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Stochastic analysis and local times
for (N, d)-Wiener process

Peter IMKELLER

Mathematisches Institut der Ludwig-Maximilians-Universitat Munchen,
D-8000 Munchen 2, Theresienstrasse 39, Federal Republic of Germany

Ann. Inst. Henri Poincaré,

Vol. 20, n° 1, 1984, p. 75 -101. Probabilités et Statistiques

ABSTRACT. - Let N, k E be such that 2 k + d  2N. It
is well-known that in this case the (N, d )-Wiener process W has local times
possessing (j ointly in (t, x), the time resp. space variables being t resp. x)
continuous derivatives in x of order k. In the framework of an appropriated
stochastic calculus for (N, d)-Wiener process which generalizes Wong’s
and Zakai’s calculus for the Wiener sheet, we derive Tanaka-like formulas
for versions of these derivatives. Using a method provided by the
underlying calculus, we prove (t, x)-continuity for L~k~ : with the help of
Burkholder’s inequalities for the stochastic integral processes occuring
in Tanaka’s formula we establish Kolmogorov’s continuity criterion.

More generally, V c { 1, ..., N ~, d E E such that

2 I k + d  2 V , the local time of (N, d )-Wiener process can be obtained
by integrating the local times of the ( [ V (, d )-processes over tv.
Using this observation, we get Tanaka-like formulas for the joint (t, x)-
derivatives of the local time of W partial in x, w. r. to ti, i E V, in t )
for which the above mentioned method yields continuity results, too.

RESUME. - Soient N, d e I~, tels que 2 k [ + d  2N. Il est

bien connu qu’en ce cas le (N, d)-processus de Wiener possède un temps
local ayant des dérivées en x d’ordre k continues (en (t, x), t étant la variable
du temps, x celle de l’espace). Dans le cadre d’un calcul stochastique appro-
prie pour Ie (N, d)-processus de Wiener qui généralise le calcul de Wong
et Zakai pour le drap Brownien, on obtient des formules à la Tanaka pour
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76 P. IMKELLER

des versions de ces dérivées. Utilisant une méthode provenant de ce

calcul stochastique meme, on démontre la continuité en (t, x) pour 
à l’aide des inégalités de Burkholder pour les processus intégraux stochas-
tiques figurant dans la formule de Tanaka on vérifie le critère de Kolmo-
gorov pour continuité. Plus généralement, étant donne ~ ~ V c { 1, ... , N },
d E E tels que temps local du (N, d)-processus
de Wiener s’obtient en integrant les temps locaux des ( V ~, d)-processus

en ty. On utilise cette observation pour obtenir des formules a la
Tanaka pour les dérivées en (t, x) du temps local de W (la kieme en x, par
rapport à ti, i E V, en t) pour lesquelles la méthode déjà mentionnée fournit
des résultats de continuité aussi.

INTRODUCTION

. It is well-known that N-parameter Wiener process with values in [Rd
for d  2N has local times whose k~ partial derivatives in the space variables
exist and are jointly continuous (in space and time) up to k E such that

2 ~ k ~ + d  2N. Roughly speaking, local times become smoother if N

increases. The opposite is true if d increases. To prove this result, Ehm [8 ]
has generalized Berman’s [3] ] method of Fourier-analyzing occupation
times (in fact, Ehm considered a large class of « Levy-processes ») : take
the Fourier-transform of occupation time and study its integrability and
differentiability properties. This yields very sharp results on moduli of
continuity of local time (for this method, see also Tran [17] and Adler [1 ]).
But local times are quite generally accessible from stochastic analysis,

too. This fact is well-known from one-parameter semimartingale theory
(see Meyer [14 ], p. 361-371, Azema, Yor [2 ], Bichteler [5 ]). There are a
few results for multi-parameter processes, too: Cairoli, Walsh [6] ] give
a representation by a Tanaka-like formula for a local time of the Wiener
sheet; Walsh [19] ] investigates smoothness properties of a local time of
the Wiener sheet by means of Tanaka’s formula. Local times for N-para-
meter « semimartingales » have been studied in [11 ]. See Geman, Horo-
witz [9 ] for a survey on local times.

This paper’s aim is two-fold : firstly, to describe the local time of (N, d )-
Wiener process with d  2N and its (space-and-time) partial derivatives
by Tanaka-like formulae in the framework of an appropriate stochastic
calculus; secondly, to prove the smoothness properties of these functions
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77LOCAL TIMES FOR (N, ~)-WIENER PROCESS

by means of the underlying stochastic calculus. Hereby, no attempt is

made to cope the sharpness of the Fourier-analytic method’s results.

An « appropriate stochastic calculus » has been presented in a previous
paper (see Imkeller [10 ]). As direct generalizations ofWong, Zakai’s [20 ],
the stochastic integrals necessary for a complete calculus are constructed
in the following way : for each partition  of { 1, ..., N } we take a func-
tion 03C6 :  ~ {0, 1, ..., d} to note whether in T-direction the measure
with respect to which we integrate is Lebesgue measure = 0, i. e.

« ») or is the stochastic measure associated with W j = j, i. e.

« T E ~’ » ), 1  j __ d, T E ~. We obtain a set of integrals I~~~ ~~, such that
for f E with ~~ f(W) square integrable w. r. t. P x ~,N for all

(7i, ~), we have the (« Ito’s ») formula

Here D~~°~~ is a differential operator obtained by applying [ times
the Laplacian D and [ times partial differentiation in direction j,
1 __ j  d ; for any process Y, Y 7i is the « ~-corner function » of Y:

~ Y (sup To derive a Tanaka-like formula, we take the term
T E~

of highest differentiation order

in Ito’s formula for formally describing a local time of W over ]o, t ] at
x E (~d by

5y being Dirac’s ð-distribution at y E which is « natural » for our calculus.

Therefore, a representation of local time is obtained by generalizing Ito’s
formula to the solutions of the partial differential equations
®NFN,a(x, . ) - ~ . - x, xé This, however, requires allowing the inte-

grals I~ to be distribution-valued (for N = 1, see Ustunel [18]). It

turns out that there is, yet, another possibility which requires starting with
a modification of Ito’s formula (but keeps the values of the representing
integrals in R) : by « partial stochastic integration » like in the classical
Gauss’ integral theorem we replace integrals over intervals by integrals

Vol. 20, n° 1-1984.



78 P. IMKELLER

~~tu> of the processes i. e. integrals over « affine submanifolds »

of [0, 1 ]N, U; c { 1, ..., N ~, (~, being related to U [-parameter space.
This procedure essentially reduces the orders of occuring differential

operators to at most N; the sum in the resulting formula extends over

(~, ~~ E A, i. e. each T E ~° has at least two elements :

with suitable constants oc~~, ~~ (theorem 4 of [10 ~).
By showing that the corresponding integrals for D~~~ ~>FN~d(x, W) exist,
we prove that this formula makes sense for Indeed, it even makes
sense for if k E is such that 2 ~ k + d  2N, a fact which leads
us directly to a Tanaka-like formula for the kID partial derivative of local
time :

In theorem 1 we show that M~°~ is in fact a good candidate for local time,
whereas is the distributional derivative of in the space variables.
The remainder of this paper is devoted to establishing the smoothness
of in space and time by means of the stochastic calculus presented
in [10 ]. To do this, a method proposed by Walsh [19] ] is employed. In
order to establish Kolmogorov’s criterion for continuity of in space
and time, the moments of each one of the terms figuring in Tanaka’s for-
mula are estimated with the help of Burkholder’s martingale inequalities
for the « martingales » I~~° ‘~~ ~U~. The latter are developed in proposition 1,
generalizing Metraux’s [13] ] inequalities for discrete martingales and
using ideas of Cairoli, Walsh [7] for the continuous parameter case. Thus,
in theorem 2 we obtain functions such that L~k~( . , s, t, . ) is a version
of the usual kth partial derivative of a local time of W over the interval ]s, t]
which is jointly continuous in (s, t, x) as long as s is not on Of course,

L~k~( . , ©, . , . ) is a version of M~k~. If ~ ~ V c { 1, ... , N ~, is such
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79LOCAL TIMES FOR (N, d)-WIENER PROCESS

that d  2 ~ V ~, the local times of the ( ~ V ~, , d )-processes can be

integrated over tv such as to give a local time of W. This observation is
used to treat the joint differentiability in (t, x) of local time. It first yields
another Tanaka-like formula, defining, in a similar manner as above,
functions (k E with 2 ~ k ~ + d  2 V ~ ), which turn out to be
good candidates for joint distributional derivatives of local time: D~k~
in space and w. r. to t~, i e V, in time. Finally, the methods indicated above
yield corresponding continuity results for (theorem 3).

0. NOTATIONS, PRELIMINARIES AND DEFINITIONS

This article is based upon an application of the main theorem of the
stochastic calculus developed in [10 ] to local times. Consequently, it largely
depends not only on the results proved there. It is convenient to take the
same notation, too. Therefore, the reader is referred to [10] ] for general
notations concerning processes, filtrations, parameter space, etc. as well
as for special notations necessary for a neater treatment of the technical
aspects of the stochastic calculus used here. By W we always denote Wiener
process with parameter space 0 = [0, 1 ]N, taking its values in 
(occasionally, W is called (N, d)-Wiener process). The symbol 06 is used

for the set of all pairs (s, t ) E 0 2 with 0  s  t.
The following concept of occupation time is natural for the represen-

tation of local time ofW by means of a Tanaka-like formula : for J E J~, a func-
tion v(., J, . ) : Q x fl~ is called « occupation time of W over » J, if

I_ iN

(In terms of [10 ], J, B) measures the of time » spent
by W(cc~, . ) in B during the time interval J, 
~r = 0 ; cf. corollary 1 of theorem 3 in [10 ]).
A function L(., J,.) x ~(f~d), ~(tR)) is called « local time W

over» J, if for P-a. e. co E Q

Finally, a function x x ~(p~)) is called « local time
ofW », if for P-a. e. co E Q

Vol. 20, n° 1-1984.



80 P. IMKELLER

1. TANAKA’S FORMULA FOR W

We now show how to generalize Ito’s formula (theorem 4 of (10)) in order
to obtain a representation of local time of W by stochastic integrals (Tana-
ka’s formula). By formally differentiating occupation time over J, we
conclude that local time over J at x E should be given by the « integral »

J 03B4wu-x 03A0 uN-1idu, where 5y is Dirac’s 6-distribution at Let

us briefly recall Ito’s formula (theorem 4 of [10 ]). For such that

D~~~~~ f(W) E x 0, P x ~~~), (~, ~) E ~N and >)~ E Lc~~~> >
(0, ~) E E ~ ~ , we have, putting

Moreover, for each product p of finite measures pi, 1  i  N, on 
the existence of (in (cv, s, t )) measurable versions of the integrals occuring
in (1.1) can be assured, such that (1.1) is valid for p2-a. e. (s, t) E , with

J = ]s, t ]. Comparing the last term of (1.1) to the above « integral », we
find that local time should be given by an extension of Ito’s formula to a
family of functions Rd ~ R ~ { ~ } which satisfies the partial
differential equations

It is well-known (cf. Schwartz f16], p. 44-47) that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



81LOCAL TIMES FOR (N, d)-WIENER PROCESS

is a solution of (1.2), 03B3d being the measure of the surface of the d-dimen-
sional unit sphere (yi := 2). We will now establish that in case d  2N,
an extension of Ito’s formula to exists. But it turns out, that we can

do better: if k E is such that 2 k + d  2N, we can even show that
Ito’s formula makes sense for We thus obtain not only Tanaka’s
formula for W in case d  2N, but a candidate for the kID partial derivative
(in the space variables) of the local time of W, if 21 k + d  2N. Consi-

dering the terms of (1.1), our task can be put in the following words : establish
that

for (~, 0 ~, x E ~d, ~ k ~ ]  [(2N - d)/2 ] .

For doing so, we have to estimate the partial derivatives of FN~d(x, . ). Use
induction on the order |q] of the differential operator and observe that
for each (5 > 0 the function u ~ u03B4 log u is bounded on [1, ao [ to conclude
that for q e I~ o, ~ > 0 there is a constant c e f~ such that

Consequently,
(1. 4) for (F, ~) E A with order m, k E > 0 there exists c such that

With the help of ( 1. 4) we can prove

LEMMA 1. 2014 Let d E such that 2 I k ~ + d  2N, (~, ~) E 1~
with order m be given. Then (t~, x) -~ I I D~k~D{~~ ~~FN~ d(x, W~., t~ ~)~ ~ I {~, ~)
is locally bounded on I x Rd.

Proof. Since (~, ~) E 1~, we have m  ~ ~ ~ _ N and thus

 - J/2 V (1/2 - ~).
T aking (i . 4) into account, it is enough to show for l > - d/2 V (1/2 - m)

(~~~ x) -~ II ~I .~ - ~~ Ilc~,~> is locally bounded on 0 ~ x (~d.

In case l ~ 0 this is a simple consequence of the integrability of |W1|l.
In case l  0 the fact that x - E( I ~ - x ~ l ) has its global maximum at
x = 0 for any Gaussian unit vector ~ and scaling imply
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Since I > 1/2 - m we are left with the assertion

Let f32l := 2l), We have

with a suitable constant Cl Since l > - d/2, is finite and since

I > 1/2 - m, r --~ rm+ 1-1 is integrable over [0, 1 ]. This gives (1.5). D

Remark. - The assertion of lemma I is not necessarily true for

{~, This shows that the formula of theorem 3 of [10] ] cannot
be generalized in the same way as (1.1) to give a representation of local time.
By what has been said above we are motivated and by lemma 1 we are

allowed to give

DEFINITION 1. - Let d E E be such that 2 k ~ + d  2N. For

~d, (s, let, setting J = ]s, t ],

We will show now that is, in fact, a good candidate for the kth partial
derivative of local time of W. For this purpose, we need a measurable

version of and some knowledge about the exchangeability of « I~~a ~~~~ »
and « dx ».

. LEMMA 2. - Let (F, ~) E A, p on be a product of finite measures p~,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



83LOCAL TIMES FOR (N, d)-WIENER PROCESS

1 _ f _ N. Further, suppose that a function g: I~~d ~ R ~ ~ ~ j~ satisfies
i ) (t~, x) -~ f I g(x, wc., r~ ~)~ is locally bounded f~d,

--~ g(x, y) is continuous on f~d B ~ 
Then there exists G e x x ~(~d), ~(p~)) such that

iii ) ~( . , s, t, ~:) = 0 J ~ I~~‘=~~.~( ~1~ X J~ g(x~ W ~...,) ]~) for p2 x ~ d - a. e.

(s, t, x) ~E 0 2 x putting J = ]s, t ] ,
iv) s, t, . ) is locally square integrable w. r. t. ~,a, for all s, t) E ~ x ~ 2,

for p2 - a. e. putting J = ]s, t ], all h E 

Proof. Since p is a product measure and iv) and v) are « local » pro-
perties, it is enough to show, that for m E Z~ there exists

such that

iv’) t, . ) is square integrable w. r. t. Àd for all E Q x 0. *

For simplicity, take m = 1. Put A =: ] o, 1 ] ~ =: ~( ] o, 1 ]) x ~( ~ ),
v -_ ~d I x p (instead of ]0, 1 ] resp. ~(]o, 1 ]) resp. ~. in the

proof of lemma 2 of ~ll ]. To make this proof work, we further must replace
I . ( Iq by II . ~t(,03C6) and resort to « lemma 5 and its corollary » of [10] instead
of « lemma 1 » of (Il ]. D

THEOREM 1. - Let d  2N, p on be a product of finite measures
p~, 1 __ i  N. Then for each k E such that 2 I k I -f- d  2N there

exists E x ~(P) x which satisfies

i ) K~k~( . , s, t, x) = M~k~( . , s, t, x) for p2 x ~,2 - a. e. (s, t, x) E a 2 x f~d,
ii) K(k)(03C9, s, t, . ) is locally square integrable w. r. t. Àd for all (co, s, t) E SZ x D 2,

Moreover, I~~°}(., s, t,. ) is a local time of W over ]s, t ] for p2 - a. e. (s, 
W has a local time.

Vol. 20, n° 1-1984.
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Proof - Let k E satisfy 2 ~ k ~ -I- d  2N. For (~, ~) E A set

According to lemma l,~ ~~ fulfils i) and ii) of lemma 2. Therefore we can
choose G~~, ~) such that iii)-v) of lemma 2 are valid for the pair ~~, G~~, ~~).
Define

Of course, E x ~J ( ~ 2) x ~((1~~), ~(~)). i) is a consequence of

lemma 2, iii) and definition 1 ; ii) follows from lemma 2, iv); lemma 2, v) and
the equality

together impli iii ).
Now fix t ~ II and take p:== X + ES being the point mass

in 

and particularly

By (1.4) and since W possesses moments of all orders, the hypotheses
of theorem 4 of [7C] ] are fulfilled. Therefore,

It is clear how (1 . 6) has to be generalized so as to give {o .1) for J = Rt .

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



85LOCAL TIMES FOR (N, ~)-WIENER PROCESS

To obtain (0.2) with a suitable L E x x 

first define L(., t, . ) by K(0)(., 0, t, . ) for rational t ~ II. Then use mono-

tonicity in t of the occupation time of W over Rt.
For arbitrary p, the argument which proves that the corresponding

K~°j{ . , s, t, . ) is a local time over ]s, t ] for p2 - a. e. (s, t ) E ~, is contained
in the one which was given. D
Theorem 1 particularly says that t, . ) is the kID distributional deri-

vative of a local time over ]s, t ] for P x À 2 - a. e. (cv, s, t ) e Q x U 2.
Our next aim is to improve this statement by means of the stochastic cal-
culus we dispose of: we will show that there exists a version of 
which is continuous in (s, t, x). proves to be the « classical » k~ partial
derivative of a local time of W. Hereby, the following technique will be
used (cf. Walsh [19 ]) : Kolmogorov’s well-known continuity criterion for
stochastic processes is verified for each term of separately. This makes
it necessary for example to estimate the moments of

Since for (~, the integral process in the ø-variables of I~~~~~ can
be seen to be a 1-martingale (cf. remark after lemma 4 of [10]), this is
a job for Burkholder’s martingale inequalities for I~~~ ~~.

2. BURKHOLDER’S INEQUALITIES FOR I~ ~ ~~~

Burkholder’s inequalities for martingales with a discrete parameter set
are well-known (cf. Metraux [13 and Merzbach [12 ], p. 43). They imply
(2.1) for 1  p  oo there are constants Ap, Bp > 0 such that for all mar-

tingales M and all partitions (J~: j_  k _ r) of I in J~

In particular, (2.1) can be applied to the 01_parameter martingales

to yield inequalities which, however, still depend on the partition chosen.
Now suppose that a sequence of partitions of in J is given, whose mesh
goes to zero. If we can establish convergence of the corresponding qua-
Vol. 20, n° 1-1984.
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dratic sums on the left and right sides of (2.1) to a suitable limit, we obtain
inequalities depending only on this limit (« quadratic variation »). The
following lemma shows that this can be done for Yo E ~ ~, (~, ~) E ~.
Finally, an appeal to density of in L(, 03C6) will yield Burkholder’s inequa-
lities for all Y E L{~, ~~ .

LEMMA 3. - For o ~ U E IIN let (~, ~) E - ~. Suppose that

Yo E has an I-representation Yo = 03B1k 1 where Kk= vk],
1 TE ~

1 -- k _ q. For n E ~l let (J’°n : 1 _ j _ r(n)) be the partition which is gene-

rated by 1 - k _ u l : o - i _ n 1  - r n theY ~ - - - q / _ - - - ~ ( U U - .~U - ( )U)

partition of 0 U defined by the projections o.f on IU, 1 _ j _ r(n). Then

Proof - Taking U = 0, we can avoid some unessential technicalities.
Further, omitting n as an index will cause no confusion, as it is kept fix
during the following arguments. Note first that by linearity

Therefore, putting

the triangle inequality implies that it is enough to show

Let S c ~. Since W has independent, centered increments, we have
/ i2014r r r /* -iB

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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As in addition for J E ~, 1 _ i _ d, has variance with a

suitable constant c independent of J, we get

(Jensen’s inequality)

Combining (2.3) and (2 . 4) yields

By choice of (J’ :1 __ j _ r), ri _’ n + 1 + qi for 1 ~ i  N. This implies (2.2).
D

PROPOSITION 1. - For 1  p  oo there exist real constants Ap, Bp > 0,
such that for (~, ~) E ~’, Y E 

Proof Due to the density in L~~, the asserted inequalities
need to be established only for Yo Evidently, we can assume (91 == (9.

Using the notations of lemma 3, put

Vol. 20, n° 1-1984.
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(2 . I ) implies

Moreover, by (2. 5), the sequence n E is uniformly integrable
for p > 1, and, by lemma 3, it converges at least in probability. Therefore,
Vitali’s theorem completes the proof. D

Remarks. 1. Doob’s maximal inequalities can be used to sharpen the
right inequality of proposition 1.

2. For 1  p  oo, (, 03C6) E Y E B(R)), proposition 1 yields

the weaker inequality E( | I(, 03C6)(Y) |p) ~ BpE([II | Y |2(., s)ds]p/2) .

3. CONTINUITY OF THE LOCAL TIME

OF W IN ( t, x), DIFFERENTIABILITY IN x

We now come back to the study of smoothness properties of local time
and its distributional derivatives K~k~. As will be seen, this amounts essen-

tially to the study of the finiteness of the moments of local time. The follow-

ing « moment lemma » plays a central role.

LEMMA 4. - Let - du - 2N  1 é E N, 0 E fl be given. Then
there exists Cl E R such that for all J = ]s, t e ~, s >_ u°, x E L~d

Proof 2014 Since l > - d, E( is finite. In case l > 0, note
that Holder’s inequality implies for x E u’ E 0, 1 _ i _ p

The desired conclusion follows easily. Let l  0. First observe that it
is enough to show

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



89LOCAL TIMES FOR (N, d)-WIENER PROCESS

(3.1) there exists c2 e R such that for UO  u’ En, 1  i  p, with pairwise
different coordinates 1 _ j __ N, 1 _ 1 _ p, and x E Lm

where 1 ~ ~ ~ ~, 1 ~ / ~ N, 1 ~= ~ ~~.
Indeed, integrating (3.1) over JP gives the desired conclusion : introduce
new variables v~ := u J - r, 1 _ j  N, 1  i -- p, observe 1 > - 2N and
keep in mind that the set of all ..., uP), not all of whose coordinates
are pairwise different, is a zero-set w. r. t. 

To prove (3.1), we proceed by induction on p. For u > u° we first decom-
pose Wu in the following way. Consider the 6-fields

and write

= ~°(~) + putting 1 ~ j C N .

Then 
- -

’ 

1/2

Now let p = 1. For 1 -- j _ N set a j := ~ ~ u°(u~ - u°) ~ . Infer

1 

from (3 .2) that ~ is centered Gaussian with variance ~ a~ .
1  jN 1 _ jN

Consequently,

for a Gaussian unit vector ç)

(« arithm. mean »
 « geom. mean ») .

This is (3.1) for p = 1.

Vol. 20, n° 1-1984.



90 P. IMKELLER

Now assume (3.1) is valid for p. Set T:=~ j: 1-- j __ N, up+1- max u~ ~
1 Ip+1

and let q~, r~ be chosen such that uqa = max ~ u~ : 1 _ q __ p, uq  up + 1 ~ V u°,
L~ y = min ~ uq : 1 _ q > up + 1 ~, For 1 _ j _ N, ~)
can be derived from and by « interpolation » resp. « extra-

w i th some Gaussian unit vector 03BEj such that (cf. (3 . 2))

(3 . 3) (, 1, ..., N, 1, ... , is independent,

and, putting b, = [ fl up+1)(up+1 _ uqjj)-1 ] 
1 

-2014- 

-1/2

resp. b~ := ~ ~ + 1- ~ for j e T,

with suitable d) E (~.
Now we are ready for the induction step. We proceed in a similar way

as for p = 1, the role of being taken by / 
1 jN 1 jN

To complete the proof, it remains to apply the induction hypothesis
and to look at the definition of bj, 1 _ j __ N. D

Remark. Essential use is made of the hypothesis « u° > 0 » in the
proof of lemma 4. This is the reason why our smoothness results (theorems 2

Annale.s cle l’Institut Henri Poincaré - Probabilités et Statistiques



91LOCAL TIMES FOR (N, d)-WIENER PROCESS

and 3) contain no statement for intervals which « touch » the boundary
n a.

As a direct consequence of lemma 4 we can prove now (by a rather crude
estimation) that the moments of are bounded.

PROPOSITION 2. 2014 Let be such that 2 ( k ~ + d  2N.
Further, let p e Fl , 0  u° e II, and a product p on ~{0 ) of finite measures pi,
I __ f __ N, be giver?. Then there exist ct e f~, f = 1, 2, c2 > 0, such that
for p2 x ~,d - a. e. (s, t, x ~d, s >__ u°,

where is given by theorem 1.

Proof. We proceed in two steps. First we use Tanaka’s formula and
Burkholder’s inequalities in order to establish

(3 . 5) there exists c3 E R such that for (s, t, x) ~ 2 x u0,

For E A with order m, J = ]s, t ] E ~, s > u°, u > u°, remark 2 after
proposition 1 yields

Therefore, by (1.4) and Tanaka’s formula (3 . 5) follows once we have shown
that

(3 . 6) for 0  6  1/2, (~, ~) E A with order m, 1 :=2(2N_ - d - ~ k ~ - m + ~)

there exists c4 E [R such that for J = ]s, t ] E -~, s ? u°, u ~ u°

But l > - d V - 2 Consequently, (3 . 6) follows from scaling (u >_ u°)
and lemma 4. Now remember that K(0)(., s, t, . ) is a local time of W over
]s, t ] for p2 - a. e. (s, t) E Using Fubini’s theorem, we infer from this
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Apply theorem 1, i ) and iii ) and the inequality of Cauchy-Schwartz. Thus

E~ ( K~k~~ ~ ~ S~ t~ x) ~p)

for p~ x ~,d - a. e. (s, X [Rd
But from Paranjape, Park [1 S we have

Combine (3.5) with (3.7) to complete the proof. D
To be able to verify Kolmogorov’s criterion for we need to inves-

tigate the Holder continuity of

LEMMA 5. - Let q E  b, r~  1. For put

:_ ~ x E ~$a : ~ x - z ~ >-- 2 y - Z j ~ , for y > 0 put gy : IR + 
r ~ + Then there exists such that for 

Proof - Fix y, z E On Ay,z, use (1. 3). Let x E Then for each w

on the line segment connecting y - x and z - x we have

Therefore,

with c2, . , c4 independent of x, y, z E [Rd.
This gives the desired inequality on Ay,z. D
We are now prepared to verify Kolmogorov’s criterion for M{k~. This

will be done separately for the time (proposition 3) and space (proposition 4)
variables.
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PROPOSITION 3. - Let dEN, k E be such that 2 ~ k ~ + d  2N.

Further, let p E 0  u° E 0, 0  r~  1/2 be given. Then there exists
Cl E I~ such that for all x E (s, t), (s’, t’) e ~2, s, s’ > u°

~’roof: Fix 0  ~ such that 6 + ~  1/2 and put

~~[r~ , 

We will show for each (~, ~) E A with order m

(3 . 9) there exists c2 e R such that for x E ~d, (s, t), (s’, t’) E ~ 2, s, s’ > u°

Once this is done, the assertion follows from Tanaka’s formula. Compare
g~~~ ~~(s, t, x) and g~~° ~~(s’, t’, x) coordinatewise in s, s’, t, t’ to conclude
that it is enough to find a constant c3 such that E( ~>(s, t, x) can

be estimated by c3| si-ti |p~/|| for x E (s, t) E Q 2, and all 1  i  N.

Hereby it is essential to distinguish between and Therefore,
like in the proof of proposition 2, an application of Burkholder’s inequalities
reduces (3.9) to

(3.10) there exists C4 E R such that for x E (s, t) E 0 2, s >_ u°

First consider the case Estimate the integrand with the help of (1.4)
and conclude by (3.6), observing that l = 2(2N - d - ~ k ~ - m --~ b) > 2ri - 2~ ~ ~.
The case i is more difficult, since lemma 5 has to be used for estimating
the integrand. As u > UO > 0, by scaling we may suppose ~ == { i ~. Then,
according to lemma 5, (3.10) is a consequence of

(3.11) there exists cs such that for x E (s, t) E P, 
i)
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where J = ]s, t ].
To argue (3.11), i), use independence of increments to single out a factor

and observe that the remainder can be treated by lemma 4, since
by choice’ of ~, l - 2r~ > - d V - 2 ~ ~ ~. To argue (3.11), ii ) and iii ), we
make use of the boundedness of the moments of local time (proposition 2).
To infer ii), we will show

(3.12) there exists c6 E (l~ such that for (s, t ) E 0 2 , q E f~ +

Note first that (3.12) implies (3.11), ii). Indeed, is inde-

pendent of W~.,~~~. Consequently, by (3.12), the left side of (3.11), ii) is less
or equal to

which, by D o ob’s inequality, is with a suitable 
But

evidently implies (3.11), ii). To prove (3.12), for familiar reasons, we may
and do assume ~ _ 0. Let L(., s, ~, . ) be a local time of W over J = ]s, t ],
(s, t) E ~ 2, s ~ u°. For (0.1) gives
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Therefore, proposition 2 with p = X (E{S=~ ~- E~tL}), E" being the point
1 iN _

mass in v E Q yields a constant c8 E ~, such that for x E ~d, (s, t) E ~ 2, q E ~ +

As 1 > - d, the integral on the right side exists and (3.12) follows.
Finally, for (3.11), iii) independence of increments can be used in nearly
the same way as it has just been done. Consider the process

which is again an (N, d)-Wiener process.
Observe that

use this to write (3.11), iii ) in terms of X and carry out an analogous cal-
culation to the one which proved ii ). This gives the desired conclusion. D

PROPOSITION 4. - Let d E be such that 2 I k + d  2N.

Further, let p E 0  u° E 0, 0  r~  1/2 be given. Then there exists

cl E I~ such that for x, ye (s, t ) E ~ 2, 

Proof - Fix 0  ~ such that 6 + 11  1/2. Following the proof of pro-
position 3, we can, due to Tanaka’s formula, fix (F, ~) E A with order m
and apply Burkholder’s inequalities (in the form of remark 2 after pro-
position 1) to see that it suffices to show

(3.14) there exists c2 E R such that for x, y E (s, t) e P, s >_ u°, u >_ Uo

Put again := 2(2N - d - ~ k ~ - m ± ~). Use lemma 5 to estimate the inte-
grand, and scaling, in order to trace back (3 .14) to

(3.15) there exists c3 E R such that for x, y E (s, t) ~ ~ 2
Vol. 20, n° 1-1984. 4
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where J = ]s, t ] .

By choice of ~, 1 - 2~ > - d V - 2N. Therefore, i) follows from lemma 4,
whereas ii ) and iii ) are consequences of (3.12) and (3.13) D
We are now ready to state the first smoothness theorem for the local

time of W.

THEOREM 2. - Let d  2N. Then for each k E Nd0 such that 2 |k| + d  2N
there exists E x ~( ~ 2) x which satisfies

L~°~( . , .s, t, . ) is a local time of W over ]s, t ] for all (s, t) E U o.

Proof : - For k such that 2 ~ k ~ + d  2N let be given
according to theorem 1 with p = ~,N. Fix 0  u° E 0, 0  ~  1/2.
Eventually alter on a P x À2N+d-zero set to infer from propositions 3
and 4 : there exists e 1 e R such that for x, y E (s, t ), (s’, t’) E 0 2, s, s’ > u°

As we can take p > (2N in the preceding inequality, we obtain
Kolmogorov’s continuity criterion for (see for example Bernard [4 ]).
Thus there exists L~ x ~(U2 n ]u°, 1 ]2) x ~(IF~d), ~(fl~)) with (in
(s, t, x)) continuous trajectories such that

Consequently we can (P - a. s.) uniquely define processes
E x ~{ ~ 2) x ~(~d), ~((~)) which coincide with on

Q 2 n ]M~j_] ] x ~d and have continuous trajectories in x ~d. i)
follows from (3.16) and theorem 1, i) ; iii) is a consequence of ii) and
theorem 1, iii). ~
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Remark. The method used to prove lemma 4 does not allow to extend

the results of theorem 2 to all intervals of J. Finer estimates, however, .

should be possible (cf. proof of lemma 1, see also Ehm [8]).

4. DIFFERENTIABILITY OF THE LOCAL TIME

OF W IN (t, x)

Let O ~ V E IIN, be such that d  2 ~ V I. Then for all ty E lv,
local times for the ( ( V [, d)-processes exist. Integrating them over tv
produces a local time of the (N, d)-Wiener process. We will now use this
observation to study differentiability of local time in t. It also makes clear

what the t-derivatives look like. We proceed like in 1. - 3. : starting with
an appropriate version of Ito’s formula we derive Tanaka’s formula for
(x, t )-derivatives and establish Kolmogorov’s criterion for continuity.

PROPOSITION 5. - Let O ~ V E IIN, f E be such that .

Further, let a product p on ~{ ~ ) of finite measures 1  i  N, satisfy

Then for each (F, ~) e cr V, there exists
Xc~ ~~~ e ~~(~ x ~( 0 ~) x ~( 0 ~), ~( fF~)) such that

for pV x Pv - a. e. (sv, tv’ x {]y, with at~, ~~ according to (1.1).

Proof By (4.1), the existence of x ~((F~))
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satisfying i ) and ii ) follows from lemma 5 of [7~] in the same way as the
corollary of it. Fix ~) E c V, and uv E ~~ such that

which is true for uV ~ Oy. Apply theorem 4 of [10 ] to the ( | V |, d)-

Wiener process to obtain iii) (cf. (4.6) in the proof of
iev

lemma 6 of [10 ]). D
Now let d E k E such that 2 ~ k + d  2 ~ V [, a product p

on of finite measures pi, 1  i  N, and (~, E A,  c V, be given.
Then, the proof of lemma 1 gives

is locally bounded on ~~. x 
Proposition 5 in place of (1.1) and (1.2) with instead of moti-

vate the following definition, which makes sense in consequence of (4.2).

DEFINITION 2. - Let o ~ V E be such that

Now observe that the proofs of propositions 3 and 4 go through without
essential modifications for instead of M~k~. Therefore, we obtain
for V, d, k as above, p ~ N, 0 E . p , 0  ~  1/2

(4. 3) there exists c1 ~ R such that for x, y E uV 

With the help of (4.3), the second smoothness theorem for local times
can now be proved.
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THEOREM 3. 2014 For each ~ ~ V ~ 03A0N, V ~ (9, k E such that

~(~ ~) x ~(pv~ x ~(f~a), ~(p~))
which satisfies

Let be given according to theorem 2. Then

In particular, P - a. s. for all x E [Rd, 0 0

t --~ L~k~( . , s, t, x) is continuously partially differentiable in (ti, i E V) and

Proof - To argue i)-iii), we proceed like in the proofs of theorems 1

and 2: we make use of an obvious generalization of lemma 2 which rests
upon (4 .1) instead of lemma 1 ; (4. 3) takes the place of propositions 3 and 4.
To prove iv), employing proposition 5 instead of theorem 4 of [10 ],
we derive the following analogon of (1.6)
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Now integrate both sides of (4.4) to get

Considering (0.1), this implies the validity of iv) for k = 0. Apply iii) and
theorem 2, iii ) to infer iv ) for all k E such that 2 ~ k ~ + d  2 ~ v ~. What
remains to be done is an easy consequence of iv). D
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