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ABSTRACT. - In [3] we proved a strong law of large numbers for the
resealed asymmetric nearest neighbor simple exclusion process. The

method is based on the properties of the limiting first order nonlinear
partial differential equation.

In this article we show that the same method applies to the asymmetric
zero-range process, the limiting equation being of the same type. An
improvement of [3] enables us to remove the nearest neighbor assumption.
We obtain the local equilibrium as an easy consequence.

Key words : Zero-range process, hydrodynamical limit, first order quasilinear P.D.E.,
entropy condition.

RESUME. - Dans [3] nous avons démontré une loi des grands nombres
pour le processus d’exclusion simple asymétrique, dans le cas où les

particules ne sautent qu’aux sites voisins: La méthode est basée sur les
propriétés de 1’equation aux dérivées partielles limite qui est non linéaire
du premier ordre.
Dans cet article nous montrons que la meme méthode s’applique au

processus de zero-range asymétrique, l’équation limite étant du même type.
Une amelioration de [3] nous permet de traiter le cas de transitions

quelconques.
Nous en déduisons facilement l’équilibre local.

Classification A.M.S. : Primary 6 0 F; Secondary 3 5 F.
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190 A. BENASSI AND J.-P. FOUQUE

INTRODUCTION

In [3] we proved a strong law of large numbers and we deduced the
local equilibrium for the one-dimensional asymmetric simple exclusion
process by using the monotonicity and the existence of a family of equili-
brium measures for this process.

In this article we show that the same method applies to a larger class
of processes having the same properties.

In particular we are interested in the asymmetric one-dimensional zero-
range process which preserves the stochastic order (monotonicity) and has
a family of equilibrium measures indexed by a continuous parameter
ranging from 0 to +00. We will suppose that the transition probabilities
are translation invariant and have a first moment different from zero.

We consider this process starting from a product measure corre-

sponding to two half-spaces in equilibrium at different levels a and b, and
we study its asymptotic behavior.

After a suitable space and time rescaling, the distribution of particles at
time t defines a random measure on the real line, each particle contributing
an equal mass. We show that this measure converges weakly almost surely
to a deterministic measure which has a density called the density profile
(section II).

In section III we show that this density is a weak solution of a nonlinear
hyperbolic P.D.E.; without the nearest neighbor assumption, as in [3], we
cannot longer apply the interface argument but a coupling procedure and
the particular initial distribution enable us to obtain the result. The

identification of the density profile as the unique weak solution satisfying
the entropy condition is again a consequence of the monotonicity of the
process.

In section IV we deduce from the preceding result the local equilibrium
at each point of continuity of the density profile.

This problem is solved by E. Andjel and C. Kipnis in [2] when the
particles move in only one direction to the nearest neighbor, the exponen-
tial time between two jumps at a given site not depending on the number
of particles at that site.
The symmetric case is treated in [5], the limiting equation being para-

bolic, the method is completely different. 
°
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191THE ASYMMETRIC ZERO-RANGE PROCESS

I. THE ZERO-RANGE PROCESS

1.1. Generator, invariant measures and initial distribution

Consider on the space E = ~I~ with elements (also called configurations)
~r~ (k), k E Z} the markovian evolution which can be described intui-

tively in the following way: at each site k of Z we have a number of
particles X (k) and after an exponential time with parameter depending
on X (k), one of the particles (if any) will jump to the site 1 with probability
p (k, 0.
We will suppose the transition probabilities translation invariant and

set: with p (o) = o. We also suppose that

(k) is finite and that L kp (k), denoted by P, is not zero.
Jk6Z keil

Let the jump rates be described by a non decreasing function {g (n), n 
such that g (o) = o, > 0 and sup (g (n + 1) -g (n)) is finite.

n

The existence and uniqueness of a Markov process corresponding to
this description is given in [1]. If g (n) is not bounded, in order to avoid
infinitely many particles jumping to a given site, it is necessary to restrict
the set of allowed configurations to a subset Eo of E (cf [1]).

In any case the generator L of this Markov process is defined on

cylindrical functions on E by:

where

Denote by o the semigroup generated by L and by 2 the set of
real functions on E [Eo if g (n) is not bounded] on which this semigroup
operates.

Let E Z}, t > 0~ be the right continuous version with left
limits of the Markov process with semigroup (Tt) [X t (k) for every t ~ 0

Vol. 24, n° 2-1988.



192 A. BENASSI AND J.-P. FOUQUE

The extremal invariant and translation invariant measures (see [I]) are
the product measures v (y) given by:

where g (n)i = g ( 1) ... g (n), g (o) i =1 and y E [o, supg(n)). If g (n) is not
n

bounded we have v(y) (Eo) = 1 (cf [1]).

We have y = (0)) dv (y) and if it is not difficult to

+00 
n

see that is a strictly increasing C*-function of y such
n = 1 g(n)!

that p (0) = 0 and lim p (y) = + oo.
Y -~’ sup 9 (n)

n

The well-defined inverse function y=G(p), continuous and strictly
increasing from 0 to sup g (n), will be important in the sequel: if y = G ( p)

n

we also write v (y) = vp.
Our initial distribution will be a product measure on E such that its

restriction > 0~ is vb and its restriction to Z_ _ {k _ 0~ is va
for given a and b such that 0 ~ b ~ a; we will denote this initial distribution
by 03BDa, b.
We may see as the juxtaposition of two half-spaces in equilibrium

and then observe its evolution according to the zero-range process.
Note that p ( 1) = I or p ( -1 ) == 1 (i. e. particles move in only one direction

to the nearest neighbor), g (n) =1 for every n >_ 1 is the case studied in [2]

where G(p)=2014~2014.
l+p

Note also that in the case g (n) = n for every n, particles move indepen-
dently and G ( p) = p.

1. 2. Rescaling and heuristic

For every E > 0, x in R and t >_ 0 we define:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



193THE ASYMMETRIC ZERO-RANGE PROCESS

We want to prove the almost sure weak convergence of the random
measure X i (x) dx, as E goes to 0, to a deterministic measure u (x, t) dx.

Observe that for t=0, the strong law of large numbers holds: Xo (x) dx
converges weakly almost surely to the deterministic measure:

uo (x) dx = (a I~ _ ~, o) + b + ~~) (x) dx; uo is the initial density profile.
In order to guess the limit for t > 0, we need an equation 

also denoted by u: (x).
For k ~ Z we compute using the formula:

On the set of functions u : R we define the following functionals:
D - £ ~ u (x) _ (£ l) 1 L~ Cx) - ~ (x - ~)l.
With this notation and (3), (4) becomes:

Intuitively, when the process evolves under the invariant measure

vP=v(y), we have and 
From this observation, which will be the basic idea in section III, we must
have: if X t (x) dx converges, as E goes to 0, weakly almost surely to the
deterministic measure u (x, t) dx, then ur converges to u (x, t), D -E conver-

ges to - converges to G (u (x, t)).
ax

Therefore u should be a solution to the following first order P.D.E.:

where [i = ~ lp(l) ~ 0.

In general we do not have unicity of the weak solution for this type of
equation.

In the appendix of [3] we summarized its properties, recalled the notion
of entropy condition and the result of existence and uniqueness of the
weak solution satisfying the entropy condition.

Vol. 24, n° 2-1988.
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In this paper we will make the following hypothesis:

(H) G IS CONCAVE.

Then from the appendix of [3] we know that the entropy condition is
equivalent to:

and

II. CONVERGENCE

In [1] it is proved that the zero-range evolution preserves the stochastic
order (monotonicity). One also can find in [I] the generator of the coupled
process which allows us to construct simultaneously on the same space
versions of the zero-range process starting from an arbitrary configuration
at an arbitrary time; these properties are a consequence of the hypothesis

 +00 and enable us to apply the method described
n

in [3], chapter II, based on a subadditive ergodic theorem due to Liggett
( [5], Chapt. I, Thm. 2 . 6) .
The proof of the follwoing convergence result can be found in [3],

Chapt. II.

PROPOSITION 1. - There exists a function u (x, t), decreasing and right
continuous in the x-variable such that: b _ u (x, t) _ a and X (x) dx conver-
ges weakly almost surely to u (x, t) dx.

In order to identify u it will be enough to study
u: (x) = E {X: (x)~ _ ~ ([x/E])~ as E goes to 0, since by dominated conver-
gence

and therefore u (z, t) = lim E {X~ (z)~ for almost every z in (~.

Annales de Henri Poincare - Probabilites et Statistiques
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III. IDENTIFICATION OF THE DENSITY PROFILE

One can rewrite the equation (5) satisfied by ut in the weak form: for
every smooth function cp : R x (~ + -~ I~, with compact support, we have:

where uo = a I~ _ ~, E~ + b I~E, + ~~.
The main difficulty to take a limit in (7) is to prove 

converges to G (u (x, t)), where G is the function defined in section I and
u (x, t) the density profile obtained in section II.

In order to do that we will compare our process (Xt) with the same
zero-range process (B~) starting from the invariant measure v~ defined
in (2).

Initially we impose Xo (k) >_ for k  0 and Xo (k)  for
k > 0; the initial distribution allows us to do that and we let the processes
evolve according to the coupling procedure.
Under the nearest neighbor assumption the interface argument given in

[3] would have given the result directly; without this assumption the proof
is more complicated.
We denote by the initial coupled distribution previously described

and by r the shift on Z; being the semigroup of the coupled process
associated with the generator L, we have the following result:

LEMMA 1. - For every (x, t) such that u (x, t) is continuous in the x-

variable, every cluster point of the precompact set v°~ b~ ~, E ~ 0~ is
a measure on E x E supported by ~r~ >_ ~~ U ~r~  ~}.

Proof. - Observe that the compactness is given by the monotonicity.
Let v be a weak limit along the sequence ( E") . The second marginal of v
is obviously v~ and its first marginal has a one point correlation equated
to u (x, t). By shifting the initial distribution it is not difficult to see that
TV is stochastically larger than v and has the same one point correlation;
it follows that v is translation invariant.
The next step is to show that v is invariant by (Tj. The method is very

similar to what we did in [3], Chapt. II, to prove the nonrandomness of I.
Let the system evolve up to time to and couple it with the same one where

Vol. 24, n° 2-1988.
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particles have been added in such a way that restricted to Z_ we have
our initial distribution va° b~ ~.

After to let the system evolve along the sequence The particles
added at time to will not change the law of large numbers and then the
one point correlation. This fact and the stochastic domination give again
Tto v=v.

v being translation invariant and invariant by the semigroup the
conclusion is given by [I], § 4.
The next result shows that there is a limiting interface between particles

of the X-system alone and particles of the B-system alone, in terms of
densities.

LEMMA 2. - For every real numbers x and y such that x  y, either

E E U’) - (j)~ VO goes to zero in
j= - 00 

probability as E goes to zero.

Proof. - If it is not the case we can find a sequence (E"), bl > 0, b2 > 0
and a > 0 such that:

Intuitively from time 0 to time t/En we must have a number of jumps of
particles of one type over particles of different type at least of order
8i since at time 0 particles of different types are well ordered. This
will not be possible since by Lemma 1, locally, particles alone are of the
same type.
The particular shape of the initial distribution of the X-particles alone

and B-particles alone shows that the number of jumps of size greater than
N from time 0 to time t/En involving X-particles alone over B-particles
alone (or vice versa) is at most of order ( L p (I)) (t/E")2. This enables

p >N

us to suppose that p (I) =0 for every 1 such that III ( > N.
Let W (t, N) be the number of pairs (Bt(k), with Ij-k ( _ N.

Lemma 1 shows that W (t/En, N) converges to 0 in probability. Then the
number of jumps of size less than N from time 0 to time t/En involving X-
particles alone over B-particles alone (or vice versa) is of order less than
( t/En) 2 which is not compatible with the order b 1 ~ 2 /En .

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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COROLLARY 1. - For almost every x in R,

Proof - Let C be the set of nonnegative real numbers which are the
values taken at most one time by u (x, t) as a function of x, t being fixed;
u is decreasing in the x-variable then C is dense in For c in C we
define a(c, t) as the only real number, - 00 and +00 included, such that
u (x, t) > c for every x  a (c, t) and u (x, t)  c for every x > a (c, t).
Lemma 2 tells us that the density of Bc-particles alone on the left of oe (c, t)
is zero and that the density of X-particles alone on the right of a (c, t) is
zero. Therefore

and

for almost every x  a (c, t). Similarly

and

for almost every x > a (c, t).
For b > 0 such that c+8 is also in C we deduce that for almost every

x such that a (c+8, t)  x  oc (c, t) we have:

(8) is obtained by taking a limit as 8 goes to zero and using the density
of C in R+.

THEOREM 1. - u is a weak solution to (6).

Vol. 24, nO 2-1988.
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In order to prove that

by the continuity of G and the convergence of ut to uo, it is enough to
prove that A (s, (p) goes to zero as E goes to zero.
From (7) we deduce:

The first integral going to zero by the Corollary 2 and the second
integral going to zero since

converges to zero; lim A (E, cp) = o.
&#x26;....0

THEOREM 2. - u is the weak solution to (6) satisfying the entropy
condition.

Proof. - We first look at the case g (n) _ ~, n for every n e Fl with ~, a
strictly positive constant; in that case G is linear, G ( p) _ ~,p, (6) is linear

and u is its unique solution in the following sense: u (x, t) is almost

everywhere equal to u given by:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



199THE ASYMMETRIC ZERO-RANGE PROCESS

This a. e. equality, the monotonicity (in x) of u (x, t) and the fact that
u (x, t) = u (x/t, I) imply that the equality holds for all (x, t) such that

In the case P  0, as recalled in section I, the entropy condition reduces
to u + _ u - which is clearly satisfied since u is decreasing in x. The previous
argument shows that:

In the case P > 0, g not linear, G’ is (continuous) strictly decreasing and
we have: [i G’ (a) __ j3 G’ (u) __ [i G’ (b).
As in [3] the method of characteristics gives:

By comparison with ua, C and uC’ b obtained as a profile for the process
starting from v°~ ~ and v~~ b and monotonicity we get that u ( . , t) is continu-
ous and therefore satisfies the entropy condition. Moreover this method
gives u explicitly:

IV. LOCAL EQUILIBRIUM

We deduce from Theorem 2 the limiting behavior of the particle process
seen by a travelling observer (i. e. the weak limit of the distribution of

+ k), k E 7~~ as t goes to + oo for fixed x in R).

THEOREM 3. - For all points of continuity of u (x, 1 ), for all values of
[3 ~ 0) we have:

Vol. 24, n° 2-1988.
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Remark. - Except for one case ( P  0, x=03B2G(b)-G(a) b-1t), the limit-

ing distribution is a product measure invariant under the action of the
semigroup (TJ. We say that propagation of chaos holds and that the system
is in local equilibrium.

Proof. - As in [3], it is easy from the proof of Theorem I to get that
for any finite set ..., ~,} of increasing functions from ~ to !R+:

where the k;’s are all distinct.
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