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Construction of semimartingales
from pieces by the method
of excursion point processes

Shinzo WATANABE

Department of Mathematics, Faculty of Science,
Kyoto University, Kyoto 606, Japan

Ann. Inst. Henri Poincaré,

Sup. au n°2, 1987, Vol. 23, p. 297-320. Probabilités et Statistiques

RESUME. - Nous etudions la construction d’une semimartingale a partir
de ses pieces qui, regardee a la direction opposee, donne une decomposition
de la semimartingale dans ses pieces comme excursions. La collection de
ces pieces est definie comme un processus ponctuel aux valeurs dans un
espace fonctionnel et la construction est basée sur le calcul stochastique
des processus ponctuels.

ABSTRACT. - We study the construction of a semimartingale from its
pieces which, regarded in the opposite direction, gives a decomposition of
the semimartingale into pieces like excursions. The collection of these

pieces is formulated to be a point process with values in a function space
and the construction is based on the stochastic calculus of point processes.
Key words : Brownian motion, martingale, point process, stochastic integral.

1. INTRODUCTION

The notion of Poisson point processes has been introduced by P. Levy
in his study of additive processes (processes with independent increments)

Classification A.M.S. : 60 G 55, 60 H 05.
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298 S. WATANABE

and it plays an important role in the Levy-Ito theorem describing the
structure of their sample paths ([8], [9], [4], [5]). This is a case of Poisson
point processes taking values in Euclidean spaces but, of course, the

notion of Poisson point processes is meaningful on arbitrary state spaces.
Actually, Ito [6] noticed that the collection of excursions from a point to
it of a strong Markov process forms a Poisson point process with values
in a function space (path space). We know that excursions of Brownian
motions have been studied first by Levy [9], then by Itô- McKean [7] and
the study has been expanded and generalized in several directions by many
people. Now the collections of these excursions can be best described by
using the notion of Poisson and more general point processes on path
spaces, cf [3], [10], [14].

In studying fine structure of stochastic processes, it is often useful to

decompose a sample path into pieces like excursions and the theory of
point processes is a useful tool for this purpose. An approach is given in
[13] where we try to formulate the collection of these pieces as a point
process on a path space and then construct a whole stochastic process by
putting these pieces together. Purpose of the present paper is to give a
detailed proof of results in [13]. In particular, the results of this paper
supplement the materials of Chapter III, 4. 3 of [3]; construction of a

Brownian motion from its pieces will be discussed in more general cases
than the excursions from a point to it and also, an obscure statement

concerning the continuity of the process constructed will be made precise.

2. CONSTRUCTION

OF A BROWNIAN MOTION

FROM ITS PIECES

For simplicity, we discuss the case of one-dimensional Brownian motion
but the generalization to the multi-dimensional case is straightforward.
First we formulate the notion of "pieces" of a Brownian motion and then,
give a general procedure to construct a whole Brownian motion from
these pieces.

Let (W, ~‘~,, n) be a a-finite but infinite measure space and (~t) be a
right-continuous increasing family of sub a-fields of ~~,. Suppose we are
given a system of real valued functions F (t, w) defined on [0, oo) x W and
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299CONSTRUCTION OF SEMIMARTINGALES

a (w) defined on W such that: -

for each t >_ 0,

for almost all w (n), F(0, w)=0,

t -~ F (t, w) is continuous and

We suppose furthermore that

and, for each 0t1t2 and which is

Bt1-measurable,

Remark 2.1. - (ij (2 . 3) implies that

because, as is easily seen,

(ii) (2. 6) implies that
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LEMMA 2. 1:

Proof - (1) is an immediate consequence of (2. 3). (2) is also immediate
from F ( l, w) E L2 (W, n) and n). (3) follows from

For some examples of such (W, f!Jw, n) and F, a, see [13], Examples 1
and 2. We can always construct, on a suitable probability space (Q, iF, P)
with a filtration an (Ft)-stationary Poisson point process p (t) taking
values in W with the characteristic measure n, cf. [3]. Now,
{[F(s, p (t))] o ~ S ~ 6 [p ~t~~; t E is what we would formulate to be a collec-

tion of "pieces" of a Brownian motion. [Here, we follow the notations of
[3]: Dp is, for each a countable subset of (0, oo) and p (t) E W is

defined for each tEDp.] A Brownian motion can be constructed from
these pieces by the following procedure: First of all, we introduce the
following:

CONVENTION. - A is an extra point attached to W. We set p (t) = 0 if
tDp and F ( t, 

Also, we (A) = 0.
As in [3], a random measure Np (ds, dw) is defined by

and its compensator Np(ds, dw) is given by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



301CONSTRUCTION OF SEMIMARTINGALES

The compensated random measure (martingale random measure)
Np (ds, dw) is defined by

and stochastic integrals with respect to these random measures Np and
Np are defined as in [3], see section 3 below for classes Fp, F;, Fp~ Fp
and F~’ ~" of predictable integrands.
We define two processes § (t) and A (t) by

and

03BE(t) and A (t), being well-defined by Lemma 2.1, are (Ft)-adapted time
homogeneous Levy processes [a right-continuous process with left-hand
limits having stationary independent increments with respect to (~ t)] and
(2.10) and (2. 11) give their Levy-Ito representation. Furthermore, A (t)
is strictly increasing since The corresponding
Levy-Kchinchine characteristics are given by

where
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and

where

Let t --~ A ( t, (o) is strictly increasing, right-
continuous with left-hand limits and lim A ( t, Then P(Qo) = 1.

ff oo

In the following discussions, we always assume 03C9~03A90 to simplify argu-
ments. Then, for every oo ), there exists unique se[0, oo ) such that

This s is denoted by s = cp (t). Clearly, t -~ cp (t) is continuous and

lim cp (t) = oo. We set, noting the above convention,

THEOREM 2. 1. - With probability one, t ~ B (t) is continuous and B (t)
is a one-dimensional Brownian motion such that B (0) = o.

Proof - 1° First we prove the a. s. continuity of t -; B ( t). For this, we
need the following
LEMMA 2. 2. - Let

Then, for every E > 0,

Proof - Since

~o > 0 exists such that n (w; for all 0  r~ ’~o. For such 11,
set
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Then p1 is a probability measure on (W, f!Àw) and it follows from (2.5)
that X~’ (t, w) = F (t + r~, w) is a martingale with respect to {~’~ ) where the
filtration (~t ) is defined by Hence, by Doob’s inequality and
( 2 . 6)’, we have for every 

Letting 11 ! 0,

and hence,

Now it is easy to see the a. s. continuity of t - B (t). If t E (A (s - ), A (s))
for some s E Dp, then

is clearly continuous at t. Consider the case that

By Lemma 2. 2, T] x {w; a. s. for every T > 0 and

E > 0 and hence, if we set
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then p(Ql) =1. Let

Then there exists sn E Dp such that, either tA(sn-)A(sn) and 
as or A(sn-)A(sn)t and as n --~ oo. In both cases

M{p(sn)} ~ 0 as n ~ ~ if and the continuity of B at t is easily
concluded.

2° Here, we prepare two lemmas; Lemmas 2. 3 and 2. 4.
LEMMA 2 . 3. - For every 

Proof - We have

Noting that (p(t) and are (Ft)-stopping times, we have by taking
expectations of the above,

Hence ( 2 . 16) is obtained. D
Let T>0 be fixed and consider (Fs)-predictable process w, 03C9)

defined by

We have iT E F; since, for every t > 0,
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Hence, a right-continuous process MT (t) with left-hand limits is defined

by the stochastic integral

and MT (t) is an (Ft)-square integrable martingale.
LEMMA 2. 4. - Let T > ~ be arbitrary but fixed. Then, with probability

one,

Proof - We have

On the other hand,
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Hence, it is enough to prove that Ii (T) = J 1 (T) and

The first equality is obvious if we notice that

provided and s E Dp. By the same reason, we have

Hence, in order to show the second equality, it is sufficient to to prove
that

But, if 0E l,

Annales de /’lnstitut Henri Poincaré - Probabilités et Statistiques
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and K1= 0 because, by (2 . 5),

provided As for K2, we have by ( 2 . 5)

and hence,

by (2 . 6). Since oo as we may assume that

n (6 > E)1~2  n (~ > E) for all small E > o. Hence by (2 . 16),

as E j 0 by the dominated convergence theorem. D
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3° We now construct a filtration of (Q, ~, P) such that B (t) is

and satisfies, for t2 > tl > 0 and G (m) which is bounded and
Ht1-measurable,

and

This will imply, together with the continuity of t - B (t) established in 1 °,
that B (t) is a Brownian motion.
We define ~t, for each t > 0, by

Note that cp (t) is an (Fs)-stopping time and, for any (Fs)-stopping time T,
is defined, as usual, to be the o-field generated by sets of the form

C f Dellacherie [2], Dellacherie-Meyer [3]. Also,
we denote by o _ s  oo) the ~-field on Q generated by the family
of random variables 11s’ 0 _ s  oo. It is easy to see that c if t  t’

and (t). Also, it is obvious that B (t) is Ht-measurable for each

Now we prove (2. 19). For this, it is sufficient to show that,

for 0  tl  t2. Here, Hi (co) is F03C6 (t1)--measurable and bounded and H2 (03C9)
is of the form

where C is a bounded Borel function on C([0, (0)  R) and

f tl (s, w, w) ~ C {[o, oo) - R) is defined by

By Theorem 2 . 1 of [2] (cf [3] also), there exists and (t)-predictable
bounded process such that Hi (m) = G~ ~t 1 ~ (0). Now, by Lemma 2 . 4,
we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and, by the martingale property of the stochastic integral, this is equal to

since H1 H2 is Hence,

Now

and noting that

we have I~,1= o ( 1) as E ,~ 0 by the same proof as for (2 . 18). If - E,
then we have
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by (2. 5) and hence we can conclude that

Next,

Then

because s  cp (t 1 ) implies that

and hence

To handle I i , 2, we use a trick originally due to Mainsonneuve [10]:
Namely,

because

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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if and only if s = cp (t 1). Hence,

The first term is o ( 1) as by the same argument as for or (2. 18)
if we notice that 03A6(ft1(cp (s), w, 03C9)) is Bt1-s-measurable in w and hence

provided E  t2 - t 1 and t 1- E - s - t 1. Also, the second term is equal to
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and this can be estimated as

by the same argument as for the first term. Thus

by reversing the above argument. (2. 23), (2. 24) and (2. 25) together imply
that

and the proof of (2.22) is complete.
To prove (2 . 20), it is sufficient to prove that, for 0  ti  t2,

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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By Ito’s formula (cf [3]) applied to the stochastic integral Mt (s),

Hence,

The proof of

is exactly the same as above; in this case, however, the integrand is in F;
and hence the integral is absolutely convergent. So we need not introduce

and take limit as 0. The proof of
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is also similar to the above: We need, for this, the estimate

as 0 and this can be obtained, as above, from the estimate

The last estimate can be proved as follows:

as in the proof of Lemma 2. 3 and by Doob’s inequality,

This completes the proof of (2.20) and hence the proof of Theorem 2.1
is now finished.

3. GENERALIZATION

By generalizing the discussions of the previous section, we construct a
continuous martingale from its pieces: This will provides us with basic
tools to synthesize a semimartingale from its pieces like excursions or,
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looking this in an opposite direction, to decompose a semimartingale into
pieces.

Let (W, PA, n) be, again, a a-finite but infinite, complete measure space.
For a metric space E with metric d, we denote by Lo (W --~ E) the metric
space consisting of all n-measurable functions f: W ~ E endowed with the
metric p defined by

where Un is a disjoint family of sets in such that  oo and

U Un = W. Let (Q, iF, P) be a probability space with a filtration ( ~ t).
n

The predictable a-field on [0, oo) x Q is denoted by f!lJ (cf [2], [3]). Suppose
that we are given the following Ø’-measurable mappings:

where E( is the space of all symmetric and nonnegative definite matrices.
Suppose also that we are given, for each (t, oo) xQ, an increasing
family (~‘u° of sub c-fields of ~~, depending predictably on (t, t~) in
the following sense. These exists a Polish space S and

which is ~-measurable such that

N being the totality of n-null sets on W. For each ( t, co), we assume that
the following are satisfied: 

’
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for almost all w (n),

is non-decreasing and

for every u > o.

Furthermore, we assume that the following are satisfied:

for every T>O,

for every T > 0 and s>O,

for every 0  s1  s2, T > 0 and every Ø’-measurable mapping

such that w ~ Ht,03C9 (w) is Bt,03C9s1-measurable for all t, o,

and

and

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Here, we recall the following definition ([3], p. 61-62)

w, c~); f is predictable and for every t > o,

w, r~); f is predictable and for every t > o,

w, f is predictable and for every t > 0,

Fp~ w, ill); f is predictable and for every t > o,

F;’ 1~~ = f (t, w, f is predictable and for every t > 0,

We can easily see that
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The proof is easy and omitted.
Let p (t) be an (t)-stationary Poisson point process taking values in

W with the characteristic measure n. Based on this lemma, the following
stochastic integrals are well-defined and hence an Rd-valued semimartingale
ç (t) is well defined:

Let p (s, o) be an nonnegative process such that, for every
t

t > o, a. s. Let A(0) be a nonnegative (F0)-measurable

random variable and define an increasing process by

Assume that

t - A ( t) is strictly increasing and lim A (t) = oo a. s. ( 3 . 9)

Then a continuous process cp (t) is defined by the property that if

and only if A (s - )  t _ A (s) (A (o - ) = o). We introduce the following
convention: We attach to W an extra-point A and set p (t) = A if t ~ Dp.
Also, set Ft~ ~ (u, 00, Ft° ~ ~ {u, 0) = 0 E C~a for all 
Let a be an extra-point attached to S [S being the Polish space appearing
above in connection with ~)] and set ~t° ~ (u, ~) = a for all Also,
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if u  0, we set always w to take the value a and F’ ", ( Ft, ~, Ft, to

take the values 0 E Rd and 0 E C~ +, respectively. 
r

We define a filtration of sub o-fields of ~ by

Define an Rd-valued process M (t) by

THEOREM 3 . 1. - M (t) is a d-dimensional continuous (Ht)-local martingale
with

where

The proof of this theorem is essentially the same as that of Theorem 2.1.
A typical example of applications is for the processes constructed in [12].
This theorem, combined with Theorem 3 of [13], assures us that the

processes constructed are actually solutions of stochastic differential equa-
tions corresponding to the given analytical data, cf also [3] and [11].
Remark 3 . 1. - In the above, we excluded the possibility that ~ (w) = o0

or (w) = oo. This possibility can be allowed if the following modifica-
tions are made. In the case of section 2, we assume (w) = > o. (2 . 3)
implies that and hence e: 6 ~p (s) ~ = oo ~ is

exponentially distributed with mean n ~ 6 (w) = oo ~ -1. Hence 
and B (t) is defined for t  A (e - ) and we set B(t)=
F (t - A (e - ), p (e)) for t >__ A (e - ). Since a {p (e)~ = oo, B (t) is well-defined
for all Similar modification can be given to Theorem 3 . 1.
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