Annales de l'I. H. P., Section B

T. K. CARNE
 Brownian motion and stereographic projection

Annales de l'I. H. P., section B, tome 21, no 2 (1985), p. 187-196
http://www.numdam.org/item?id=AIHPB_1985_21_2_187_0
© Gauthier-Villars, 1985, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Brownian motion and stereographic projection

by
T. K. CARNE
King's College, Cambridge.

Abstract. - Stereographic projection from R^{N} to S^{N} maps Brownian paths in \mathbf{R}^{N} to the paths of Brownian motion on S^{N} conditioned to be at the centre of the projection at a negative exponential time.

Key-words: Stereographic projection; Conditioned Brownian motion; Conformal transformations.

Résumé. - La projection stéréographique de R^{N} à S^{N} applique les trajectoires Browniennes de R^{N} sur les trajectoires Browniennes de $\mathrm{S}^{\mathbf{N}}$ conditionnées par le fait d'être au centre de projection à un instant de loi exponentielle.

In this brief note we shall discuss how Brownian motion in $\mathbf{R}^{\mathbf{N}}$, for $\mathbf{N} \geqslant 3$, can be interpreted as a Brownian bridge conditioned to go to the «ideal point at infinity ». This question was posed by Prof. L. Schwartz [2]. Prof. M. Yor [3] presents an alternative, more probabilistic, approach.

1. STEREOGRAPHIC PROJECTION

Consider the unit sphere S^{N} in $\mathrm{R}^{\mathrm{N}+1}$ and the hyperplane

$$
\mathbf{R}^{\mathbf{N}}=\left\{y=\left(y_{1}, \ldots, y_{\mathbf{N}+1}\right): y_{\mathbf{N}+1}=0\right\}
$$

Stereographic projection from the point $\mathrm{P}=(0, \ldots, 0,1)$ of S^{N} maps $y \in \mathbb{R}^{\mathrm{N}}$
to the point $x \in \mathrm{~S}^{\mathbf{N}} \backslash\{\mathrm{P}\}$ which lies on the straight line from P through y; see the diagram. This is a diffeomorphism between $\mathbf{S}^{\mathbf{N}} \backslash\{\mathbf{P}\}$ and $\mathbf{R}^{\mathbf{N}}$, so we regard P as being the point of $S^{\mathbf{N}}$ which corresponds to the «ideal point at infinity of R^{N} ».

Proposition 1. - Brownian motion on R^{N} is mapped by stereographic projection onto a time changed version of the Brownian motion on S^{N} together with a drift towards P at speed $\frac{1}{2}(\mathrm{~N}-2) \tan \frac{1}{2} \theta$ on the sphere.

Proof. - Brownian motion on a Riemannian manifold with metric $g_{a b} d x_{a} d x_{b}$ has as its infinitesimal generator one half of the Laplacian, viz.

$$
\frac{1}{2} \Delta=\frac{1}{2 \sqrt{g}} \sum \frac{\partial}{\partial x_{a}}\left(\sqrt{g} g^{a b} \frac{\partial}{\partial x_{b}}\right)
$$

where $g=\operatorname{det}\left(g_{a b}\right)$ and $\left(g^{a b}\right)=\left(g_{a b}\right)^{-1}$. On S^{N} take co-ordinates (θ, z) for $x \in \mathrm{~S}^{\mathrm{N}}$ where $0 \leqslant \theta \leqslant \pi$ is the angle shown in the diagram and $z=y /\|y\| \in \mathbf{S}^{\mathbf{N}-1}=\mathbf{S}^{\mathbf{N}} \cap \mathbf{R}^{\mathbf{N}}$.

Then

$$
\|d x\|^{2}=|d \theta|^{2}+\sin ^{2} \theta \cdot\|d z\|^{2}
$$

so the Laplacian on S^{N} is

$$
\Delta_{\mathrm{S}^{\mathrm{N}}}=\frac{1}{\sin ^{\mathrm{N}-1} \theta} \frac{\partial}{\partial \theta}\left(\sin ^{\mathrm{N}-1} \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \Delta_{\mathrm{S}^{\mathrm{N}-1}}
$$

Similarly, if we take co-ordinates (r, z) for $y \in \mathbb{R}^{\mathbf{N}}$, where $r=\|y\|$, then

$$
\|d y\|^{2}=|d r|^{2}+r^{2}\|d z\|^{2}
$$

so the usual Laplacian on \mathbb{R}^{N} is

$$
\Delta_{\mathrm{R}^{\mathrm{N}}}=\frac{1}{r^{\mathbf{N}-1}} \frac{\partial}{\partial r}\left(r^{\mathrm{N}-1} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \Delta_{\mathrm{S}^{\mathrm{N}-1}}
$$

The infinitesimal generator for the deterministic motion given by a drift towards P at speed $\frac{1}{2}(N-2) \tan \frac{1}{2} \theta$ is clearly

$$
\frac{1}{2}(\mathrm{~N}-2) \tan \frac{1}{2} \theta \cdot \frac{\partial}{\partial \theta}
$$

Hence, to prove the proposition we need to show that, under stereo-
graphic projection $\frac{1}{2} \Delta_{\mathbf{R}^{\mathrm{N}}}$ corresponds to some strictly positive function timi,

$$
\mathscr{G}_{\mathrm{P}}=\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}+\frac{1}{2}(\mathrm{~N}-2) \tan \frac{1}{2} \theta \cdot \frac{\partial}{\partial \theta} .
$$

Under stereographic projection we have $r=\tan \frac{1}{2} \theta$ so

$$
\begin{aligned}
\Delta_{\mathrm{S}^{\mathrm{N}}} & =\left(\frac{2 r}{1+r^{2}}\right)^{1-\mathrm{N}}\left(\frac{1+r^{2}}{2}\right) \frac{\partial}{\partial r}\left[\left(\frac{2 r}{1+r^{2}}\right)^{\mathrm{N}-1}\left(\frac{1+r^{2}}{2}\right) \frac{\partial}{\partial r}\right]+\left(\frac{1+r^{2}}{2 r}\right)^{2} \Delta_{\mathrm{S}^{\mathrm{N}-1}} \\
& =\left(\frac{1+r^{2}}{2}\right)^{2}\left\{\left(\frac{2}{1+r^{2}}\right)^{2-\mathrm{N}} \frac{1}{r^{\mathrm{N}-1}} \frac{\partial}{\partial r}\left[\left(\frac{2}{1+r^{2}}\right)^{\mathrm{N}-2} r^{\mathrm{N}-1} \frac{\partial}{\partial r}\right]+\frac{1}{r^{2}} \Delta_{\mathrm{S}^{\mathrm{N}-1}}\right\} \\
& =\left(\frac{1+r^{2}}{2}\right)^{2}\left\{\frac{1}{r^{\mathrm{N}-1}} \frac{\partial}{\partial r}\left[r^{\mathrm{N}-1} \frac{\partial}{\partial r}\right]-(\mathrm{N}-2)\left(\frac{2 r}{1+r^{2}}\right) \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{\mathrm{S}^{\mathrm{N}-1}}\right\} \\
& =\left(\frac{1+r^{2}}{2}\right)^{2}\left\{\Delta_{\mathrm{R}^{\mathrm{N}}}-(\mathrm{N}-2)\left(\frac{2 r}{1+r^{2}}\right) \frac{\partial}{\partial r}\right\}
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
\frac{1}{2} \Delta_{\mathrm{R}^{\mathrm{N}}} & =\left(\frac{2}{1+r^{2}}\right)^{2}\left\{\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}+\frac{1}{2}(\mathrm{~N}-2) r\left(\frac{1+r^{2}}{2}\right) \frac{\partial}{\partial r}\right\} \\
& =(1+\cos \theta)^{2}\left\{\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}+\frac{1}{2}(\mathrm{~N}-2) \tan \frac{1}{2} \theta \frac{\partial}{\partial \theta}\right\}
\end{aligned}
$$

This completes the proof.
Vol. 21, n° 2-1985.

We now wish to obtain the random process with infinitesimal generator \mathscr{G}_{P} by conditioning the standard Brownian motion $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ on the sphere to be at P at an appropriate time. To do this we will follow the analysis of conditioning given by J. L. Doob [1, Chapter 10]. Note that we are seeking a time-homogeneous process, so that conditioning $\operatorname{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ to be at P at a fixed time will not do. Furthermore, we cannot simply condition $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ to hit P at some time since, to do so, we would require a positive harmonic function on $S^{N} \backslash\{P\}$ with a singularity at P. No such function exists. However, we do obtain time homogeneous processes by conditioning $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ to be at P at a random time T which is independent of $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ and has a negative exponential distribution.

Proposition 2. - Let T be a random time which is independent of $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ and has a negative exponential distribution with parameter $\lambda=\mathrm{N}(\mathrm{N}-2) / 8$. Then $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ conditioned to be at P at time T has infinitesimal generator

$$
\mathscr{G}_{\mathrm{P}}=\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}+\frac{1}{2}(\mathrm{~N}-2) \tan \frac{1}{2} \theta \frac{\partial}{\partial \theta}
$$

on $\mathbf{S}^{\mathbf{N}} \backslash\{\mathrm{P}\}$. Hence, $\mathrm{BM}\left(\mathbf{R}^{\mathbf{N}}\right)$ is mapped by stereographic projection to a time-changed version of $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ conditioned to be at P at the time T .

Proof. - To condition $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ to be at P at time T we need to find a positive function h on $S^{\mathrm{N}} \backslash\{\mathrm{P}\}$ with a singularity at P and

$$
\left(\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}-\lambda \mathrm{I}\right) h=0
$$

Then the conditioned process will have the h-transform:

$$
u \rightarrow h^{-1}\left(\frac{1}{2} \Delta_{\mathrm{S}^{N}}-\lambda \mathrm{I}\right)(h . u)
$$

as its infinitesimal generator. Such a function h must be a multiple of the Green's function for $\frac{1}{2} \Delta_{\mathbf{S}^{N}}-\lambda I$ with a pole at P and hence it must be a function of θ only. Thus we wish to solve

$$
\frac{1}{2 \sin ^{\mathbf{N}-1} \theta} \frac{\partial}{\partial \theta}\left[\sin ^{\mathrm{N}-1} \theta \frac{\partial h}{\partial \theta}\right]-\lambda h=0 .
$$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

When $\lambda=\mathrm{N}(\mathrm{N}-2) / 8$ the required function h is given by $h=\left(\cos \frac{1}{2} \theta\right)^{-w+2}$ Consequently, the conditioned process has infinitesimal generator

$$
\begin{aligned}
u & \rightarrow h^{-1}\left(\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}-\lambda \mathrm{I}\right)(h \cdot u) \\
& =h^{-1}\left(\frac{1}{2} h \Delta_{\mathrm{S}^{\mathrm{N}}} u+\nabla h \cdot \nabla u+\frac{1}{2} u \Delta_{\mathrm{S}^{\mathrm{N}}} h-\lambda u \cdot h\right) \\
& =\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}} u+h^{-1} \nabla h \cdot \nabla u \\
& =\frac{1}{2} \Delta_{\mathrm{S}^{\mathfrak{N}}} u+\frac{1}{2}(\mathrm{~N}-2) \tan \frac{1}{2} \theta \frac{\partial}{\partial \theta}
\end{aligned}
$$

where ∇ is the gradient for the Euclidean metric on S^{N}. This proves the first assertion and the second follows from Proposition 1.
(Note that the conditioning described above does correspond to the naïve idea of conditioning a process by its position at time T. For suppose that U is a subset of S^{N} with a smooth boundary. If $\left(x_{t}\right)$ is the Brownian motion on S^{N}, then we may form a new process

$$
\begin{aligned}
x_{t}^{*} & =x_{t} \quad \text { for } \quad t<\mathrm{T} \\
& =\partial \quad \text { for } \quad t \geqslant \mathrm{~T}
\end{aligned}
$$

which jumps to a coffin state ∂ at the random time T . If we condition (x_{t}^{*}) so that $x_{\mathrm{T}-}^{*} \in \mathrm{U}$ then we obtain the transition semigroup P_{t} given by

$$
\begin{aligned}
\mathrm{P}_{t} f(x) & =\mathrm{E}^{x}\left(f\left(x_{t}^{*}\right) \mid x_{\mathrm{T}}^{*}-\in \mathrm{U}\right) \\
& =\mathrm{E}^{x}\left(f\left(x_{t}\right) 1_{(t<\mathrm{T})} \mid x_{\mathrm{T}} \in \mathrm{U}\right) \\
& =\frac{\mathrm{E}^{x}\left(f\left(x_{t}\right) 1_{(t<\mathrm{T})} 1_{\mathrm{U}}\left(x_{\mathrm{T}}\right)\right)}{\mathrm{E}^{x}\left(1_{\mathrm{U}}\left(x_{\mathrm{T}}\right)\right)}
\end{aligned}
$$

Setting

$$
h(x)=\mathrm{E}^{x}\left(1_{\mathrm{U}}\left(x_{\mathrm{T}}\right)\right)
$$

we find that

$$
\begin{aligned}
\mathrm{P}_{t} f(x) & =h(x)^{-1} \mathrm{E}^{x}\left(f\left(x_{t}\right) 1_{(t<\mathrm{T})} h\left(x_{\mathrm{T}}\right)\right) \\
& =h(x)^{-1} \int_{t}^{\infty} \mathrm{E}^{x}\left(f\left(x_{t}\right) h\left(x_{s}\right)\right) \lambda e^{-\lambda s} d s \\
& =h(x)^{-1} e^{-\lambda t} \mathrm{E}^{x}\left(f\left(x_{t}\right) h\left(x_{t}\right)\right)
\end{aligned}
$$

by using the Markov property of the Brownian motion. Thus the condiVol. 21, n° 2-1985.
tioned process is the h-transform of the Brownian motion for h the distributional solution of

$$
\left(\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}-\lambda \mathrm{I}\right) h=1_{\mathrm{U}}
$$

We can now decompose this process into an average of the processes conditioned to be at a point $X \in U$ at the time T. See J. L. Doob [1] for further details.)

For each $Y \in \mathbf{S}^{\mathrm{N}}$ let $h(\mathrm{Y},$.$) be the Green's function of \frac{1}{2} \Delta_{\mathbf{S}^{\mathrm{N}}}-\frac{\mathrm{N}(\mathrm{N}-2)}{8} \mathrm{I}$ with a pole at Y . Then the Brownian motion conditioned to be at Y at the negative exponential time T has infinitesimal generator

$$
u \rightarrow h(\mathrm{Y}, x)^{-1}\left(\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}-\frac{\mathrm{N}(\mathrm{~N}-2)}{8} \mathrm{I}\right)(h(\mathrm{Y}, x) u(x))
$$

on $S^{\mathbf{N}} \backslash\{Y\}$. As in Proposition 2 we find that this is

$$
u \rightarrow \frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}} u(x)-(\mathrm{N}-2)\|x-\mathrm{Y}\|^{-1} \nabla\|x-\mathrm{Y}\| . \nabla u(x)
$$

Call this generator \mathscr{G}_{Y}.
Corollary. - Let $\left(x_{t}: 0 \leqslant t \leqslant \mathrm{~S}\right)$ be the process with generator \mathscr{G}_{P} which starts from Y at time $t=0$ and stops at the time S when it first hits P . Then the time reversed process ($\tilde{x}_{\tau}: 0 \leqslant \tau \leqslant S$) given by

$$
\tilde{x}_{\tau}=x_{\mathbf{S}-\tau}
$$

has infinitesimal generator $\mathscr{G}_{\mathbf{Y}}$, starts from P at $\tau=0$ and stops at the time S when it first hits Y.

Proof. - Since stereographic projection maps $\left(x_{t}\right)$ onto Brownian motion in R^{N} it is clear that ($x_{t}: t>0$) almost surely never hits Y . Thus the reversed process certainly starts from \mathbf{P} at $\tau=0$ and stops at the time \mathbf{S} when it first hits Y. It remains to find its infinitesimal generator.

Let $g(\mathrm{Y},$.$) be the Green's function for \mathscr{G}_{\mathrm{P}}$ with pole at Y , then, for any smooth function f which is compactly supported within $\mathrm{S}^{\mathbf{N}} \backslash\{\mathrm{P}, \mathrm{Y}\}$, we have

$$
\mathrm{E} \int_{0}^{\mathrm{s}} f\left(x_{t}\right) d t=\int g(x, \mathrm{Y}) f(x) d \mathrm{~V}(x)=\mathrm{E} \int_{0}^{\mathrm{s}} f\left(\tilde{x}_{\tau}\right) d \tau
$$

where $d \mathrm{~V}$ is the N -dimensional Lebesgue measure on S^{N}.
Consequently, if we denote by $\mathscr{G}_{\mathrm{P}},\left(\mathrm{P}_{t}\right)$ the generator and transition
semigroup for $\left(x_{t}\right)$ and by $\tilde{\mathscr{G}}_{\mathrm{P}},\left(\tilde{\mathrm{P}}_{\tau}\right)$ the corresponding operators for $\left(\tilde{x}_{\tau}\right)$, then we obtain

$$
\begin{aligned}
\int g(x, \mathrm{X}) f(x) \mathrm{P}_{r} k(x) d \mathrm{~V}(x) & =\mathrm{E} \int_{0}^{\mathrm{s}} f\left(x_{t}\right) \mathrm{P}_{r} k\left(x_{t}\right) d t \\
& =\mathrm{E} \int_{0}^{\mathrm{s}} f\left(x_{t}\right) k\left(x_{t+r}\right) d t \\
& =\mathrm{E} \int_{0}^{\mathrm{s}} f\left(\tilde{x}_{\tau+r}\right) k\left(\tilde{x}_{\tau}\right) d \tau \\
& =\int g(x, \mathrm{Y}) k(x) \tilde{\mathrm{P}}_{r} f(x) d \mathrm{~V}(x) .
\end{aligned}
$$

So

$$
\tilde{\mathrm{P}}_{r} k(x)=g(x, \mathrm{Y})^{-1} \mathrm{P}_{r}^{*}(g(x, \mathrm{Y}) k(x))
$$

and

$$
\tilde{\mathscr{G}}_{\mathrm{P}} k(x)=g(x, \mathrm{Y})^{-1} \mathscr{G}_{\mathrm{P}}^{*}(g(x, \mathrm{Y}) k(x)) .
$$

Now recall that $\mathscr{G}_{\mathrm{P}}=h(\mathrm{P}, .)^{-1}\left(\frac{1}{2} \Delta-\lambda \mathrm{I}\right) h(\mathrm{P},$.$) so$

$$
g(x, \mathrm{Y})=\frac{h(\mathrm{Y}, x) h(\mathrm{P}, x)}{h(\mathrm{P}, \mathrm{Y})}
$$

and consequently

$$
\tilde{\mathscr{G}}_{\mathrm{P}} k(x)=h(\mathrm{Y}, x)^{-1}\left(\frac{1}{2} \Delta-\lambda \mathrm{I}\right)^{*}(h(\mathrm{Y}, x) k(x)) .
$$

Since the Laplacian is self-adjoint, this gives the desired result.

2. CONFORMAL TRANSFORMATIONS

In this section we wish to set the results of $\S 1$ in a more general context.
For any $\lambda>0$ we can condition $\mathrm{BM}\left(\mathrm{S}^{\mathrm{N}}\right)$ to be at P at the independent random time T which has negative exponential distribution with parameter λ. Indeed, to do so we need only find a positive function h of θ with

$$
\left(\frac{1}{2} \Delta_{\mathrm{S}^{\mathrm{N}}}-\lambda \mathrm{I}\right) h=0 \quad \text { on } \quad \mathrm{S}^{\mathrm{N}} \backslash\{\mathrm{P}\}
$$

and a singularity at P. If we make the change of variables $q=\frac{1}{2}(1-\cos \theta)$ this becomes

$$
q(1-q) \frac{d^{2} h}{d q^{2}}+\frac{1}{2} \mathrm{~N}(1-2 q) \frac{d h}{d q}-2 \lambda h=0
$$

for $0 \leqslant q<1$. This is in the standard hypergeometric form and may be solved by a power series

$$
h=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

This series has radius of convergence 1 and each a_{n} is positive, so h is certainly positive on $0 \leqslant q<1$. For $\lambda \neq \mathrm{N}(\mathbf{N}-2) / 8$ this formula does not define an elementary function. Although the conditioned process may be studied as in the previous section, it does not correspond to a simple process on $\mathbb{R}^{\mathbf{N}}$.

The key property of stereographic projection is that it is conformal so it alters the metric at any point only by a scale factor. We can develop the arguments above for any such conformal transformation.

Proposition 3. - Let M be an N -manifold $(\mathrm{N} \geqslant 3)$ with a Riemannian metric $g_{a b}$ and a conformally equivalent metric

$$
\tilde{g}_{a b}=\Omega^{2} g_{a b} \quad \text { with } \quad \Omega>0 .
$$

Let R and $\tilde{\mathrm{R}}$ be the scalar curvature for g and \tilde{g} respectively. Then the Brownian motion relative to \tilde{g} can be obtained, up to a time change, by conditioning the Brownian motion relative to g according to its behaviour at a negative exponential time if, and only if, $\mathrm{R}-\Omega^{2} \tilde{\mathrm{R}}$ is constant on M .

Proof. - In terms of the infinitesimal generators $\frac{1}{2} \Delta$ and $\frac{1}{2} \tilde{\Delta}$ for the Brownian motions, the Proposition states that there exists $\lambda>0$ and strictly positive functions h and c on M with

$$
\begin{equation*}
\frac{1}{2} \tilde{\Delta} u=c^{2} h^{-1}\left(\frac{1}{2} \Delta-\lambda \mathrm{I}\right)(h \cdot u) \tag{1}
\end{equation*}
$$

if, and only if, $R-\Omega^{2} \tilde{R}$ is constant. (If we consider the second degree terms of (1) we see that the condition can only be satisfied if g and \tilde{g} are conformal. So there was no loss of generality in restricting ourselves to this case.)

The proof is simply a standard calculation of the scalar curvature for conformal metrics. We shall use the usual index notation for vectors and tensors on M. Let $\nabla_{a}, \tilde{\nabla}_{a}$ be the covariant derivatives relative to g and \tilde{g}.

Then a straightforward but tedious calculation yields the formulae:

$$
\begin{aligned}
\tilde{\nabla}_{a} v_{b} & =\nabla_{a} v_{b}-\Omega^{-1}\left(v_{a} \nabla_{b} \Omega+v_{b} \nabla_{a} \Omega-g_{a b} g^{c d} v_{c} \nabla_{d} \Omega\right) \\
\tilde{\Delta} u & =\tilde{g}^{a b} \tilde{\nabla}_{a} \tilde{\nabla}_{b} u=\tilde{g}^{a b} \tilde{\nabla}_{a}\left(\nabla_{b} u\right) \\
& =\Omega^{2}\left(\Delta u+(\mathrm{N}-2) \Omega^{-1} g^{a b} \nabla_{a} \Omega \nabla_{b} u\right) \\
\Omega^{2} \tilde{\mathrm{R}} & =\mathrm{R}-2(\mathrm{~N}-1) \Omega^{-1} \Delta \Omega-(\mathrm{N}-1)(\mathrm{N}-4) \Omega^{-2} g^{a b} \nabla_{a} \Omega \nabla_{b} \Omega .
\end{aligned}
$$

Thus, for (1) to hold, we must have $c=\Omega$ and

$$
h^{-1}\left(\frac{1}{2} \Delta-\lambda \mathrm{I}\right)(h . u)=\frac{1}{2} \Delta u+\frac{1}{2}(\mathrm{~N}-2) \Omega^{-1} g^{a b} \nabla_{a} \Omega \nabla_{b} u .
$$

Now

$$
\Delta(h . u)=g^{a b} \nabla_{a} \nabla_{b}(h . u)=h \Delta u+2 g^{a b} \nabla_{a} h \nabla_{b} u+u \Delta h
$$

so we obtain the two conditions:

$$
h^{-1} \nabla_{a} h=\frac{1}{2}(\mathrm{~N}-2) \Omega^{-1} \nabla_{a} \Omega
$$

and

$$
\left(\frac{1}{2} \Delta-\lambda \mathrm{I}\right) h=0 .
$$

The first of these is satisfied if, and only if, $h=\mathrm{K} . \Omega^{\frac{1}{2}(\mathbb{N}-2)}$ for some constant K. In this case, the second condition becomes

$$
\begin{aligned}
0 & =\left(\frac{1}{2} \Delta-\lambda \mathrm{I}\right)\left(\Omega^{\frac{1}{2}(\mathrm{~N}-2)}\right) \\
& =\frac{1}{4}(\mathrm{~N}-2) \Omega^{\frac{1}{2} \mathrm{~N}-2} \Delta \Omega+\frac{1}{8}(\mathrm{~N}-2)(\mathrm{N}-4) \Omega^{\frac{1}{2} \mathrm{~N}-3} g^{a b} \nabla_{a} \Omega \nabla_{b} \Omega-\lambda \Omega^{\frac{1}{2} \mathrm{~N}-1} . \\
\Leftrightarrow \lambda & =\frac{1}{4}(\mathrm{~N}-2) \Omega^{-2} \Delta \Omega+\frac{1}{8}(\mathrm{~N}-2)(\mathrm{N}-4) \Omega^{-2} g^{a b} \nabla_{a} \Omega \nabla_{b} \Omega \\
& =\frac{\mathrm{N}-2}{8(\mathrm{~N}-1)} \cdot\left(\mathrm{R}-\Omega^{2} \tilde{\mathrm{R}}\right) . \quad
\end{aligned}
$$

If we take g to be the Euclidean metric on S^{N} and \tilde{g} the metric on S^{N} which corresponds under stereographic projection to the Euclidean metric on $\mathbf{R}^{\mathbf{N}}$, then

$$
\Omega=\frac{1}{1+\cos \theta}, \quad \mathrm{R}=\mathrm{N}(\mathbf{N}-1), \quad \tilde{\mathrm{R}}=0
$$

Vol. 21, n° 2-1985.
and we recover Proposition 2. The above formula may also be usefully applied to conformal mappings from S^{N} to itself.

Proposition 4. - Let $\left(x_{t}: 0 \leqslant t<\mathrm{S}\right)$ be the process on $\mathrm{S}^{\mathbf{N}} \backslash\{\mathrm{P}\}$ with infinitesimal generator \mathscr{G}_{P} and let $\mathrm{T}: \mathrm{S}^{\mathrm{N}} \rightarrow \mathrm{S}^{\mathrm{N}}$ be a conformal automorphism of S^{N}. Then ($\mathrm{T} x_{t}: 0 \leqslant t<\mathrm{S}$) is a time-changed version of the process on $\mathrm{S}^{\mathbf{N}} \backslash\{\mathrm{TP}\}$ with infinitesimal generator $\mathscr{G}_{\mathrm{TP}}$.

Proof. - Recall that the group of conformal automorphisms of S^{N} is generated by the inversions in spheres orthogonal to S^{N}. We could prove the result by direct calculation, as in $\S 1$, of the effect of such an inversion. However, it is simpler to argue indirectly.

Let $U: R^{N} \rightarrow S^{\mathbf{N}}$ be stereographic projection with centre P and let $\mathrm{V}: \mathrm{R}^{\mathrm{N}} \rightarrow \mathrm{S}^{\mathrm{N}}$ be the stereographic projection with centre TP from the N -dimensional subspace of $\mathrm{R}^{\mathrm{N}+1}$ orthogonal to TP. Both of these maps are conformal, so the composite

$$
\mathrm{Q}=\mathrm{V}^{-1} \mathrm{TU}: \mathrm{R}^{\mathrm{N}} \rightarrow \mathrm{R}^{\mathrm{N}}
$$

is conformal. Since $N \geqslant 3$, the only such conformal maps are the Euclidean similarities of R^{N}. These similarities obviously preserve Brownian motion on R^{N}, to within alteration of the time scale by a constant factor. Now Proposition 1 shows that, to within a time change, U maps $B M\left(R^{N}\right)$ to the process with generator \mathscr{G}_{P} and V maps $\mathrm{BM}\left(\mathrm{R}^{\mathrm{N}}\right)$ to the process with generator $\mathscr{G}_{\mathrm{TP}}$. Therefore, $\mathrm{T}=\mathrm{VQU}^{-1}$ does indeed transform the process with generator \mathscr{G}_{P} to a time-changed version of the process with generator $\mathscr{G}_{\mathrm{TP}}$.

If we combine Proposition 4 with the earlier Corollary, we see that timereversal of the process starting at Y with generator \mathscr{G}_{P} corresponds to the image of the process under any inversion which maps S^{N} onto itself and interchanges Y and P . This should be compared with the results of M . Yor [3].

REFERENCES

[1] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, 1984, SpringerVerlag, Berlin.
[2] L. Schwartz, Le mouvement Brownien sur \mathbb{R}^{N}, en tant que semi-martingale dans S_{N}. Annales de l'I. H. P. Probabilités et Statistiques, t. 21, n ${ }^{\circ}$ 1, 1985, p. 15-25.
[3] M. Yor, A propos de l'inverse du mouvement Brownien dans \mathbb{R}^{n} ($n \geqq 3$). Annales de l'I. H. P. Probabilités et Statistiques, t. 21, n° 1, 1985, p. 27-38.
(Manuscrit reçu le 7 décembre 1984)

