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The martingale problem
with sticky reflection conditions,

and a system of particles
interacting at the boundary

Carl GRAHAM

C.M.A.P., Ecole Polytechnique, 91128 Palaiseau Cedex

Ann. Inst. Henri Poincaré,

Vol. 24, n° 1, 1988, p. 45-72. Probabilités et Statistiques

ABSTRACT. - We give a martingale problem with Wentzell boundary
conditions under its most natural and general form, without any assump-
tion on the generator. We show the usual boundary sojourn-time condition
is a consequence of the martingale problem as soon as the generator is
sufficiently non-degenerate, and in the general case give a weaker condition
which behaves well under limiting procedures. We develop the time-change
theory, and the relationship with some generalized stochastic differential
equations. We then give results on existence and uniqueness, some of the
former by a limiting procedure, and some examples. We eventually con-
struct a system of interacting particles, with an interaction in the sojourn
term, as a limit in law.

Key words : Martingale problems, stochastic differential equations, sticky reflecting bound-
ary conditions, local times, systems of interacting particles.

RESUME. - Nous posons un problème de martingales avec conditions
frontière de Ventcel sous sa forme la plus naturelle et générale, sans aucune
hypothèse sur le générateur. Nous montrons que la condition habituelle
de temps de sejour a la frontière découle du problème de martingales dès
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46 C. GRAHAM

que le générateur est suffisamment non degenere, et dans le cas general
donnons une condition plus faible qui se comporte bien lors de passages
a la limite. Nous développons la théorie du changement de temps, et la
relation avec des equations différentielles stochastiques généralisées. Nous
donnons alors des résultats d’existence et d’unicité, certains de ces premiers
par des passages a la limite, et des exemples. Enfin nous construisons un
système de particules en interaction, avec interaction dans le terme de

sej our, en tant que limite en loi.

Mots clés : Problemes de martingales, equations differentielles stochastiques, conditions
frontière avec reflexion collante, temps locaux, systèmes de particules en interaction.

INTRODUCTION

Our first aim was to study a system of interacting particles reflecting in
a domain 8 with sticky boundary, with an interaction in the "sojourn"
term. This was to model for example what happens in a chromatography
tube, where molecules in a gaseous state pushed by a flow of neutral gas
are absorbed and released by a liquid state deposited on the tube; what is
measured is the "mean" time taken by a molecule to get through the tube.
The idea would be to construct such a system, and to investigate its

asymptotic behaviour when the number of particles goes to infinity
(supposing a mean-field interaction) : propagation of chaos, Gaussian
fluctuations, large deviations, etc. But the construction itself is a non-

classical problem, taking place in an "angular" domain with an unusual

boundary sojourn condition. For this construction, we will use the results
in [9] plus a limiting procedure.
The "classical" martingale problem with boundary conditions, or the

"classical" sub-martingale problem ([3], [5], [8]), are ill-suited to the limiting
procedures we use for the construction and for the asymptotics. This is
because of the presence of discontinuous terms Ie and either in the

body of the (sub-)martingale problem or in the sojourn-time condition at
the boundary. Thanks to the classical hypothesis of non-degeneracy of the
generator, which enables the authors to "control" the component of the
diffusion normal to the boundary, results using limiting procedures can
nevertheless be obtained : see Proposition 20 in [3], Theorem 3.1 in [8].

For our purposes, we chose to develop an approach to the martingale
problem, in its most natural form, which avoids the use of Ie or lae either
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47MARTINGALE PROBLEMS WITH STICKY BOUNDARY

explicitly or implicitly through the sojourn-time condition at the boundary.
We show that under the classical hypothesis on the generator, the usual

sojourn-time condition is implied by the martingale problem. As we do
not assume this hypothesis, we replace the usual sojourn-time condition by
a weaker one that behaves well under limiting procedures. Our approach is
in accordance with the trajectorial approaches in [1], [2], [6], [9]. It is to

be noted that the usual sojourn-time condition is too restrictive to get
results when the generator is too degenerate.
Our paper is organized as follows:
In part I, we define our martingale problem and give different equivalent

definitions including a sub-martingale problem. We show that if the non-

degeneracy hypothesis holds, the usual sojourn condition is implied by the
martingale problem. In the general case, we weaken the sojourn condition
and use this to develop a time-change theory. Then we show the relation-
ship with stochastic differential equations and use it to get existence and

uniqueness results, some of which involving limiting procedures. We then
give examples showing the greater generality obtained, and finish by a
discussion of time-inhomogeneous problems.

In part II, we describe our system of interacting particles and give
examples showing it cannot be treated by usual means. Then we give an
original construction as a limit in law.

I. MARTINGALE PROBLEMS

WITH BOUNDARY CONDITIONS

1. The framework

Let us consider a diffusion reflecting under the most general conditions
(Wentzell’s boundary conditions) in an open subset 8 of Rd.
We suppose 8 is given (lRd) as follows:

with for x E a 8, I D ~ (x) ~ =1. For such is then the normal

vector n, pointing inwards.

Vol. 24, n° 1-1988.



48 C. GRAHAM

For and bi will denote real-valued bounded measurable
functions on ë x [R+, such that the matrix is symmetric and ~ 0;

(ë), define

the summations being from 1 to d.
Let us give a Wentzell-type boundary condition : for 1 Yi, P

real-valued bounded measurable functions such that a 
is symmetric and  0, a n = o, for (08), define

We say that a probability measure P on S2° solves the martingale
problem (L, r, p) starting at x ~ 03B8 if P (X° = x) =1 and if there exists an

increasing, adapted process K, with 

such that for f ~ C2b (9)

is a continuous (P, F0t)-martingale. Here, V f denotes the gradient of
f, ( , ) the scalar product in and  y, V ) is the derivative along y

of g sometimes denoted by a~. r denotes ( y, D > + A, > and it is easy to
oy

see that if P solves the martingale problem (L, r, p), then it will solve it
for (L, g r, g p), where g is any measurable function on such

that for a constant e, g > e > o; it suffices to change Kt to

t0g(Sx, s)-1 d Ks.
Note that we don’t ask for any non-degeneracy assumption on L, and

that ~ n, an ~ may well vanish. In [3], [5], the authors ask for

~ n, an ~ > c > 0, and in [8] a is uniformely elliptic.
Remark 1. - We could consider a martingale problem on

C (!R+, 8) x C ( I~ + , R), the canonical process being then (X, K). This is

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



49MARTINGALE PROBLEMS WITH STICKY BOUNDARY

sometimes more convenient, especially when taking limits. If we check
that K is an adapted process of X, then the law of X will solve our
martingale problem. All results to our martingale problem that don’t
use the adaptation of K to X extend to the martingale problem on
C ( f~ + , 8) x C ( ~ + , ~), and some can be used to prove this adaptation.
Remark 2. - We could as well take the coefficients to be predictable

processes.

Remark 3. - In order to simplify our notations, we take 8 to be
(x e ~d, x’ > 0~ and C (x) =1- exp ( - x ~ ) or even x~ if we don’t need the
boundedness. Then for example a n = 0 means the first row (and the first
column) of a is equal to zero. All proofs could be carried out with a general
C, and to interpret the results we only need to remplace 1- exp ( - x 1 ) by
the general ~, all by n * an = ~ n, an ), b 1 by ( n, b B y 1 by ( n, y B etc.
Remarks will help this interpretation. r may then be written 
where A~ is a second order operator 
For vElRd, A d x d matrix, set

For a continuous martingale M, ~ M ~ is its quadratic variational process
as in [5], sometimes referred to as the increasing process of the martingale.

THEOREM I. 1. - The following propositions are all equivalent :

is for all f E C~0 (6) a continuous (P, $’?)-martingale.
(b) Mt is for all f E Cb (8) a continuous (P, $’?)-martingale.
(c) Mt is for all fEC2 (8) a continuous (P, ~°)-local martingale.

is for all v E Rd a continuous (P, ~’°~-local martingale, and

Vol. 24, n° 1-1988.



50 C. GRAHAM

Moreover, for any we have

and using the boundedness of the coefficients and E (Kt)  + oo, we see that
the M" for v E ~d and the Mf for f with a bounded first derivative are
actually L2-martingales.

Proof. - The proof is the same as in [3], [8]. ~ Mf ~ is easily established
from (d) thanks to the Ito formula. D

THEOREM I . 2. - If on the boundary, either - p bl > C > 0, or

yl + p > C > 0 and all> C > 0, then the martingale problem is equivalent to
the following sub-martingale problem:

is a continuous (P, F0t)-submartingale for all f E Co such that

Proof. - That the martingale problem implies the submartingale one is
trivial. The other implication goes as follows:

and on the boundary,

for a well-chosen ~,. We can then use this instead of C in the classical
proof of [3] and [8]. D

Remark 1. - The condition Yl +p>C>O and is the most

general condition considered in [3]. Generally in [3] and [8], the authors
assume Yl >C>O, 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



51MARTINGALE PROBLEMS WITH STICKY BOUNDARY

Remark 2. - Naturally, in the case of a general $ we should consider

An easy calculation yields ~’~ (x) > C > 0 on a 8, provided
~ n, or ( n, Y ~+p>C>0 and ~ n, 

THEOREM I . 3. - Assume that Xo E a 8, and that on a neighbourhood we

either have all > 0 and ~ or bi  o. Let P solve the martingale
all

problem. Then P- a. s., V t > 0, Kt> o.

Proof

with

By the Girsanov Theorem [5], we have a probability P equivalent
_ 

-t

to P, under which Mt = Mt + bl (XS) o (ds - p (XS) d KS) is a mar-

tingale for 0 _ t _ 1.
Set T = inf ~t > o, Kt > 0~ n 1. Then

as X r T >_ o, we get X1tnT = 0 and tnT0 1b1 (Xs)  0 ds = o. Then we see that
0
T

= o, so E (  M ~T) = 0 and ~o > o ds = o. So T = o. All this is

P-a. s., and thus P-a. s. p

Remark. - We cannot have a better result. For an example, consider a
Brownian motion B starting at zero, BS = BS if 0, BS =1 if BS = o.

-t

Then Bi = 2 d BS + t, and K = o.

Vol. 24, n° 1-1988. 
’



52 C. GRAHAM

2. The sojourn condition and the time-change

We now give the fundamental results we will use when we take limits.
We will first see that the usual sojourn condition lae d KS
is implied by the martingale problem as soon as If this inequality
does not hold, we will use as a sojourn condition the measure inequality
lae s) d Ks; a 8 being closed, this inequality will behave

properly when we take limits, and is trivial when p = 0 as in [1], [2], [6].
We then generalize the time-change theory, provided 11 >C>O. Note that
in [3], [5], [8], the authors assume 11 >C>O.

THEOREM 1. 4. - Suppose that P solves the martingale problem. Then
P-a. s. , V tE IR +,

and these are all increasing processes.
Furthermore,

and naturally if for x E a 8, all (x, s) ~ 0, then

Proof. - The first equality of (1.5) follows from the fact that X: O
and thus Xt =(Xf )+, and using the Tanaka formula [12]:

We then use Theorem I .1. (a) with v the first vector of the canonical basis
-t

of and integrate 1 ae ( X } with respect to M 1. ( X s) d MS is then a

Annales de I’Institut Henri Poincare - Probabilites et Statistiques



53MARTINGALE PROBLEMS WITH STICKY BOUNDARY

continuous martingale which is also of bounded variation, and is therefore
constantly equal to 0. We thus get the second equality in (1.5), and (1.6)
by considering the increasing process of this martingale. D

Since L° (X 1) is increasing, we have:

THEOREM 1.5. - Let P solve the martingale problem, and set

i 1as = (x e 0, 0  x1  E) . Then P-a. s.- 2 E t0 a11(Xs, s) 103B8~ (Xs) ds converges,

uniformely on compact sets, to

the convergence being also in all the LP, 1 _p  + oo.

Proof - We use (1 . 5) and

plus the fact that a sequence of increasing continuous functions converging
pointwise to a continuous function actually converges uniformely on com-
pact sets.

Since

the Tanaka equation, the baundedness of the coefficients and the explicit
solution of the Skorokhod equation (Lemma III 4. 2 in [5]) show that the
convergence is bounded in all the Lp and thus takes place in all the

Lp, 1 p  + ~. Q

THEOREM I . 6. - Suppose P solves the martingale problem, Y1 > C > o,
and that P-a. s. , l ae ds >_ p (X S, s) d Ks.

r

Set At = t - Then P-a. s. A is strictly increasing,

lim At = + oo, and if A denotes its inverse,
r --~ o0

Vol. 24, n° 1-1988.
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Proof. - A is increasing, denote by A its right-continuous inverse:
Åt=inf Then: and so

is a continuous (F0u)-martingale, and thus a (F+u)-martingale where
~ = Ft iXf. A,_ and A, are (~)-stopping times.

S~M

and M is uniformely bounded in L2 before At. We may then use the
optional sampling theorem to get Since A does not
increase between A t _ and A,, C (x) = 0 for and we see that

KAt- = KAt and thus = At. A is then continuous and hence A is strictly
increasing.
By the optional sampling theorem, E ( MAn) = o, and since

is bounded, we get E  + oo . It is dear that on

and since 03B31>C>0, An0 03B31 d Ks = + ~; so

+ooP-a.s., and A ~ _ -f- oo .

by a simple time-change. p
r r r

Remark. - If ds = s) d KS, then Ar = ds.

Moreover by using Theorem L4 we see that lae ds >__ p s) d KS
as soon as = o lae >__ 1a11 _ o p s) d Ks.

Annales de l’Institut Henri Poincare - Probabilites et Statistiques



55MARTINGALE PROBLEMS WITH STICKY BOUNDARY

If a=0, Theorem I .1 ( d) shows that it is enough that

lae ds >_ p s) d KS (since the increasing process of a mar-
tingale is indeed increasing). Consider also (1.8), (I. 8)’.
We can also note that as soon as yl > o, A is strictly increasing but

could have a finite limit.

From now on, we only consider time-homogenous problems, that is, a,
b, a, y, p do not depend on time. We will discuss later how to get results
for time-homogenous problems by adding time as a new coordinate.
We will consider the martingale problem with a boundary sojourn

condition.

We will say that P is a solution to the martingale problem (L, r, p)
with sojourn condition if for a certain K, P is a solution to the martingale
problem (L, r, p) as in (1.3) and moreover P-a. s., we have

(I .12)

The previous remark is still of interest, as is the discussion at the

beginning of 2. Naturally, all >_ o, but that is all we need. We also see

that the boundedness of p is not important.
We see that when p = 0 as in [1], [2], [6], (1.12) is automatically true

and doesn’t have to be stated.

Also, (1.12) can be restated by saying that

or that t - t0 03C1 (Xs) d KS is an increasing process.
0

THEOREM I. 7. - Let P be a solution to the martingale problem (L, r, p)
with sojourn condition, and K be the increasing process in (I. 3). Let p be
another positive measurable function on a8, and suppose either p >_ p or
yl >C>o. Set

v V

Then A is a strictly increasing process which tends towards infinity.
Denote by A its inverse, X = XA, K = KA, P the law on gO of X .

Then P solves the martingale problem (L, I-’, p) with sojourn condition,
and K will be the corresponding increasing process.

Vol. 24, n° 1-1988.
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~ 

Proof - That A is strictly increasing to infinity is obvious using either
p~p or Theorem 1 . 6 when ’l>C>O. We get A in much the same way
as in Theorem 1.6 {At- ~ T} = {t ~ AT} ~ F0T and thus is a 

stopping time; A being strictly increasing, = At. That K increases only
when X is on the boundary is trivial from the similar property of K and
X. Also, X and K are continuous.

For f ~ C2b,

is a (P, ~ °)-martingale.
First, let’s prove E (Kt)  +00. If then E ( Kt) _ E ( Kt)  + If

y 1 > C > o, take 03A6 (x) =1- exp ( - x 1 ),

is a martingale, and

and thus M~ is uniformely bounded in L2 before At. So E (M~) = 0 and
by a boundedness argument, as yi > C > o, E (Kt)  + oo.
Now using Theorem I. 1 we see that ( Mf ) is uniformely bounded in

L1 before At. So Mf is uniformely bounded in L2 before At, and by the
optional sampling theorem, Mf (A) is a (P, F0 (At))-martingale.

So P solves the martingale problem (L, r, p) with K as an increasing
process.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



57MARTINGALE PROBLEMS WITH STICKY BOUNDARY

and since we have the sojourn condition
.

Let us remark that we get X and K from X and K by taking

At=t+t0 (03C1-03C1) (Xs) d Ks and X=X (A-1) K=K (A-1). Hence:

THEOREM 1.8. - Suppose Y1 > C > o. We have a bijective mapping
between the set of solutions of the martingale problem (L, I-’, p) with sojourn
condition and the one for (L, r, p), and between the corresponding increasing
processes K and K.

Thus the existence, or the uniqueness, for these two martingale problems
are equivalent notions.

Also, if P is a solution for the martingale problem (L, r, p) with sojourn
condition there is an unique K such that (1.3) holds.

Proof - The bijection is given in Theorem 1.7 and in the remark that
follows its proof. If p = o, Theorem 1.5 yields the uniqueness of K using
y 1 > C > o, and the general case follows by use of the bij ection. D

Remark. - We actually have a much better result of uniqueness of
K. Indeed, using Theorem I . 1 (d) and the fact that ; M" ) is the quadratic

variational process of Xv, we see that is a function of

Xs, 0 _ s  t. Using the time-change in Theorem 1.7 for p = p + 1 >- p, and

the reverse time change, we see that is a function

of X,, 0 - s - t, and so are both and In

a similar way, so are and In

fact, d K is determined as a function depending only on a, a, b, y, p of

Xs, 0-s_t, as soon as a (Xt) ~ 0 or 03B1 (Xt) ~ 0 or b (Xt) ~ 0 or 03B3 (Xt) ~ 0,
and is arbitrary whenever these four quantities vanish simultaneously on
the boundary. A natural choice in this case would be dK=0, wich is

compatible with (1.12).
It is important to see all this is true even if we consider the martingale

problem on it enables us to get back to

~~=c (~+, 9).

Vol. 24, n° 1-1988.
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Using this, the sojourn condition lae ds >_ p d KS, the Radon-
° 

Nykodym Theorem, we first see that

and rs= lim - 1 p (Xu)dKu and so for any
~1 s

r~ > 0, rs = r (Xu, s - ~  u _ s) with r depending only on a, oe, b, y, p.
Let’s summarize all this: let (X, K) be the coordinate process on

C ((~+~ 9) x C (f~+~ R).
THEOREM 1 . 9. - Let P be a solution on C ( f~ +, 8) x C ( ~ +, ~) of the

martingale problem. If for any x on the boundary, either a (x) ~ 0 or
a (x) ~ 0 or b (x) ~ 0 or y (x) ~ 0, then Kt is an unambiguous function of
XS, 0 - s _ t. We may always take

and K’ will be an adapted function of X. Then the law of X under P will
solve the martingale problem on gO, with K’ as an increasing process.

If moreover the sojourn condition holds, then there exists a function r
depending only on a, a, b, y, p, such that

and r actually is a function of Xu, s - ~  u _ s, for any ~ > o.

Remark. - To have examples, see 1.4.

3. The stochastic differential equation,
and the results on existence

and uniqueness of solutions

We are going to see that under certain assumptions the martingale
problem is equivalent to a stochastic differential equation. This will enable
us to use the results on weak existence and uniqueness for the latter. We
know that strong (trajectorial) uniqueness implies weak uniqueness; see [3],
[5].
We also know that the martingale problem (L, r, p) has the same

solutions as (L, gr, g p), for any bounded g such that So if

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Y 1 > C > o, we may take y 1=1, or any such normalization. We can remark
that if the coefficients are continuous, or bounded and Lipschitz, dividing
by Y 1 doesn’t change this property.

THEOREM I. 10. - Suppose that 6 and i are two matrices such that

oc = ii*. Naturally, i* n=O. Then the following propositions are
equivalent:

(a) P solves the martingale problem (L, r, p) with sojourn condition

starting at x E 9, with increasing process K.
. (b) There exists a probability space (~ t)r > o, P), a d-dimensional

Brownian motion C, a d-dimensional continuous martingale N, and two
continuous processes X and K, such that Ko = 0, K is increasing,
dKt = 1~03B8(Xt) dKt, Xo = x, Xt E 8,

and

+ Y dKr + 03C4(Xt) dCKt, ( I , .17)

and P is the law of X .
We may take (SZ, (~ r), X ) to be an extension of (S2°, X) in the

sense of [5]. As soon as Y 1 + p > C > o, for and we have

E ( exp ~, Kr)  + oo .

Proof. - (a) ==> (b): We use Theorem 1.1 (d) and the representation
theorem for martingales: Theorem II. 7 . I’ in [5]. We reason as in [3], [5].

(b) ~ (a): The Ito formula gives us the martingale problem on

and Theorem 1.9 gets us back to The sojourn
condition holds because  N 1 ~ is an increasing process.
Take the projection of the stochastic differential equation on the first

axis:

We use the classical estimates on Brownian motion, the
boundedness of the coefficients, and the explicit solution to the Skhoro-
khod equation (Lemma 111.4.2. in [5]) to get

B ~/ u /

we get E ( exp ~, Kt)  + oo . n

Vol. 24, n° 1-1988.
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Remark 1. - Thanks to the martingale representation theorem, we see
that (perhaps after enlarging the probability space) there is a brownian

motion B independent from C such that

Naturally, if p = 0 then r = 0 and N = B. We may give a definition of a
strong solution for the Stochastic differential equation, by giving first Q,
~ t, P, B, C and by looking for an adapted continuous (X, K) such that
(1.17) holds with N given as in (1.18).

If moreover T=0, p=0, we get the (strong) equations of [1], [2], [6].

Remark 2. - Proposition IV. 6 . 2 in [5] tells us that as soon as a is

positive definite and a E ct, we may choose a Lipschitz continuous o such
that = a. Same for a.

Remark 3. - The condition a n = 0 translates into i* n = 0; the condition
n*an>0 into 

THEOREM 1.11. - Suppose that a = 0, that cr, b, are uniformely Lipschitz
and bounded, y E Cb or y = n, y 1 > C > o. Then for all positive p, all x E 8,
there is an unique solution P to the martingale problem (L, r, p) starting at
X, with sojourn condition.

If p=0, then there is an unique strong solution to the corresponding
stochastic differential equation.

Proof - When p=0, this is the result on stochastic differential equa-
tions of [1], [2], [6], where strong trajectorial results are given. The general
case follows by Theorem 1. 7, that is, by time-change. See Theorem IV. 7 . 2
in [5] for a direct calculation on the stochastic differential equation. D

Remark 1. - By theorem I. 8 there is an unique K satisfying (I. 3) and

(1.12).

Remark 2. - We could give results under assumptions of uniform strict

ellipticity and of continuity on a. We can also diminish the assumptions
on the drifts by the Girsanov Theorem. We also only need to find a
bounded g > C > 0 such that (L, g r, g p) verifies the assumptions. For
details, see [3], [5], [8].

Remark 3. - We don’t suppose al l >0, and so can only use the strong
results that authors get when 03B3 ~ C2b or y = n, a =0, p=0. These are the
only equations giving uniqueness results if we don’t take 

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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We now will start to use the fact that our formulation of the martingale
problem enables us to take limits. First, a proposition to get continuity
results we will need for such proofs.

PROPOSITION I . 12. - Let be a sequence of real functions, with
uniformely bounded variation on each compact set. Suppose the sequence
converges pointwise to zero.

Then for any T e R and any fe C ([0, T], R), IT f (t) dun (t) converges to
zero.

Proof. - Suppose the variations of the vn are bounded by M on [0, T].
For E > 0, there is an ~ such that if

Let a be a subdivision (sj of [0, T] such that Max (si + 1- s~) _ ~1, and i
be a refinement of a. Set t ( i) = {t E  si + 1 ~. Then:

The first of these two terms is equal to I ~ (vn (st + 1) - v" (si)) ~ ] and
y

thus is less than E as soon as n is larger than a n (o); the second term is

less than E x M = E.
M

Note that if k" is a sequence of increasing functions converging

pointwise to k, then IT converges to because

3 (kT - ko) as soon as n is large enough.
If we notice that vn need only converge to zero outside a countable set,

the proposition appears as a generalization of the classical result relating
weak ("narrow") convergence on R to the pointwise convergence of distri-
bution functions wherever the limit distribution is continuous.
We now get our first result using a limiting procedure.
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THEOREM I.13. - Assume that ~, b, i, y are continuous and bounded,
yl > C > o, and p is a positive measurable function. Let x E 6. Then there
exists at least one solution to the martingale problem (L, r, p) with sojourn
condition, starting at x.

If moreover 03C3, b, i, y are Lipschitz, and a11 > C > 0, then the solution is
unique.

Proof - The last result is Theorem IV. 7 . 2 in [5]. See also [3]. For
E > o, put LE = L + E 0. We first modify the proof of Theorem IV. 7 . 2 in
[5], by replacing the existence of solutions for SDE with Lipschitz coef-
ficients by the existence for SDE with continuous bounded coefficients
(Theorem IV. 2. 2 in [5]). Since all + E >_ E, the proof can be carried through
and we see there is at least one solution PE for the martingale problem

r, p).
As we plan future use of Theorem 1.7, we take p = 0 at first, and for

simplicity we take Y 1 = 1 and multiply the rest of r by - .
We will first prove tightness for f PE, and then prove than

any accumulation point for E -~ 0 solves the martingale problem (L,. r, p).
That will prove the theorem by using Theorem I. 7.
Under P, we have

with and Ko = 0 and X and K continuous. The explicit
solution to the Shorokhod problem yields:

The coefficients are uniformely bounded for E  1, and (1.20) plus the
classical results on Brownian motion yield that for any Te!R+, there is

CT such that for E  1 and we have

(the eighth power coming from CK).
Theorem 1.4.3 in [5] then gives the tightness for the laws of (X, K)

under the P£, 0  E  1.
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Take E" - 0 such that the laws of the couple converges to poo on 
and L", P" corresponding to En, 0 _ sl _ ... 

..., gp continuous bounded, and set

then we have

Since the coefficients are continuous, we see using Proposition 1.12 and

what follows that (X, K) -~ is continuous. Using (1.21) to
s

get the needed uniform integrability, we obtain at the limit

where naturally Mf is like Mf, n with L instead of L". So Mf is a

(P°°, F0t)-martingale, where (F0t) is the natural filtration on 

IRd) x C(IR+, R). Now if g is continuous positive with compact support in
e,

and K increases only when X is on 89. Since 9 is closed,
Similarily, K is increasing, and Ko=0;

E°° (Kr)  + oo comes from (1 . 21). Using Theorem 1 . 9, or directly (1 . 20),
we see that K is actually an adapted process of X, and thus if poo is the
projection of poo on Mf is a (Poo, ~ °)-martingale. So poo is a solution
to the martingale problem (L, r, 0). Time change gives the general
case. D

Up to now, we require Y1 > C > 0 as most authors do. In [5], Chapter
IV, at the end of Section 7, the authors argue that this assumption implies
that there is reflection at the boundary and is too restrictive; instead we
should suppose 1’1 + p > C > 0, which would allow sojourn without reflec-
tion. Then they construct a process under that assumption (and 
thanks to the Poisson point process of excursions and a jump-type stochas-
tic differential equation on the boundary. Naturally, they don’t get unique-
ness this way, and their construction is quite intricate. See [5], IV (7. 13)
and following, and the references given there.
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We will now give a generalization of Theorem I . 13 when y 1 + p > C > 0
by a limiting method. This englobes the result in [5]. Naturally, y 1 
and p >__ 0. A similar idea appears in [3], Proposition 20, when p > C > 0,
all >c>O.

THEOREM I.14. - Assume that ~, b, i, y are continuous and bounded, p
is a positive measurable function, and yl + p > C > 0. Let x E 8.

Then there exists at least one solution to the martingale problem (L, r, p)
with sojourn condition, starting at x.

Proof. - For E > 0, T is like r with y 1 replaced by y 1 + E. We use

Theorem 1 . 13 to get existence for the martingale problem (L, hE, p). We
will follow the proof of Theorem I 13, except we don’t take yl =1 and
p = 0. For we will get instead of (I . 21), using 

and since 

and using y 1-f- p > C > 0 and an easy convexity argument,

Now if p is continuous, we can finish our proof as for Theorem I. 13,
and since 10 is closed, the inequality lae ds >_ p dKs carries to the
limit. We need the continuity of p for this, as well as to take limits in the

martingale problem. Now if p is not continuous, take Then

p is continuous, and so (L, r, p) has a solution. Now since
p >_ p, we can use time-change as in Theorem 1.7 (the notations are in
reverse but coherent) to get existence for (L, r, p). We use Theorem I. 9
to get back to a

Remark. - Assume and p is continuous. Then the law of

lae ds under the converging subsequence of P~, converges weakly to its
law under poo. To see this, just use Theorem 1.4 and the continuity of

Jo
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4. Examples

We shall now deal with some examples of processes under our new
reflection conditions. We will show the greater generality attained with
respect to the usual ones. We use stochastic differential equations, which
are more telling than martingale problems.

(a) Take the case all =0. This is close to a deterministic case, and could
not be studied in the usual framework. Now by Theorem I. 5, we have

On the set of s such that

necessarily bl (Xs)1~03B8(Xs) ds = o. We can remark that if

Y1 is allowed to vanish, and if bl =0, the process may well stay on
the boundary and K be to a large extent arbitrary, even with the sojourn
condition (I. 12).

Suppose Y1 > o. Then on the set (p bl - Y1) (XS) = o, necessarily 
b 1 > o, so and (1.12) implies dK,=0.

, and (1.12) is equivalent to

lbl > o Iae ds = 0 which insures K is increasing.
We now give an example showing that we have to ask for the sojourn

condition: take d = l, bl > 0, p bl - Y1 > 0, Xo = o. Clearly if we take Xt = 0
and dK as above, we get a solution satisfying to the martingale problem,

but it will not satisfy ( I . 12) since 1~03B8(Xs)ds=(03C1-03B31 b1)(Xs)dKs. The true

solution will be obtained by taking K = 0 and X a solution of

starting at 0; b 1 being positive, o.
Also the usual sojourn condition lae ds = p dKs is too restrictive:

take d = 1, 0, Xo = 0, clearly the only solution is Xt = 0, so

(b) Let us recall some results on the square of the Bessel diffusion with
index ?~ E ~8 + . It’s the solution to the stochastic differential equation

If X o >_ 0 this equation has an unique solution, which is positive. If ~,  2
the solution vanishes infinetely often at infinity, if ~, >_ 2 zero is a polar
value, if ~, > 0 1 (XS = Q) and if X is absorbed at zero. See
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IV. 8 . 2 and IV. 8 . 3 in [5] for more details, Let’s now consider the equation

(we may take a Brownian motion in stead of N in Theorem 1.10, since
all (0) = 0; we only have now to check that the sojourn condition (I 12)
holds, as it is no longer implied by the increasing nature of ~ N ~). An
obvious solution is obtained by putting K = 0.

If X o = 0, let’s take ~+(l-~p)K,=0 and If K should be

increasing, we must have 1, but the sojourn condition will not be
fulfilled.

Also if the solution of (1.30) will solve (1.31) for any K, but
only K = 0 will fulfill the sojourn condition, since 1 (Xs = 0) ds = 0. By time-
change, we see that for any p, the only solution to (1.31) fulfilling the
sojourn condition ( 1.12) will be the solution for ( 1. 30), with K = 0.
We could generalize all this in some extent to the squares of norms of

processes, or to "affine" equations as in IV. 8 .1.
(c) Let us adapt the Langevin equation. See IV. 4. 4 in [5]. We shall

consider the system of equations

with which represents a reflecting particle with random
acceleration. Note that here again We saw in (a) that necessarily

and we now get an unique solution as soon as o,
b, y are Lipschitz and bounded and T=0.

This particle is absorbed and freed depending on the sign of V. A
sojourn coefficient p would accentuate this phenomenon.

All this gives examples for Theorem I. 9.

5. The non-homogenous martingale problem

We now suppose L, r, p depend on x E 8, We can get results
for this time-dependent martingale problem by the usual trick of adding
time as a new coordinate. By using Theorem 1.1 (d) and the Ito formula,
we see that for f E Cb (ë x R),
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is a martingale. This is the martingale problem (L, r, p) on C ( (~ + , 6 x R),

where L = a + L Y (Y~ p), the rest not being changed. Note that
as

n = (n, 0),  ~y, n ~ _  Y, n ~,  n, an ~ _  n, an ), etc., and
all our results may be used.

In [8], Stroock and Varadhan could not use this idea because even if L
is uniformely elliptic, L is not.

In the stochastic differential equation point of view, we just added

II. INTERACTING PARTICLES REFLECTING

IN A DOMAIN WITH STICKY BOUNDARY

1. The framework

We consider a system of interacting particles reflecting in a domain 9
of given by 03A6 ~ C2b as in Part I, with a sticky boundary and a normal
internal vector field n. There is interaction in the sojourn term p. We will
give here a construction for such a system, using our previous results to
obtain it as a limit in law of approximating processes.
The following step would be to investigate the behaviour of the system

when the number of particles tends to infinity; that is, to study the
associated non-linear equation (in the case of mean-field interaction), the
propagation of chaos, Gaussian field fluctuations, and large deviation
theory. This too will require our results on the martingale problem. The
first results in this direction are in [4]. See [9] for the case p = 0, and [10],
[ 11 when 8 = (~d.
We describe our system of interacting particles by the following stochas-

tic differential equations, as in Theorem I. 10: for N particles Xi, set

..., E and consider
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The Ni are N orthogonal martingales, with orthogonal components
N‘’ . X~ E ~, Xo has law U~ and is independent of the N‘, and the K‘ are
increasing processes with Ko=0. ~‘ is a d x d matrix field, bi a d-dimen-
sional vector field, and instead of n (X;) we could take yt (Xt) provided
~ y‘ (Xt), n (Xr) ~ > C > o.

Naturally if we have the following non-degeneracy condition:

then thanks to Theorem 1.4, we can replace in (II .1) N; by 
and the condition on by lae (Xt) dt = p‘ dKt.
The interesting interaction for asymptotics is the mean-field interaction,

where ai X ~ ~ ( X‘ t, X’ ~), etc. In [9], A. S. Sznitman studied this
N J

problem when p = 0 (and so is a Brownian motion). He shows
strong existence and uniqueness for the system and for the corresponding
non-linear limit equation, under the assumption that a and b are Lipschitz
and bounded. This is done by a fixed point method which would apply to
uniformely bounded and Lipschitz predictable coefficients. He then proves
the propagation of chaos, and a Gaussian fluctuation result when o=Id.
From now on, we assume the a‘ and bi are Lipschitz and bounded.
The classical technique of time-change, to get the existence and

uniqueness of solutions for general p when you have it for p=0, as
in Theorems 1.7, 1.8, 1.11, will not work here. See also Theorem IV. 7 . 2
in [5] for a direct calculation on stochastic differential equations. The
reason why is that if we use time-change on each particle separately, their
time-scales will not coincide any more and we lose the temporal coherence
of the system. If we try to use a global time-change, it will perturb far
too much the equation of a particle inside the domain as soon as another
particle is on the boundary. The reason the time-change worked for one
equation is that the time-change acted only when the one particle was on
the boundary, and thus perturbed the equation only in its boundary terms.
Nor can we consider the system globally as one process, for it would

evolve in the unsmooth domain 8N. We should also rewrite the equations,
remplacing the by leN(X) and giving a boundary condition with
la (X) oN (X) instead of lae (X‘). This would lead to a complicated
equation, with martingale terms diffusing on the boundary, and it would
be difficult to state a boundary sojourn condition.
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It is easy to see that the "corners" in 8N will be visited by the global
process X. Here is a very simple example where the global process spends
positive time in the corners:

Example. - Suppose 6t (x) _ ~ (x‘), b‘ (x) = b (xi), p‘ (x~ = p (x‘), so that
the particles are actually not interacting. Suppose X o, ..., X~ independent
and identically distributed, then (using uniqueness) the particles will stay
independent and identically distributed during time. The law of large

numbers shows that 1N 03A3t0 p dKs converges when N goes to infinity

to E a. s, and this expectation is strictly positive for t > 0

as soon as we assume Q~, p > 0, and aa* uniformely elliptic. Then

N t N i

03A3 03C1(Xis)dKis goes to infinity, and so does ; £ = 
i 

and it is

enough to chose N such that this quantity excedes t to know that at least
two particles spend time together on the boundary before t. Using the
independence and the equirepartition, we see that it is enough that N = 2,
and that for any N~2 the N particles spend time together on the boundary
for t > 0.

In view of the propagation of chaos results we get, this is almost a

"generic" result.
It is interesting to examine the problems we run into if we try to

define a global boundary condition. If the pi are strictly positive,

t = and if K = (K , ..., KN), | K | is the total variation of K,
then

and necessarily

But since many particles may be on the boundary at the same time, we
have lost some information and it is difficult (if not impossible) to get the
former N boundary conditions from the latter.
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2. The construction of the system
of interacting particles

We are now going to give a construction of the system of particles as a
limit in law. This naturally does not give uniqueness, even in the case of
one particle. We naturally have to use the results in Part I, especially
Theorem 1.4 and Proposition 1.12.

From now on we assume pi is continuous and bounded on 
We will suppose cri and bi uniformely lipschitz and bounded. We

get then our main result.

THEOREM II. 2. - Under these assumptions, for any initial law UN there
is a weak solution to (II. 1) such that the law of Xo is UN.
If moreover UN is symmetric, and bi, p~ are such that for any
x = E ~N, and any permutation i 

..., N ~, we have
6‘ (xT t 1 >> ~ ~ ~ ~ xT = ~~ c‘> 

..., etc. (as in the mean-field inte-
raction), then there is a weak symmetric solution.

If p = 0, then there is strong existence and uniqueness.
Proof - The result for p = 0 is the result of Sznitman [9]. We give

ourselves a probability space Q with a right-continuous and complete
filtration (for convenience) and N independent d-dimensional Brownian
motions B1, ..., BN. We are going to get a solution of (II .1) as a limit
in law of processes indexed by E > o, defined as follows.

For E>O, we are going to define recursively an increasing sequence of
stopping times T", a sequence of subsets In ..., N}, and the
processes X i, KB Ni between Tn and To the particle X’ we associate
the clock

Set To=0, Jo=0, and suppose we have defined To, ..., Tn, Jo, ..., Jn,
and Xi, Ki, Ni up to Tn. Then starting at T~, we freeze X’, K’, N’ for
j E Jn, . and let the other particles Xi for go following an equation
(11.1) with p=0, starting at with All we
need is the results in Sznitman [9], with random coefficients because of
the frozen particles, but the strong trajectorial proof in [9] carries easily
through.
We then set
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and

Note that 0 _ Et _ E, E‘ is a process of bounded variation with I E‘ I t _ 2 t + E,
and that Whenever a particle X’ has not spent enough
time on the boundary, that is whenever Er reaches E, we stop it and wait
during E before freeing it again (and Er will have fallen to 0). It is easy to
see that T" + 2N > Tn -~- E, so lim T" _ + oo, and we have defined a process
on R+.

Note that if (II. 2) holds, then Er = Ci - 
Our X will satisfy (II. 1), with the exception that

Let us set for x = (x 1, ..., x") ~ 03B8N, f ~ C2b (03B8)

then by the Ito formula the law of X satisfies the N martingale problems

is a martingale, with

We can reason exactly as for Theorem 1.13 to get the tightness of the
laws of (Xi, Ki) for 0  E  1, and using Proposition I .12, the continuity
of all the coefficients, I E; I _ 2 t + s, we see that a limit point for
E -~ 0 satisfies (II. 7) with E‘ = o, and in particular ds >__ Then
this law is a weak solution to (II. 1).

If the symmetry condition holds, we may either symmetrise our limit
law or note that by construction, our processes indexed by E are symmetric,
and so is any limit law. 0
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