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RÉSUMÉ. - Nous étudions le champ de fluctuation de la densité d’un
processus « zero-range » à plus proche voisin symétrique unidimensionnel
hors de l’équilibre. Nous en prouvons la convergence en loi vers un

processus de Ornstein-Uhlenbeck généralisé. Comme l’équation hydrody-
namique de notre modèle est non linéaire, il faut prouver une version hors
d’équilibre du principe de Gibbs-Boltzman afin de démontrer le théorème
principal. Ce principe a été introduit pour la première fois par Brox and
Rost pour l’étude des fluctuations à l’équilibre d’une grande classe de
processus « zero-range ». Notre résultat est obtenu en appliquant ensuite
la théorie de Holley et Stroock.

ABSTRACT. - We study the non equilibrium density fluctuation field of
a one dimensional symmetric nearest neighbors zero range process, proving
that it converges in law to a generalized Ornstein Uhlenbeck process.
Since the hydrodynamical equation is non linear, to accomplish our main
theorem we need to prove, for our model, a non equilibrium version of

Partially supported by CNPq Grant 311074-84 MA and CNR grant n° 85.02627.1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques - 0294-1449
Vol. 24/88/02/237/32/$S’,20/© Gauthier-Villars



238 P. A. FERRARI, E. PRESUTTI ET M. E. VARES

the Gibbs-Boltzmann principle. This was first introduced by Brox and
Rost to study the equilibrium fluctuations for a large class of zero range
models. Our result is then obtained by applying Holley and Stroock’s
theory.

0. INTRODUCTION

There is by now a well established theory concerning the hydrodynamical
features of stochastic systems of infinitely many interacting particles (cf [6],
and the references quoted in). Nevertheless, one still misses non trivial

examples where all "equilibrium" and "non equilibrium" hydrodynamical
properties can be proven to hold. Here, "non trivial" refers to a non
constant diffusion coefficient in the hydrodynamical equation. In particu-
lar, the non equilibrium density fluctuation field has been studied, as far
as we know, only in models where the diffusion coefficient is constant

[21].
The goal of this paper is to complete such description of the hydrody-

namical properties for a particular zero range model (cf. [9]), studying the
density fluctuation field in non equilibrium situations. This provides the
kind of example we were just mentioning, since in this case one has a non
constant diffusion coefficient, as we shall see.
The model is the so called symmetric, nearest neighbors, zero range

process, with constant intensity; more precisely, it is a Markov process
~ (t), t >_ 0, taking values on ~l ~ ( ~ (u, t) _ ~ (t) (u), denotes the number
of particles at site u, at time t) whose generator L acts on bounded
cylindrical functions f as:

where 

Questions on the existence and the ergodic properties of such Markov
processes were considered in [15] (cf also [16]); in [1] it is shown that the
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239NON EQUILIBRIUM FLUCTUATIONS

extremal invariant measures are reversible, and given by ~,P, 0  p  +00,
where J.1p is the product measure on with

From the results on local equilibrium [9] we can say that

is the "hydrodynamical equation" for this process, and so

represents the "bulk diffusion coefficient".
In fact, as in [9], let se (0,1] be a suitable class of initial measures,

with a profile p (r), (i. e., around E ~ 1 r p,E is approximately ~,P ~r~ as E - 0)
where p is a smooth function bounded from below and above in (0, + oo).
Then at time and around we have approximately (as
E -~ 0), where p (r, i) is the solution of (0.3) with p (r, 0) = p (r). Also, as
seen in [9], such solution p (r, i) is "explicitely" given by

with p (r, r), z (r, i) given by

z (i) = z (0, t) given by

with

Before getting to the specific results derived in ’this paper let us remark
that the "change of variables" transforming eq. (0.5b) into (0.3) can be
thought of as coming from the isomorphism (at microscopic level) between
our zero range model and the nearest nesghbors (n. n.) symmetric simple
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240 P. A. FERRARI, E. PRESUTTI ET M. E. VARES

exclusion process which at time t = 0 has a marked particle at the origin.
This correspondance is a key fact also for the results proven here and
which will be stated below, after fixing some basic notation.

Notations and definitions

When working on the simple exclusion process, S. E. P., we shall use
x, y, ... to denote the sites in 7L and r~ ( . , t) to denote the configuration
at time t. S (x) denotes the spatial translation by x (i. e.
S (x) r~ (y) = Ti ( x + y)), and we let S f or f : ~I ~ -~ R. Simi-
larly, when working on the zero range process we shall use u, v ... to

denote the sites, and again S (u) will denote the spatial shift on N~.
~ (R) denotes the space of rapidly decreasing test functions, and ~’ (R)

its dual, i. e., the space of Schwartz distributions.
An immediate consequence of the results proven in [9] is the following:

THEOREM 0. 1. - For E E (0, 1] let ~ be a probability on which verifies:

for any bounded cylindrical function f, where p (. ) is a function with
0p_ _p(r)__p+  +~ for all r;

(ii) Assumptions 1. 2 (B) of Section 1.

Let us define the density field by

Then as E - 0 the processes converge in law on D ([0, + oo), ~’ 

to the deterministic process given by = cp (r) p (r, i) dr where p (. , . )
is the solution of (0 . 3) with p ( . , 0) = p ( . ).
The above theorem can be seen as a law of large numbers for this

interacting system and it is now natural to look at the corresponding
central limit theorem, i. e., to investigate the fluctuations of Xi ( . ) around
its average: an interesting question also if the initial measure were some

tlp P > 0 (i. e., in equilibrium). In [3] the equilibrium case is solved for a
larger class of zero range models. There have been extensions to other
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241NON EQUILIBRIUM FLUCTUATIONS

systems like some exclusion with speed change processes [7], and interacting
brownian particles [25].
The main purpose of this paper is to study such fluctuation processes

also in non equilibrium situations. Before we state this precisely it may be
convenient, for sake of completeness, to recall the equilibrium case, which
is a particular case of the results in [3].

THEOREM 0 . 2 [3]. - Let (Y~, i >_ o) be the ~’ process defined
by

for cp (R) and i >_ 0. Let 9* be its law on D ([0, + oo), ~’ ((I~)), when ~,P
is the law of ~ (., 0).

Then, as Etends to zero, converges weakly to a probability P supported
by C ([0, + oo), ~’ (IR)) which is the law of a stationary generalized Ornstein-
Uhlenbeck process, namely the P’ (R)-valued Gaussian process with zero
averages and covariances

where D ( p) is given in equation (0 . 4) and

D ( p) is the bulk diffusion coefficient given by (0 . 4), and YT ( . ) denotes the
canonical process on C ([o, + oo), ~’ (fl~)).

Remark. - This result relates the covariance of the density fluctuation
field in equilibrium to the bulk diffusion coefficient D(p), a parameter
determined by the non equilibrium evolution [cf (o . 3)]. In the mathemati-
cal physics literature such relationship is called "Fluctuation Dissipation
Theorem" since it connects the non equilibrium dissipative features of the
system to its equilibrium fluctuations. A heuristic argument to understand
such connections is the following (based on the so called "linearized

Vol. 24, n° 2-1988.
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theory"): We have in (0. 9)

Pp denoting the probability on some suitable probability space (Q, ~, P )
where we have constructed the zero range process such that ç (., 0) is
distributed as J.1p’ Thus the covariance can be tought as the expectation of
the density field x~ if the "initial measure" of the zero range process
were the signed measure

Now, if we consider the probability measure

where CÀ. is a suitable normalizing constant, and ~, > o, and we expand it
around ~, = o, we see that the first order term is given by (o .12). On the
other side, the time zero density profile determined by such probability
measure is

Then we would expect the r. h. s. of (o. Il) to be of the form

p (r, 1:) dr with p (r, i) being the solution of (0 . 3), with initial condi-

tion given by (0.14). If ôp(r, i) denotes the first order term in the

À-expansion of such profile p (r, t), it should satisfy the linearized diffusion
equation
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and so

which will then lead to (0 . 9) after inserting this into (o 14) and (o I l).
We may now state the main theorem of this paper.

THEOREM 0. 3. - Let ~,E be as in Theorem 0.1, and let us consider the
zero range process § (., t), with § (., 0) distributed as ~,E, and let Y~ ( . ) be
its fluctuation density field, given by

for cp i >_ 0, and where  . ~ denotes the expected value. Let 
denote the law of (Y?, i ? U) on D ([0, + oo), ~’ ( ~)).

Then converges weakly to a probability measure P supported by
C ([0, + oo), ~’ ( f~)), and uniquely determined by the condition that under ~’
the canonical process Y~ ( cp) satisfies (i) and (ii) below.

(i) For any 03A6 E Cô ( (F8) and 03C6 ~ F ( (F8)

is a F-martingale with respect to the canonical filtration = 03C3-field gene-
rated by (Y~. ( cp) : 0  i’ _ i, cp ( ~)), for i >_ 0, A? and BT being defined in
equations (0. 19) and (0. 20) below.

(ii) Under F, Yo ( . ) is Gaussian with F (Yo (cp)) = 0, and

for each ç, ~r 
A~, B~, .~’ ( p) are defined as follows:

Vol. 24, n° 2-1988.
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and X ( p) is given in (0 . 10).
Remark. - From (o .17) and (o .18) we can compute the covariances

like in the equilibrium case, the different times covariance satisfies the
linearized hydrodynamical equation. However, in contrast to what happens
in equilibrium, the limiting fluctuation field distribution has a non trivial
equal time covariance C~, t’ Its evolution is described in Theorem 0.3, and
more in general by the Holley and Stroock’s theory [11], on which this
theorem is based.

As just mentioned, the proof of Theorems 0.2 and 0.3 makes strong
use of the Holley and Stroock’s theory of generalized Ornstein-Uhlenbeck
processes ([11], [12], [13]). We also refer to [14], [17], [18], [19] for general
criteria on the convergence of F’ (R)-valued processes. In some models,
when the diffusion coefficient is constant, the theory of Holley and Stroock
may be directly applied to prove convergence of the fluctuation density
fields to generalized Ornstein-Uhlenbeck processes (cf., for instance, [11],
[12], [21], and section 6 of [6]). But this is not the case for density dependent
diffusion coefficients, as considered here. The way to overcome this point
was first understood by Hermann Rost [23]. It is based on the very natural
idea that the fluctuation fields of non-conserved quantities change on a
much faster time scale than the "conserved" ones; since here density is
the only conserved quantity it is reasonable to expect that on a time

integral only "the component" (projection) along the density fluctuation
field survives. A first application is given in [3], where such property, the
"Gibbs-Boltzmann principle", is proven to hold for a class of zero range
models in equilibrium. In [7] and [25] the results are extended to some
exclusion with speed change systems and interacting brownian particles,
respectively.
The validity of such "principle" in non equilibrium may even be ques-

tionable. Our next theorem is an indication in the positive, since we show
it for the non equilibrium symmetric simple exclusion and the zero range
process under study here. It is important to stress that this last system
has a density dependent diffusion coefficient, and the verification of the
Gibbs-Boltzmann principle allows us to apply the theory of Holley and
Stroock, in order to prove Theorem 0. 3 ( 1).

( 1) More recently the Gibbs Boltzmann principle has been proven in a model where the
macroscopic equation is non linear ([27], [28]).
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THEOREM 0.4 (Gibbs-Boltzmann principle). - Let be as in Theorem
0 . 1 and let (Q, ~, be a probability space where . we have constructed the
zero range process (~ (., t), t >_ 0) with § (., 0) distributed as ~,E. Let f be a
cylindrical function on I~1~, satisfying moreover the technical condition of
being in ~, cf. Definition 1. 3. For c~ we set:

Then, for every 0  i’  i:

with

and

where p (r, i) is the solution of equation (0 . 3), with p (r, 0) = p (r).

THEOREM 0.4’ (Gibbs-Boltzmann principle). - Let vE be a family of
probability measures 1 }~ verifying Assumptions 1. 2 (A) of Section 1,
and let (SZ, ~, be a probability space where we have constructed

~ r~ (x, t), t >_ 0, x E 7~ ~, a symmetric exclusion process with r~ ( . , 0) distributed
as vE. Let ~‘ be a cylindrical function and let us define, for

Vol. 24, n° 2-1988.
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Then, for every 0 E i’ ~ i:

where

and

with p (r, ï) being the solution of equation (0 . 5 b) for p (., 0) = p ( . ), and vp
the product of Bernoulli measures with (0)) = p.

1. PRELIMINARIES

As mentioned in the introduction we shall make strong use of the

isomorphism between our zero range model (Z.R.P.) and the one dimen-
sional symmetric simple exclusion process, with nearest neighbors jumps
(S.E.P.) with a tagged particle. For this let us recall a few definitions ([9],
[10]), and set some notations.

1.1. Notations and definitions

We refer to [16] for the definition of more general exclusion processes
including our S.E.P. The realization of the S.E.P. which we now present
will be particularly useful for us, and may also be taken as its definition.
(x,y, ... will dénote a site referring to S.E.P. and u, v, ... will denote

the label of a particle in S. E. P.)
Stirring process. At time t = 0 each site xeZ is occupied by a stirring

particle which will keep the label x. The stirring process is defined as in
[9], and Y (x, t) denotes the position at time t of the "particle x" (Y (x, 0) = x
by definition).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Labelled S. E. P. For we are given an initial configuration of particles
in Z with at most one particle at each site. For each path of the stirring
process we define the following evolution: each particle moves like the
stirring particle which is at the same site unless this would determine an
exchange of positions between particles and in this case it does not move.
We will only consider initial configurations having a particle at x=0,
called the zero-particle. For u>O (u  o) the u-particle will be the u-th
particle at the right (left) of the origin. From the definition it is immediate
that the evolution preserves the order, i. e., u  v implies q (u, t)  q (v, t) for
all t, with q (u, t) denoting the position of the u-particle at time t, for u E Z.
For this evolution we let 11 (x, t) = 1 (0) if the site x is occupied (empty) at
time t, and write 11 (x) for 11 (x, 0). The process {~ (x, t)}, constructed on
a suitable probability space (~2, ~, P) is then called S.E.P.

Notation. When v is a probability measure on the space of initial

configurations we let (S~, ~, P v) be a suitable probability space where we
have constructed the random variables { ~ (x, t), q (x, t), Y (x, t); x, u, t ~ with
il (., 0) distributed as v. When v carries a superscript v~, E E (0, 1] we shall
write simply P~ if no confusion is possible.

Zero range process (Z.R.P.). The zero range process whose pre-generator
is given by (0. 1 a), (0. 1 b) can be realized within the labelled S.E.P. just
defined by setting

for u e Z, tO, as one can easily check. We will and
let etc. denote the law of ~ ~ (u), u on 

The correspondence given by ( 1. 1) transforms the equilibrium measure
IIp ( a > o) for the Z.R.P. into the equilibrium measure vp for the S.E.P.
conditioned to [~ (0) = 1], where

is the product measure with Vp(ii (x) =1 ) =p. )

1.2. Assumptions

In all theorems stated in the introduction we have the following
assumptions on the initial measures ~ (Z.R.P.) or yE(S.E.P.).

Vol. 24, n° 2-1988.
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A. 03BD~ will be the conditional probability vE ( . |~ (0) = 1) where 03BD~ is a

probability measure on { o, 1 ~~ which satisfy:
(i) (Finite range). There exists R > 0 so that for n >_ 2 and xi, ... , x"

with > R for i i= j then 11 (xi), ..., 11 are conditionally indepen-
dent given (~ (y) : ~ ~ {.x:i, ..., xj).

(ii) (Uniformly bounded interactions.) There exist p’, p" such that for
all x and r~ (y), 

(iii) (Uniform decay of correlations.) There exist bl, b2 > 0 so that for
all k1, k2 >_ 1 and xk~  ...  xi y1  ...  y k2

(iv) (Smooth initial profile.) There exist p ~ C~b such that

and

(v) There exist Al, A2 positive constants so that

B. For the initial measures on the Z. R. P. we assume they can be
obtained via ( 1.1) from a family (vE) verifying the assumptions in (A).

1.3. Définition

We denote by CC the class of cylindrical functions on for which there

exist a cylindrical function f on {0,1 }z with basis contained in {0, 1, ... }
such that if ç (. ) is related to 11 (. ) by ( 1.1 ) then

This is the class for which we shall prove the Gibbs-Boltzmann principle.
The main example needed for Theorem 0. 3 is f (~) =1 (~ (0) > 0).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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2. PROOF OF THE RESULTS

In this section we shall prove Theorems 0.3 and 0.4. For Theorem 0.3

we shall also need the theory of Holley and Stroock for generalized
Ornstein-Uhlenbeck processes via martingale problems [11]. In our case
we use that (i) and (ii) in Theorem 0.3 détermine exactly one probability
measure on C ([0, +00), ~’ (~)), which is an easy generalization of Theo-
rem 1.4 of [11].

2.1. Remark : It may be convenient to notice that in this characterization

of the measure P we may change (i) in Theorem 0.3 to the following:
(i) For every 

and

are ~-martingales with respect ot the canonical filtration (~ T), where A~
and B, are defined by (0.19) and (0. 20), respectively.
The above remark follows easily from stochastic calculus, after noticing

that ( 2 .1 ) implies that

is a ~-martingale, and from this one also gets (o.17). (Cf [26].)

2. 2. COROLLARY. - Theorem 0. 3 follows if the following conditions are
verified:

(a) The family (~£ : 0  E  1) is tight on D ([o, + oo), ~’ ( U~)) and any
weak limit point is supported by C ([0, + oo), ~’ ( (~)).

(b) Any weak limit point of ~ solves the martingale problem described
by (i) and (ii) in Theorem 0. 3.

Condition (b) of the above corollary will be a consequence of the Gibbs-
Boltzmann principle. Thus we postpone its verification until Theorem 0. 4
is proven. Now we concentrate on the thightness condition, for which we

Vol. 24, n° 2-1988.
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shall use the following criterium from [19], an improvement to those stated
in [11], [12], [17], [18].

2. 3. THEOREM (cf. [19]). - Let (S~, ~) be a measurable space with some
right continuous filtration (usual conditions) (~T)~>o and probability mea-
sures P~, 0~~1. Let (Y~03C4, 03C4~0) be an (A~03C4-adapted process with paths in
D ( [o, + ~), P’ (R)) and let us suppose there exists, for each cp ((R), A~03C4-
predictable processes 03B3~1 ( . , cp), 03B3~2 ( . , cp) so that

and

are ( ~E, ~~)-martingales. Assume further that:
( c . 1 ) For every io >__ 0 and cp 

(c . 2) For every there exists b (i, cp, ~) with lim à (i, cp, E) = 0,

and

Then, if ~ is the law induced on D ([0, + oo), ~’ ( f~)) by (Y~) under ~E,
we can say that the family 0  E _ 1) is tight and that any weak limit
point is supported by C ([0, + ce), ~’ ( I~)).

2.4. Proof of tightness in Theorem 0. 3: We must find yi, y2 verifying
(2 . 2) and also check condition (c.l), since (c.2) follows immediately
from the definition. With the notation of Section 1 we know that if

F : I~l ~ x [o, + oo ) --~ f~ is a bounded function such that F ( ~, . ) is a CI
function and F (., t) is in the domain of the closure of L [def. by eq. (o .1)],
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then

is a martingale on the basic space (Q, d, PJ of Section 1 for the filtration
si§ = 03C3-field generated by (03BE (., t) : 0 _ t ~~-2 i). We would like to apply
this to

which is not bounded in ç. A priori we would then have only local

martingales in (2. 5). But then the argument given below can be applied if
we stop the process at suitable stopping times T~ -> + oo a. s., and as seen
below, this allows to conclude that

so that (2.5) will hold for F(.) given by (2.6). (Cf. [26].)
Now, using equation (0. 1) we get:

where

Hence 11 (T, (p) = Y~ (g; DE cp), with g (~) = 1 (~ (o) > o), according to the defi-
nition introduced in the statement of Theorem 0. 4. Similarly we get

and from this we see that equation (2. 4) for i = 2 holds, since

for a suitable constant c e (0, +00).

Vol. 24, n° 2-1988.
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We now want to check equation (2 . 4) for i =1. From the above expres-
sion for yi ( . , . ) it is easy to see that it suffices to get a bound as (2. 3)
for with and g ( ~) =1 ( ~ (o) > o) . Following the general
strategy in the article we shall realize such fields in the S.E.P., and get
the suitable bound after reduction to simpler expressions throug a Taylor
expansion. For this let us introduce the new field

where t=E-2 t (here and in the rest of this proof), and the E, t)
are numbers which will be specified later. In any case

~£ (Y~ (g; cp)2)  ~E (YT (g, cp)2) and we want to prove (2 . 3) for ~i (g; cp). In
the S.E.P. cp) becomes

where u (x, t) is defined as

for tO.

The function u (., t) is non decreasing Setting

we have

We easily see that extends to a smooth function Ô( . , E, t) on R,
which is strictly increasing (by Assumption 1. 2) and for which there exist
0mM +00 so that

f or and Thus we may define the inverse function
R ( . , E, t) so that

and we have a bound as (2 . 14) for (a/au) R ( . , E, t), when and

i _ io. We then set

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and notice that P(u(x, E, t), E, t) =1-p (E x, i) .
From the Taylor-Lagrange expansion to first order we can write

where

where is some (random) point in the interval with endpoints
u (x, t) and u (x, E, t), and

In the sequel we shall estimate each term in ( 2 .17); we start with I:

But from Lemma A. 1 we know that

is uniformly bounded, for and Thus we get

As easily seen in Lemma A. 2 there exist a, b > 0 so that [see also (2 . 14)]

for E > 0. Using ( 2 . 20) and (2.21) we get the required estimate
for ~£ {I2).

Vol. 24, n° 2-1988.
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where

We shall now prove that there exists a constant ci such that

and this will give the desired estimate for f~E (II2). Since P s is comple-
tely analogous we will have proven (2. 4).
To prove equation ( 2 . 23) let .~’E =1 ( ~ u (x, t) - ïc (x, E, t) ~ ~ E ~ °‘), for some

oc E (3/4,1). Then

where

Since one can find a constant c  + oo so that

for ~6(0,1] ] and as proven in Lemma A . 2, j ust as before we see
that the first term in (2. 24) gives rise to something of the required form.
For the second term we write

Now the important estimates come from [10] and allows us to say that
(as in Lemma A. 2) for each n >_ 1 there exists + oo so that ( 2)

( 2) Joseph Fritz has shown us how to dérive an exponential estimate f or u - û. He can
actually prove, using Prop. 1. 7, ch. 8, of [16], that for any a > t/2 there exist P, a, and b

positive so that 
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with 0  S  1 /4. In particular

and we can choose à so 1.

We now compute f~E (GÉ (x)) by decomposing the integral according to
the sign of and using once more the

Cauchy Schwartz inequality.
This leads to

and from (2. 26) :

which gives the desired dependence on x; by taking n large enough in
(2.27) we get positive powers of E and (2.23) follows. [In fact, we have
seen that the contribution to (2. 23) coming from G£ ( 1- vanishes as
Etends to zero.]
To complete the proof to tightness it remains to check equation (2. 3).

For this we write

where t=E-2-r and

It is enough to check equation (2 . 3) for In the S.E.P. we can
write as

Vol. 24, n° 2-1988.



256 P. A. FERRARI, E. PRESUTTI ET M. E. VARES

where Nt (x) denotes the number of empty sites in between x and the next
(to the right) occupied site, at time t. From this we easily see that

with

for some suitable (random) û (x, E, t) in the interval with endpoints u (x, t)
and û (x, E, t), and where

Each of these terms is treated analogously to the corresponding ones in
Y~ (g; cp). This concludes the proof of tightness.

k

2 . 5. Proof of Theorem 0 . 4’: It is enough to consider 
i=I

where x I  ... are integers. Here x, i) = kp (x, and we shall

write £ for (., t)). Also we will simply denote the P~-expectations by
.). Writting

and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



257NON EQUILIBRIUM FLUCTUATIONS

The term corresponding to A = 0 cancels when taking S (x),~ -  S (x)~ ).
Also, it is easily se en that the terms corresponding to ~ A ) = 1 in Y~2 ~ cp)
"cancel" with YÉ2 r) in equation (o . 26). Thus, it remains to prove
that for k >_ 2, and for 0  i’  i  +00

where

for xi, ... , xk distinct integers, k >_ 2, and s) = ~E (r~ (x + x~, s)). But
the expectation in (2. 32) can be written as

with

For R > 0 we decompose AE ( . ) as

where:

For C~ we use local equilibrium (cf. [9]) to get:

k

where [is the generator of S.E.P., ~(~)= J~ and
=!
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~ ~’ (E, R, . ) ~E is uniformly bounded on each [0, T].
On the other side a simple computation gives, for all p:

where

From these two facts we get

Now, let us estimate DR ( . ). Using the initial construction of stirring
particles on some (Q, ~, P), we denote by t), the path of
that stirring particle such that Ys (x, s) = x. The duality gives:

where

with

We decompose the integral in (2. 39) according to the set
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We have

Now, it is not difficult to see that p (i, s + s’) - P~ (r~ (00FFi, s)) is of the order e
(for T fixed) and we shall get (cf. [10]):

where for each T  + oo, ~ >_ 2

We still need to consider the contribution of B (y) to (2. 39). But for R
sufficiently large

where Tx = hitting time of the origin for a symmetric simple random walk
which starts at x. Thus

where lim0394 (x) = 0.

Taking, f or instance, R = T, (2.37)-(2.41) prove ( 2 . 3 2), and so the
theorem.

2 . 6. Proof of Theorem 0 . 4: Let f ~ B (cf Definition 1. 3) and write
f(u, t) = S ( u) f ( ~ ( . , t)). From Définition 1. 3 there exists l bounded cylin-
drical function on the S. E. P. so that f (u, t) = S (q (u, t) + 1 ),~, where

.~r =.~~ ~ ( ~ ~ t) ) ~

Vol. 24, n° 2-1988.



260 P. A. FERRARI, E. PRESUTTI ET M. E. VARES

Thus, for t = ~-2 03C4 we may write:

with

As before we let Y~03C4(f; cp) be defined by changing h to h in (2 . 42), where

Notice that, from the relations (0. 5):

We set

and let (â (r) = â (f; r, i) o (r). Thus, letting ~~ ( . ) be as in (2. 28 a) we
can write

As before, we expand such fields around M(x, E, t) :
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where (writing u and u for u (x, t) and û (x, E, t), respectively):

where D (u) = D (u, E, t) was defined in (2. 30),

and E, E’ are the second order terms in the Taylor-Lagrange expansions.
First notice that H ( ~ = â ( f ; s x, i) D (û~ and so II = II’. We now prove

2.7. LEMMA. - With the same notations as in (2.47), (2.48) we have
that for each t

Proof. Let us first look at ~E ( I E ~). Notice that E can be written as a
sum of three similar expressions, of the form

where g ( . ) is bounded, is a suitable point in the interval with
extremes u (x, t) and û (x, E, t), is a linear combination of
terms like D (u), (a c~)~ (u) or their first and second derivatives. Thus we
want to see that
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The procedure is very similar to that used when estimating ( 2 . 22), and
it is therefore omitted. The same holds for E’.
We now prove that P~ III 1) -~ 0. Let ~E be the partition of R in intervals

k ~ Z where We denote such intervals by
~ and let ~ (x) be that interval which contains x (of course we omit
writing explicitely the E-dependence); y  ~ (x) (y > ~ (x)) will mean that
y is to the left (right) of ~ (x), for For x > ©, we set

and make the analogous définitions for x  0. Also, we get

The différence between b (x, 0) + c~ (x, t) and u (x, t) is due to particles in
~ (x); it is therefore not surprising that:

Similar arguments are given in the proof of Lemma A. 2 to which we
refer for more details.

So, if we call III the value of III when u (x, t) - u (x, c, t) is substituted
by a (x, E, t), we can find constants c, c’  + oo so that, with probability
one:

On the other side:

From (2.26) and (2.51) we have
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Moreover, from [10] and Theorem 7.1 of [6] we know:

f or suitable constants CI’ c~ and where

B being the basis of the cylindrical function From (2.52)-(2.55) we
easily conclude that tP, (~ III 1) - 0.
The term III’ can be treated in the same way, and the details are omitted.

The lemma is therefore proven.
So far we have proven the following : if we take the limit in equation

(0.22) with ~; ( f; (p) and cp)T) replacing YT ( f; cp) and Y~ ((a cp)T) then
only 1 and I’ can survive. Now, l has basis on {0,1, ... } and vp is a
product measure, so that:

From (2.45), and the expressions for 1 and I’ we are very close to the

condition for applying (0.26); the only problem is that the test function,
i e., (â is time dependent. Since the time dependence is smooth and the
variations on on the integral in (0. 26) (for each fixed T) are of
order E2, they can be neglected.
We have therefore proven for I - I’ even a L2-estimate.
It remains to prove that ~T ( f; cp) - Y~ ( f; cp) and cp)T) - cp)T)

tend to zero in L1-norm, as Etends to zero.
The first difference is non random, and since ~E (Y~ ( f, (p)) =0, it remains

to see that ~E (Y~ ( f; cp)) tends to zero, as E - 0. From Lemma 2 . 7 it is

enough to see that lim ~E ( I + II) = o. For this we write 11 (x, t) in ( 2 . 40 b)

as (r~ (x, t) -p (E x, i)) +p (E x, i). Obviously, the only contribution comes
from the terms with and for these we may use the same

argument as in Lemma 2. 7 to see that their sum will tend to zero in L1-
norm.

For cp)T) - cp)z) we can write it as a deterministic part, which
is treated as YT ( f ; cp) - YT ( f ; (p), and a random part, which is
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After translating this into the S.E.P. we expand, as before, around ii (x, E, t)
and write it as I + II + III + E where I,..., E are completely analogous to
l’, ..., E’ defined in (2 . 48) but with (â ( f; . , t) - a ( f; . , T)) p (. ) instead of
(p(.). From the smooth dependence on r of a ( f; r, i) and the definition
of a(f;.,03C4) it is then easy to see that each of these tends to zero in L1-
norm. Since the 03C4-dependence is smooth (0.22) follows.

2.8. Conclusion of the proof of Theorem 0.3: We must check that
any weak limit point 9 of the family - 0) verifies (a) and (b) of
Remark 2.1.

Condition (a) is a direct consequence of Assumptions 1. 2. Using (0.22)
with f (~) = 1 (~ (0) > 0) it is easy to derive the first martingale relation in
(b), after recalling ( 2 . 2 a) and ( 2 . 7) . The second relation in ( b) follows
easily from (2. 26), (2. 9) and Theorem 0.1.

5. APPENDIX

LEMMA A. 1: Let vE satisfy Assumption 1. 2 A and let 9 be the product
probability measure with (x)) =p (s x). Let ~~ and l~E denote
the laws of S.E.P. starting at time 0 with vE and vE, respectively. Then for
each i > 0 fixed and t = E ~ 2 i

Proof Let vE be as in Assumption 1.2 (A), and let P~ be the law of
S.E.P. with initial measure vE. From Theorem 5.1 of [5] it is enough to
prove (a . 1) with ~F instead of P.. But this follows once we prove that

where

and
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Also, from duality:

Taking ô > 0 small, splitting this sum according to: ( a) I z~ I > E - s, i =1, 2;
I z2 I > 2 E-s or z2 (  E-s, I zl I > 2 £-s; (c) otherwise, and

using the exponential decay of correlations for vE we get:

We must estimate the second and third terms on the r. h. s. of (a. 6). For
the second term recall the coupling Q introduced in Section 4 of [5]
between (Y (xi, t), i = 1, 2) and (Y° (xi, t), i =1, 2) independent random
walks, so that for

for some positive constants dl, d2. From this we easily get that

and thus, taking ~i’ > 1 /2 and b > 0 small enough so that S + ~i’  1 we get
the desired estimate for the second term in (a. 6). Let us now look at the
third term on the r. h. s. of (a. 6). From Assumption 1. 2 ( a) this can be
bounded above by

Now these two terms are treated similarly. We give the argument for the
first (the other is analogous, but simpler).
Dropping the condition z2 ( > 2 E-s does not make difference for (a. 2),

since the error in doing this is of the order E -1 E2 - s - ~~ = E 1- s - ~y Now,
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by Assumption 1. 2 [condition (v)], and using the coupling Q we have

where Since p has a bounded derivative we easily get
Z

that the expression in (a . 8) is bounded by

and the lemma follows.

LEMMA A. 2. - Equations (2. 2 ~ ), (2. 25) and (2. 26) hold.

Proof. To simplif y let us just consider x > o. Then

Taking averages in equations (a. 9) and (a. 10) we easily prove (2.21).
For equation (2 . 25) we take squares in equations (a . 9) and (a. 10). A
typical term will be ((. ) = P, (. ))

where we used Liggett’s inequality for 1 (Y (~, t)  x) and 1 (Y (y, t)  x)
cf [2] and [19]. By Assumption 1.2, the above sum is bounded by some
suitable constant c. The other terms are treated similarly and equation
(2. 25) is therefore proven. We now prove equation (2. 26). The term

can be interpreted as the fluctuation on the number of particles which at
time tare at the right of x if the initial distribution has particles only at
the left of x and thèse are distributed according to (restricted to
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f~ n ( - oo, x]). The estimate follows from Theorem in [10], ef. also the
footnote before equation (2. 26).
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