y). So, the Markov chain
associated to the modified annealing will have transition probabilities:

We finally note J.1 (9) = max ~~ H (0, x) - H (0, y) E Q}.
For this chain one has the same results than theorem 5.2 with the

hypothesis:
H (8, . ) is twice continuously differentiable in e.
HI’: the sequence en is the same as in 5.2

H2’: for all x, Y E M.: dH ( 0, x)/d8 = dH ( 8, y)/d6.
In the exponential case H2’ reduces to H2. It says that if e is near 9*,

the differences between the H (8, x) when x varies in M* is an

o (II 8-e* 112)~
To show this we must extend lemma 3. 1. 2, part (ii) to the non exponen-

tial case. The hypothesis on T" becomes: AN/Log n with A > 
for n >_ no. The proof is the same as in the exponential case; just replace

One proves strong ergodicity as in 5. 4, the basis of the proof is still a
differentiation of (x) which will be done here in e = (9, t). We obtain,

Vol. 24, n° 2-1988.
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where Un) is in the segment of 1. ~ [( 8 n~ ( 8 n+1~ t n+1 ) ]
We then have to notice that if x ~ M * then x ct Ma for 8 near 8 * and

that we still have ~8 ~"o (x) __ for these x and large enough n (c is a
positive constant). For x E M* we use Taylor formula and H2 to find:

and

so we still can estimate the E (H) - H and E (dH) - dH in (41) by an n-c’.

6. SOME PRACTICAL REMARKS ON THE ESTIMATION

ALGORITHM

The estimation algorithm has been tested on simulations. We used Ising
models; these models are defined on the set D = ~ 1, ..., I~ x {1, ..., I~
and takes binary values; for such models the conditional law at site (i, j)
knowing the other sites depends only of the values at the four nearest
neighbourgs of ( i, j) and is:

For this two-parameter model, the sufficient statistic, a, is (X2)
where:

In the computation of the conditional probability, there are problems
that occur at the edges of the domain D. To avoid them one can consider
that one deals with the restriction of a field defined on all Z2, and fix, for
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the computation xij=O outside D; one then uses in fact the conditional
law on D, knowin xij=O outside D, and this is a good approximation of
the absolute law on D.

The size of the "picture" we used here is 16 x 16 (256 sites). For such a
model 1000 sweeps of D by the algorithm take about 50 sec. on an
IBM 4143.

When using the estimation algorithm, one must start with an initial
value, eo, for the parameter. One needs then a preliminar estimation
procedure; a rather efficient method is to just let the algorithm wind up a
little time with a constant step. Other preliminar estimation methods are
currently being studied.
A second problem that occures when one uses the estimation procedure

is the choice of the step of the stochastic gradient algorithm. It is impossible
in practice to use a step of the kind with the theoretical value of U

given in theorem 4.1, which is far too large to expect the convergence to
be achieved in a reasonable time, the best results have been obtained by
using a step where we used U = 1 or 10 and no = 1,000.
One can remark that the probability of non convergence for the algorithm
is a [This result is a straitforward application of [7],
theorem 1. 3 (ii)].

Finally, one must define a stopping procedure for the algorithm. One
can iteratively compute the mean of the which tends to 

and stop when the estimated mean is close enough to (Xo. Another possibi-
lity (which is the one we used) is to choose a criterium of the kind:

where p is fixed and b is a constant that can be choosen as a level of

accuracy for Eo ( a) - ao.
When one looks at the behaviour of this algorithm, one can note the

following facts: the parameter 8n comes near its limit after a small amount
of sweeps (about 100); then, in order to get closer to the limit one must
wait a longer time, as the stochastic behaviour becomes more important
than the deterministic behaviour. One must also notice that, in statistical
applications, the approximation 8" of the maximum likelihood estimator,
9*, needs not be better than the precision of 8*, as an estimator of the
true parameter of the model. More results about these questions will be
published elsewhere [8].
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