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Semistable convolution semigroups
on measurable and topological groups

Eberhard SIEBERT

Mathematisches Institut der Universitat Tubingen Auf der Morgenstelle 10,
D-7400 Tubingen 1, Bundesrepublik Deutschland

Ann. Inst. Henri Poincaré,

Vol. 20, n° 2, 1984, p. 147-164. Probabilités et Statistiques

ABSTRACT. - We consider semistable convolution semigroups
which constitute a natural generalization of stable convolution semi-

groups. Several examples are discussed, a purity law is proved, and the
supports of the corresponding measures are investigated. Moreover we
study the relation between semistability and holomorphy of semigroups.
Special attention is given to the classical semistable semigroups on Euclidean
spaces.

RESUME. - On considère des semi-groupes de convolution semi-stables
qui sont des généralisations naturelles des semi-groupes de convolution
stables. De nombreux exemples seront discutés, une loi de pureté sera
démontrée, et les supports des mesures correspondantes seront explores.
De plus, on étudie la relation entre la semi-st,abilité et l’holomorphie des
semi-groupes. Les semi-groupes semi-stables classiques, sur les espaces
Euclidiens apparaissent comme des exemples d’un intérêt special.

INTRODUCTION

Let (X n)n ,1 be a sequence of independent identically distributed random
vectors with values in some Euclidean space Moreover let 1

be an increasing sequence of positive integers such that the sequence
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148 E. SIEBERT

i converges to some positive real number c ; let 1 be a

sequence of non-singular linear operators on and let (an)n > 1 be a
sequence in If the normed sequence + ... + xn) + 
of random vectors converges in distribution to some probability measure
,u on !Rd then  is said to be operator-semistable with coefficient c.

On the real line semistability was first considered by P. Levy. The defi-
nition above is due to R. Jajte [8 ]. He proved the following characterization
theorem: A full probability measure p on !Rd is operator-semistable if

and only if it is infinitely divisible and if there exist a number c E ]0, 1 [,
a vector b E and a non-singular linear operator B on !Rd with spectral
radius less or equal c such that c = * Eb. Obviously this implies

* Ebt for all t > 0. Moreover if c does not belong to the spectrum
of B then there exists some a E !Rd such that (B - cI)a = b ; and this yields
B(( ~ * = ( ~c * for all t > 0.

Operator-semistability is a generalization of operator-stability (cf. [19 ]).
Since the definition of stability demands a ,one-parameter group of auto-
morphisms the concept of semistability is the more elementary one for
it involves only a single automorphism. Hence it was tempting to study
semistable measures on a topological or measurable group where often
one has only poor information about the structure of the associated auto-
morphism group. In fact there already exist some results for this general
situation [23] ] [24]. Moreover on topological vector spaces semistable
measures have been investigated to some extent [2 ] [77] ] [13 ] [14 ] [23 ].
On the other hand on locally compact groups stable measures are by
now a well established quantity as may be seen from the basic paper [3 ]
of W. Hazod and from its references.

Following a suggestion of A. Tortrat we place ourselves into a rather
general framework. Instead of topological groups we consider measurable
groups as far as possible. Instead of topological automorphisms we choose
measurable homomorphisms to define semistability. Hence we are often
forced to distinguish between the cases c  1 and c > 1 for the coefficient r

of semistability.
There are at least two reasons why to consider semistability on measurable

groups. Firstly there exist vector spaces that are measurable groups in some
natural way but that are not topological groups (e. g. D [0, 1 ] ; cf. [1 ], pp. 181).
Secondly it is the measurable (and not the topological) structure that is
responsible for many of our results.
The paper is organized as follows : In Section 1 the definition of semi-

stability is given and several examples are discussed. In Section 2 a general
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149SEMISTABLE CONVOLUTION SEMIGROUPS ON GROUPS

purity law for semistable measures is proved (Theorem 1) which in particular
yields that on a locally compact group a semistable continuous convolution
semigroup is either absolutely continuous or continuous singular or

degenerate. Moreover a general result related to zero-one laws is proved
for semistable convolution semigroups (Theorem 2).

In Section 3 the concept of a quasi-analytic convolution semigroup is
introduced ; it is shown that on topological groups they admit a common
support semigroup (Theorem 3). Moreover it is proved that semistable
convolution semigroups are quasi-analytic provided they are not ortho-
gonal (Theorem 4). Finally under some additional assumptions such a
semigroup is even holomorphic (Theorem 5). In Section 4 we consider
semistability on Euclidean spaces as an illustration. It is proved that
a full semistable convolution semigroup on Rd is holomorphic (Theorem 6).
Moreover the support of a full operator-semistable measure is studied

more precisely.
The author would like to thank Professor A. Tortrat for his interest

in this work and for many valuable comments on it.

PRELIMINARIES

Let ~l, Z, denote the sets of positive integers, integers, real num-
bers, positive real numbers, and complex numbers respectively. The cardina-
lity of a set A we denote by |A|. If B is a subset of A then 1B denotes the indi-
cator function of B i. e. = 1 if x ~ B and 0 if x E ABB.

Let G be a group with identity e and let ~ be a d-field on G. If the mapping
(x, y) ~ of (G x Q ~) into (G, ~) is measurable then (G, ~)
is called a measurable group. ~) denotes the vector space of real
valued bounded signed measures defined on ~. Furnished with the norm
II ’ ~~ of total variation ElY) becomes a Banach space. Moreover

with respect to its natural ordering becomes a Banach lattice ;
the absolute value of  E Ab(G, is denoted by | |.

If m denotes the (measurable) mapping (x, y) --~ xy of G x G into G

then the convolution /1 * v of ,u, v E is defined as the image of
the product measure /1 with respect to m :

by Fubini’s theorem we have x-1 B, (all x, y E G) and

for all B e ~. This multiplication turns ~) into a Banach algebra.
Vol. 20, n° 2-1984.



150 E. SIEBERT

~) denotes the subsemigroup (with respect to convolution) of
probability measures in For every x E G the unit mass Ex in x

belongs to U1(G, B). If  E the adjoint Jt E is defined

by ~c(B -1 ), B E ~ ; and ,u is said to be symmetric if ,u = ~c. The
orthogonality v E is denoted by ,u 1 v, their equivalence

v. If 03B4 is a measurable mapping of (G, into itself the image
of ~c E ~) is defined by ~(,u)(B) _ ,u(~ -1 (B)), BE ~.

Let D denote an additive subsemigroup of f~* such that t if

s, t E D and s  t. A convolution semigroup in ~) (with index
set D) is a family B) such that s * /It = for all s, t E D.
If D = ~* we write instead of The convolution semigroup

is said to be diffuse (discrete, or degenerate) if all the measures t
are diffuse (discrete, or degenerate i. e. unit masses).

If G is a topological Hausdorff group then % = ~{G) denotes the
6-field of Borel subsets of G and ~B(G) the system of neighbourhoods of
e E G which are in ~B(G). Moreover Aut (G) denotes the group of topological
automorphisms of G.

Obviously (G, ~) is a measurable group. By uHb(G) (resp. we

denote the subset of i-regular signed measures in (resp. in

~)). As is well known J{b(G) is a Banach lattice and a Banach
algebra in itself ; and is a sub-semigroup of ~). The support
of ~c E is denoted by supp (,u). A convolution semigroup 
in is said to be continuous if D is dense in and 

for all U E ~(G). If G is a locally compact group (/It)tED is said to be abso-

lutely continuous (singular) if all the measures t are absolutely continuous
(singular) with respect to a left Haar measure ~ on G.

1 DEFINITION OF SEMISTABILITY
AND EXAMPLES

Let (G, be a measurable group and let be a convolution semi-

group in B). Moreover let 03B4 be a measurable homomorphism
of (G, ~) into itself and let ce ]0, 1 [ ~ ]1, oo [.

DEFINITION. - The convolution semigroup in A1(G, is said

to be 03B4-semistable (in the strict sense) with coefficient c if cD c D and if
= for all t E D.

Remark. This definition has been suggested by A. Tortrat. In fact
there exist more general concepts of semistability namely for probability

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



151SEMISTABLE CONVOLUTION SEMI GROUPS ON GROUPS

measures that are not necessarily embedded into a convolution semi-

group (cf. ] [23] ] [24]).

EXAMPLES. 1. Let G be a topological group. Following W. Hazod [3 ]
a convolution semigroup (,ut)t > 0 in is said to be stable (in the strict
sense) if there exists a subgroup (03B4t)t>0 of Aut (G) in the sense of 03B4s  bt = ast
for all s, t > 0 such that f.1t = for all t > 0. Obviously this implies

= f.1st for all s, t > 0. Consequently is 03B4s-semistable with
coefficient s for every s E ]0, 1 [ u ]1, oo [.

2. Let be a full operator-stable measure with exponent
A E Aut (f~d) in the sense of M. Sharpe [19 ]. Then there exists a continuous
mapping b of f~* into !Rd with b(l)=O such the measures 
t > 0, constitute a convolution semigroup in 

It is well known that every f.1t is absolutely continuous ([7], Theorem 1).
Now if 1 is not in the spectrum of A then there exists some a E f~d such
that b(t) = ta - tAa for all t > 0 ( [19 ], Theorem 6). In fact if the expecta-
tion vector E(,u) of  exists (which is the case iff the real part of every eigen-
value of A is less then 1 ; cf. [12 ]) then one has a = E(~). Thus 
is a stable convolution semigroup (in the sense of example 1) which is
absolutely continuous.

3. Let o be a stable convolution semigroup in with respect
to the automorphism group (~t)t > o (in the sense of example 1). Let H = G x R,

= vt (x) Et and r) = tr) for all (x, rj E H and t E Then

( ~t)t > o is a convolution semigroup in ~~ 1 (H), (6t)t > o is a subgroup of
Aut (H), and = for all t > 0. Thus (,ut)t > o is a stable convolution
semigroup such that supp c G  {t}. Hence s | t if s ~ t. More-

over if G is locally compact then the semigroup (,ut)t > o is singular ; if (vt )t > o
is absolutely continuous then is diffuse.

4. Let (G, B) be an Abelian measurable group and let 03B4 denote the

measurable homomorphism x - 2x of (G, ~) into itself. Now let

,u E be a symmetric Gaussian measure in the sense of T. Bycz-
kowski [1 ] i. e. one has (8) ,u) = (,u * ,u) Q (  * ,u) where 03C8 denotes the
mapping (x, y) -)- (x + y, x - y) of G x G into itself. Obviously one
has = ,u*4 ; hence is a ð-semistable convolution semigroup
with coefficient 4 (cf. [23], p. 549).
Moreover if ð is injective and bimeasurable (i. e. for all B E ~)

then there exists a unique convolution semigroup in ~),
D = ~ k/2n : k, such that every f.1t is a symmetric Gauss measure

Vol. 20, n° 2-1984.



152 E. SIEBERT

and such that Jll - ,u [1 ]. Then is a 03B4-semistable convolution semi-

group with coefficient 4.

5. Let G be a locally convex topological vector space and let r E ]0, 1 [,
03B1 ~ ]0, 2 [. Then by b(x) = x E G, there is given a topological auto-
morphism of G. Now let  E be r-semistable with exponent rx in

the sense of [2 ] [14 ]. Then p is embeddable into a continuous convolution
semigroup (,ut)t> 0 in such that * rt with appropriate
x(t) E G for all t > 0. If 1 then there exists some x E G such that

= for all t > ~. Thus the convolution semigroup
is 03B4-semistable with coefficient r.

6. Let G be a connected Lie group with Lie algebra g, exponential
mapping exp, and Hunt function cp ( [5 ], 4 . 2). Let 03B4 ~ Aut (G) such that
the associated automorphism Ad ((5) of g has norm a  1. Choose X E g
and ce ]oc, 1 [. Then put x = exp X and 11 = Obviously
r~ is a measure on such that = e~.

It is not hard to prove that limn~1 03B4n(x) = e and that  03B1c203B2
for all k e ~l and x e G (where (3 e ~* is an appropriate constant). Hence
one easily verifies that 11 is a Levy measure on G i. e.  ~ for all

U ~ 93(G) and  oo ( [S ], 4 . 4 .14). In fact even  oo holds.

Hence by A(/) := ( f - E ~(G), there is given the generating

functional of a continuous convolution semigroup ( [5 ],
4 . 2 . 8). But ~(r~) = cr~ implies A( f o ~) = cA(f), and thus ,u~~

for all t > 0. Consequently {,ut)t > o is a b-semistable convolution semigroup
with coefficient c.

7. We keep the notations of Example 6. Let X E g, X =t= 0, and put
xi = exp tX as well as Jlt = Ext for all t > 0. Moreover let b E Aut (G)
and c E ]0, 1 ] 1, oo [. Then the convolution semigroup is 03B4-semi-

stable with coefficient c iff 03B4(xt) = xct for all t > 0 and hence iff Ad = cX

i. e. iff X is an eigenvector of Ad (5) for the eigenvalue c. Obviously the semi-
group is degenerate.

2. PURITY

OF SEMISTABLE CONVOLUTION SEMIGROUPS

We start with a rather general concept of purity. By way of specialization
we then arrive at more familiar situations.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



153SEMISTABLE CONVOLUTION SEMIGROUPS ON GROUPS

DEFINITION. - Let 03B4 be a measurable homomorphism of the measurable
group (G, ~) into itself and let c E ]0, 1 [u ] 1, oo [. Moreover let B be
a band of the Banach lattice ~) (cf. [18 ], II. 2) such that the ortho-
gonal band B~ is in addition an ideal of the Banach algebra ~).

Let us call B a (5, c)-band if « c  1 and c ~1 » or « c > 1 and
03B4B c B ».

THEOREM 1. - Let be a 03B4-semistable convolution semigroup
with coefficient c in ~~ 2 (G, ~) and let B be a (~, c)-band in ~).
Then either t ~ B for all t E D or ,ut E B| for all t E D.

Proof For every t E D let Ilt = + ~ct2~ be the unique decomposition
of Ilt such that (1)t ~ B and (2)t E B|. Since B| is an ideal we have

,usl ~ ~ ~~ } and hence

for all s, t E D. Consequently the mapping t ~ !! I ,ut 1 ~ ! ~ is non-increasing.
If c  1 then we have B~, hence ~(;u~2~} ,u~t ~ and thus > ~c~t ~.

Consequently

If c > 1 then we have 68 ~ B and hence (1)ct. Consequently

Thus in any case we have = for all t e D. Therefore t -~ I
has to be constant = ex E [0, 1 ]. But ex = ( I ~ ~csl ~ ~ ~ ~ ~ ~ct 1 ~ 
yields x = 0 or x = 1. Hence the assertion. D

REMARK 1. Bands ~ of such that ~1 is an ideal and B is
an algebra (so-called prime L-subalgebras) have been applied in the context
of zero-one laws (and even purity laws) for convolution semigroups (cf. [10 ]).
But there are bands B such that B| is an ideal but B is not an algebra
(cf. Lemma 2 below).

LEMMA 1. - Let H be a measurable normal subgroup of (G, and
let C be a cross section for the H-cosets. Moreover let 03B4 be a measurable

homomorphism of (G, into itself and let c E ]0, 1 [ u ]1, oo [. If c  1
then let be countable ; if c > 1 then let b -1 (H) ~ H.
Then B = ~ ,u E ~) : ~ = (xH) ~ is a (~, c)-band and

one has ~1 - ~ ,u E ~l b(G, (xH) = 0 for all x ~ G ~ .
Proof - Straightforward.

Vol. 20, n° 2-1984.



154 E. SIEBERT

THEOREM 2. Let (G, ~) be a measurable group such that {x} e N
for all x E G and let 03B4 be a measurable homomorphism of (G, B) into .

itself. Moreover let be a 03B4-semistable convolution semigroup in
~) such that some and hence each measure flt is discrete. If the

coefficient c of is less than 1 then let 03B4 be injective.
Then there exist a finite subgroup F of G and elements xi E G such

that Jlt = Ext * co = W * Ext for all t E D where co = denotes

the uniform distribution on F.

Proof - For abbreviation we put = ,u( ~ x ~ ), xeG, and

S( ~u) _ ~ x E G : ,u(x) > o ~ , ,u E ~~ 1 (G, ~).

1. Let c  1 ; hence b is injective by assumption. We put  = = 

thus J1 = * v. Let A = ~ a E G : J1(a) > for all x E G } . Obviously
A is finite ; put k = ~ A ~ . Now we fix a E A: Then J1 = ~(,u) * v yields :

E A for all b E S(v). Consequently _ k in view of

the injectivity of 5.
Let seD such that and put Then 

yields S(v) ; hence S( s) | ~ k. Moreover 
for all r, r’ E D implies  oo for all s ~ D and the isotony of the
mapping s -~ ~ Finally

yields S( s) | == for all seD; whence l ~ k.
On the other hand we have A c hence k = ~ A ~ _ ~ I = l

i. e. k = and consequently A = But this yields = / 
Starting with ,us instead of ,ul now gives us s = k for all s e D.

2. Let c > 1. Define , A, k as in 1. and put v = c-1. Then 03B4( ) =  * 03BD

yields for 

But ~(cS(a)b -1 ) - ,u(a)  ,u(b -1 (~(a))) implies E A for all b E S(v).
Consequently ( c k.
As in 1. we conclude that the mapping s -~ ~ is finite and increasing

such that (  k if s  c - l, Moreover

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



155SEMISTABLE CONVOLUTION SEMIGROUPS ON GROUPS

yields I E = l  k for all sED. Hence we arrive again at s - 1 k 
for all s E D. 

3. Put Ts = for all sED. Let s, t E D and x E T~. In view of 1. or 2.
respectively we have TS f = ~ = k. Hence Tsx c TSTt = yields
Tsx = Consequently

Thus F = is independent of s E D.
Moreover TtFT-1t = TtTsT-1sT-1t = = F yields F

and hence xF = Fy for all x, y E Tt or E t E D. Thus

Together with F = F -1 this proves that F is a group.

4. Let s ~ D and a, b E TS. As seen in 3. we have Tsb = T2S = aTs. Hence

In view of = F this yields F But F~ > ~ ( implies
aF = Fa = Ts; hence the assertion. [I

REMARKS. 2. In the situation of Theorem 2 we have b(F) = F ; hence
b operates as a permutation on F.

3. If D is a submonogeneous semigroup in R*+ then the xt in Theorem 2
can be chosen in such a way that xsxt = for all s, t e D (cf. [5 ], 3 . 6 . 2).

4. In its generality Theorem 2 is the best result possible : Let F be a
finite group (furnished with the discrete topology) and c,~ the uniform

distribution on F. Then G = fl~ x F is a topological group. Let ~c~ = Gt (x) a)
for all t E [R* and x) = (cr, x) for all (r, x) E G (and ce Then

o is a convolution semigroup in stable with respect to o

(cf. Example 1.1). Obviously the measures t are discrete but non-dege-
nerate.

COROLLARY 1. Let (G, B) be a measurable group and 03B4 a measurable
bomomorphism of (G, ~) into itself. Moreover let H be a measurable

normal subgroup of G such that 5(H) c H. Finally let be a 6-semistable

Vol. 20, n° 2-1984.
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convolution semigroup in A1(G, ~) with coefficient c. If c  1 we assume

additionally 03B4-1(H) = H. Then one of the following two alternatives

does hold :

i) = 0 for all x E G and teD.

ii) There exist a measurable subgroup H 1 ~ H of G such that) = k
is finite and elements xt E G such that = 1 and xtH1 = H1xt

1
for all t e D. Moreover if Hi = Y1H u ... ~ ykH then = - for
all j == 1, ..., k and t ED. 

~

Proof. - Let p denote the natural projection of G onto G = G/H.
Furnished with the c G : p -1 (B’) E ~ ~ one turns G
into a measurable group such , xe G. By 03B4  p = 
there is defined a measurable homomorphism 03B4 of (G, ) into itself;
5 is injective = H. We put x = p(x), X E G, and it 
p E ~~ 1 (G, ~). Then is a b-semistable convolution semigroup in
A1(G, ~). According to Theorem 1 and Lemma 1 either all the measures

tED, are diffuse or discrete. In the latter case we are in the situation
of Theorem 2. Hence there exist a finite subgroup F of G and xt E G such
that t = |F|-103A3x~F~xtx, t E D. Now the assertion follows with Hi = 

D

REMARK 5. - Corollary 1 and Theorem 2 are closely related to a theorem
of A. Tortrat ( [23 ], p. 550). Under additional assumptions (concerning
the group G, the homomorphism 5, or the semigroup Corollary 1
can be strengthened to a zero-one law i. e. one can arrive at Hi = H
(cf. [1 ] [10 ] [11 ] [15] [23] ] [24 ]). In particular D. Louie, B. S. Rajput and
A. Tortrat [I S have proved such a result in the situation of Corollary 1
(even for a weaker concept of semistability) ; but under additional assump-
tions for the homomorphism 5.

COROLLARY 2. Let G be a topological group and b a measurable
homomorphism of (G, ~) into itself having a countable kernel. Moreover
let be a 5-semistable continuous convolution semigroup in 
with coefficient c. If e  1 we assume additionally b to be injective.
Then either all the measures teD, are diffuse or degenerate.

Proof 2014 We apply Corollary 1 with H = ~ e ~ . Hence we may restrict
1

ourselves to the case that t = k where xt E G, t E D, and F a finite

subgroup of G with k = | F |. In view of [20], Lemma 2 we must have

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



157SEMISTABLE CONVOLUTION SEMIGROUPS ON GROUPS

limt~0 /It( { x t|) = 1. But - 1 k for all t E D yields k = 1 hence
t = ~xt. D

LEMMA 2. Let G be a locally compact group and ~, a left Haar measure
on G. Moreover let 03B4 E Aut (G) and c E ]0, 1 [ ~ ] 1, oo [.
Then the space B of signed measures in that are singular with

respect to h is a (b, c)-band ; and 0152B-L is the space of signed measures in
that are absolutely continuous with respect to ~,. Hence Theorem 1

applies to B.

Proof As is well known + is a band decomposition
(cf. [4 ], (14.22)) and is an ideal ( [4 ], (19.18)). (But B is not an algebra
in general.) Moreover there exists some such that ~(~,) = k2 ( [4 ],
(15.26)). Thus 68 c [B, C [B-L. Hence the assertion. D

REMARK 6. In view of Corollary 2 of Theorem 2, Lemma 2 and Theo-
rem 1 a 03B4-semistable continuous convolution semigroup on a locally
compact group G with 6 e Aut (G) is either absolutely continuous or diffuse
and singular or discrete and then even degenerate. In fact there exist also
examples for each of these three types (cf. Examples 1.2, 1. 3, 1. 7).

3. QUASI-ANALYTICITY AND HOLOMORPHY

Let E be a Banach space over C, E’ its topological dual, and 
a semigroup of linear contractions on E. For every u E E and for every

we put By ff we denote the family of
those functions that are continuous on [R* (u E E, ~p E E’).
The semigroup (T(s))s > o is said to be r-quasi-analytic if the family F

is quasi-analytic on the interval j r j i. e. two functions in ff coincidingis quasi-analytic on the interval - , oo i. e. two functions in F coinciding

on an open non-void subset of -, oo already coincide on -, o0

(r ~ R*+). Moreover (G(s))s>0 is said to be quasi-analytic if it is r-quasi-
analytic for every re 
There is the following sufficient condition for (T(s))S > o to be r-quasi-

analytic ( [17 ], Theorem 2) :

(QA) There exist a sequence {s(k))k > ~ in converging to 0 and h, 8 E (1~*
such that for all k ~ N one has -

Vol. 20, n° 2-1984.



158 E. SIEBERT

This criterion will be applied in the following situation: Let (G, ~)
be a measurable group and let E = be the Banach space of

complex valued bounded measurable functions on (G, (furnished
with the supremum norm). Moreover let o be a convolution semi-

group in ~). For all s E L~* we put T(s) f(x) = 

( f E 2(G, fJR), x E G). Then is a semigroup of linear contractions
on 2(G, Now the convolution semigroup is called quasi-
analytic if the associated operator semigroup (’r(s))S > o is quasi-analytic.
Moreover let us call measurab le if {T(s))S > o is weakly measurable
i. e. if F~,~ is measurable for all u E E, ~p E E’.

Now let G be a topological group and let denote the subspace
of functions in 2(G, 93) that are uniformly continuous with respect to
the left uniform structure on G. If the convolution semigroup 
in is continuous then the associated operator semigroup (T{s))S > o
is strongly continuous on (cf. [5 ], 4 .1.1). Hence we have e 5F

for every u e ~lu and for all qJ E E’. The following result is a modified version
of Theorem 1 in [21 ].

THEOREM 3. Let G be a topological group and let be a quasi-
analytic continuous convolution semigroup in 
Then there exists a closed subsemigroup S of G with e E S such that

= S for all t > 0.

Proof 2014 We put St = supp for all t > 0. Let us assume e ~ St for some
t > 0. Then there exists some V E ~(G) such that flt(V2) = 0. We choose
some f e such that f  (The existence of such a function

, 

can be shown with the aid of Theorem 8 . 2 in [4 ].) Now ~ct(V 2) >_ 

implies = 0 or = 0 for all s E ] o, t [. On the other hand
the continuity of the convolution semigroup yields lims~0f d s = f(e) = 1.

In view of = T(s) f (e) this contradicts the quasi-analyticity of the

semigroup. Consequently e E Sr and thus Sr ~ SrSs c for all r, s > 0.

Now let us assume for some r, s > 0. Then there exist x E 
and V E ~3(G) such that Vx n Sr = 0. This time we choose some f E 

such that  f  1vx. Consequently f d t = 0 if 0  t  rand
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> 0. Again this contradicts the quasi-analyticity. Hence the

assertion. D

THEOREM 4. Let (G, ~) be a measurable group and let b be a measurable

homomorphism of (G, ~) into itself. Moreover let o be a b-semistable

convolution semigroup with coefficient c  1 in ~). Finally let

there exist t > t’ > 0 such that !!  2.

Then the convolution semigroup o is quasi-analytic.

Proof - We have to prove that is r-quasi-analytic for every
r > 0. Thus let r > 0 be fixed. By assumption there exist t > t’ > 0 and
0  a  2 such that [( ( ,ut - = 2 - a. Thus there are some s > 0 and

1, such that [ /lms [  2 - a. [Apply the same simple
argument as in the proof of Theorem 4 in [22].] ]

Obviously there exist se]0,2[ [ and no E ~1, no > m, such that

2m/n(2m -  2 - E for all n >_ no. Moreover there exists some 

such that r > We put s(k) = for all k ~ N and h = 1. Then

the semistability yields :

Hence !! 2- - ~

Given let n E N such that r  ns(k)  r + h. Thus n > no. More-

over there are q E { 0, 1, ..., m - 1 ~ such that n = pm + q.

Consequently :

Let (T(t))t>o be the operator semigroup on 2(G, ~) associated with

o. Obviously ~ (T(s(k)) - _ ( -- Hence the assertion

follows from (QA). D

REMARK 1. - The proof of Theorem 4 is a modification of the proof
of Theorem 3 in [22].
Combining Theorems 3 and 4 we now obtain the following result:

COROLLARY. Let G be a topological group and let b be a measurable
homomorphism of (G, ~) into itself. Moreover let o be a 5-semistable

continuous convolution semigroup with coefficient c  1 in 

Finally let there exist t > t’ > 0 such  2.
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Then there exists a closed subsemigroup S of G with e E S such that
S for all t > 0.

REMARK 2. - There exist (semi-) stable continuous convolution semi-
groups with common support semigroup and such that ] = 2

for all s, t > 0 with ~ =}= t. For example let G be the topological direct
product of countably many copies of [RL Moreover let be a stable

continuous convolution semigroup in ~~1(~8) with common support R
(e. g. a Gaussian semigroup) and let be the product of countably many
copies of > 0. Then it is easy to check that is a stable continuous

convolution semigroup in with supp = G for all t > 0. But

if by Kakutani’s theorem.
Let (G, ~) be a measurable group and convolution semigroup

in Roughly speaking is said to be holomorphic if the

mapping t of (~* into the Banach space ~) is holomorphic.
For the exact definition we refer to [22].

THEOREM 5. Let 5 be a measurable homomorphism of (G, ~) into
itself and let o be a b-semistable convolution semigroup with coeffi-
cient c  1 in ~). Then the following assertions are equivalent:

continuous mapping into the Banach space ~)
such  2 for all s, t > 0.

ii) o is measurable ; moreover there exist a, b, d E (~* such that
c > 2a/b and such that ]] ,u~ -  2 - d for all s, t E [a, b ].

iii) ( t > 0) is holomorphic.

Proof 2014 ’(t) ~ (ii)’ is evident.

’(ii) ~ (iiiY. Let r E a, 2 and ~ ~ 0 ~ . Then

In view of c ~ 2- b we ckb 2] : >: 0 } = _ (), - 2_ and thus
2 - d for all 50 ]0, b 2]. Consequently ~ ( s - ~e)2 ~  4 - d

for all se 0, - . Hence the assertion in view of [22], Criterion 1.
’(nf) =~ (f)’. This implication holds for every holomorphic convolution

semigroup (cf. [22], Section 3). ~
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COROLLARY. Let G be a locally compact group and let 03B4 be a measurable

homomorphism of (G, B) into itself. Moreover let {,ut)t > o be a 03B4-semistable
continuous convolution semigroup with coefficient c  1 in 

Finally let the semigroup (~t)t > o be absolutely continuous.
Then the convolution semigroup is holomorphic.

Proof. - Since is absolutely continuous the mapping t ~ ,ut

of ~* into the Banach space is continuous. (This is well known ;
it may be proved by applying Theorem 20 . 4 in [4 ] to the densities of the
measures ,ut.) Moreover by the Corollary above all the measures flt have

a common support which is a semigroup containing e. Hence in view of [9 ],
Satz 111.2.8, we and thus (( fls -  2 for all s, t > 0.

Hence the assertion in view of Theorem 5. D

4. SEMISTABILITY ON EUCLIDEAN SPACES

A measure p E is said to be full if its support is not contained
in an affine hyperplane of If fl is not full then it can be easily shown
that there exist a proper linear subspace V of !Rd and a vector a in the ortho-
gonal complement of V such that p is the direct product of its projection v
onto V and of the point measure Ba where v is full on V. Thus only full
measures will be considered in the sequel.
Now let p E be full and infinitely divisible with corresponding

convolution semigroup (,ut)t > o. Moreover let B be a linear operator on I~d,
bE!Rd and 1 }. ,u is said to be (B, b, c)-decomposable if = B(,u) * ~b.
Since with p also c is full first of all B has to be non-singular. Moreover
it follows = * Etb for all t > 0 and hence = B -1(,u) * E _ B - 
Thus fl is also (B -1, - Without loss of generality
it will therefore always be assumed that 0  c  1.

Every full operator-semistable probability measure on !Rd is (B, b, c)-
decomposable for an appropriate triple (B, b, c) (cf. Introduction). Conver-
sely every full (B, b, c)-decomposable probability measure on !Rd is operator-
semistable (cf. [~] [16]).

Let ,u E be full and (B, b, c)-decomposable with corresponding
convolution semigroup o. Moreover let there exist some a E ~d such
that (B - cI)a = b. [Sufficient conditions are (i) c is no eigenvalue of B ;
(ii) the expectation vector of  exists (which is the case iff ( > c
for all eigenvalues P of B [12 ] [1 b ]) : then a = - fulfills the equation. ]
Then one has * Bta) * ~cta for all t > 0 ; i. e. * is a B-
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semistable convolution semigroup with coefficient c. Hence the results

~on semistable semigroups also apply to most of the operator-semistable
measures.

THEOREM 6. - Let be a b-semistable continuous convolution

semigroup in such that some (and hence each) measure t is full.

Then o is a holomorphic semigroup. Moreover b is a topological
automorphism of (~d.

Proof In view of [4], (22 .18) the homomorphism 03B4 is continuous
and hence linear. Since the measures t are full 5 has to be surjective. Hence
03B4 E Aut (Rd). Thus is also 03B4-1-semistable. Hence without loss of

generality the coefficient of o can be chosen less than 1.

According to [16 ], Theorem 2 . 2 every measure f-lt is absolutely con-
tinuous. Hence the first assertion follows from the Corollary of Theo-
rem 5. D

Let o as in Theorem 6. Then by the Corollary following Theorem 4
there exists a closed subsemigroup S of !Rd with 0 E S such that supp = S

for all t > 0. For the rest of the section this support semigroup will be
studied to some extent. At first some preparations:

LEMMA 3. Let G be a locally compact group with a left Haar measure ~.
and let be a convolution semigroup in such that every ,ut

admits a bounded and continuous A-density f t. Put St = supp 
E G : fix) > 0 ~ and denote by Kt the interior of St (t > 0).

Then Kt = Pt. Moreover St is the closure of Kt and = 1 (all t > 0).

Proof First of all Pt c St implies Pt c Kt. Assume that there exists
some x E This yields with s := t/2 :

Consequently and hence xyEtPs for all yEPs 1. Thus 
But this is a contradiction. Hence K~ = Pt. Now = 1 yields the remain-
ing assertions. 0
An angular semigroup A in ~d is an open subset of ~d with 0 ~ A (where

the bar means closure) and A + A c A. Obviously every open convex
cone in !Rd with vertex 0 is an angular semigroup. If d = 1 these are

the ontly ones. But for d > 1 there exist also other examples ; e. g.

~ (x, y) E 1R2 : x > 0, y ~  .x2 ~ is an angular semigroup in !R2. Further
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informations about angular semigroups can be found in [6], 8. 7. The

following result is probably well known:

LEMMA 4. An angular semigroup A in [Rd is connected.

Proo~ f Apply induction following the dimension d. If d = 1 the asser-
tion is true in view of the remarks above. Let d > 1. There exists some

b E 0, such that A + pb c A for all p >_ 0 ( [6 ], 8 . 7 . 4). For every
xEA put and 

(J e R). Since [~-] ] is the union of all subsets (x, 6 ] such that a  0 and

x + (Jb E A the set [x] ] is connected. Let p denote the projection of f~d
onto the hyperplane H orthogonal to the vector b and containing 0. Then
p(A) is an angular semigroup in H hence is connected by the induction
assumption. Together with [x ] = p -1 ( p(x)) n A, x E A, this yields the

assertion. D

THEOREM 7. - Let be a ~-semistable convolution semigroup
in such that every measure J1t is full. Then there exists an angular
semigroup A in (~~ such that 5(A) = A, ,ut(A) = 1 and A = supp (,u~) for
all t > 0. Moreover every J1t is on A equivalent to the Lebesgue measure
Àd on 

Proof According to the remark following Theorem 6 there exists
a closed subsemigroup S of L~d with 0 E S such that supp (,u~) = S for all
t > 0. Since 6 E Aut ([Rd) (in view of Theorem 6) we must have 5(S) = S.

Let A denote the interior of S. Obviously 5(A) = A. Moreover every
measure /It admits a bounded and continuous 03BBd-density ( [16 ], Theorem 2 . 2).
Thus Lemma 3 yields A = S and /It(A) = 1 for all t > 0. Furthermore

A + A c S implies A + A c A ; hence A is an angular semigroup.
In view of Lemma 3 the measures /It and Àd are equivalent on A. But

as is well known the boundary of an angular semigroup in [Rd is a zero
set for ad (cf. [9], Lemma III.2.6). Hence the last assertion follows. D
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