Annales de l'I. H. P., section B ### ANNIE MILLET # On convergence and regularity of two-parameter (Δ) submartingales Annales de l'I. H. P., section B, tome 19, nº 1 (1983), p. 25-42 http://www.numdam.org/item?id=AIHPB 1983 19 1 25 0> © Gauthier-Villars, 1983, tous droits réservés. L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ On convergence and regularity of two-parameter ($\Delta 1$) submartingales by #### Annie MILLET Université d'Angers, Faculté des Sciences, 2, Boulevard Lavoisier, 49045 Angers Cedex RÉSUMÉ. — Une sous-martingale indicée par \mathbb{N}^2 ou \mathbb{R}^2_+ est une sous-martingale ($\Delta 1$) si l'espérance conditionnelle de l'accroissement rectangulaire X(s,t] par rapport à la tribu \mathscr{F}^1_s est positive. Nous montrons que les sous-martingales ($\Delta 1$) bornées dans L Log L convergent presque sûrement et admettent des modifications continues à droite limitées dans le quatrième quadrant. ABSTRACT. — We introduce ($\Delta 1$) submartingales which are submartingales indexed by \mathbb{N}^2 or \mathbb{R}^2_+ such that the conditional expectation of the rectangular increment X(s,t] given \mathscr{F}^1_s is non negative. We show that L Log L-bounded ($\Delta 1$) submartingales converge almost surely, and have right-continuous modifications which have limits in the fourth quadrant. It is known that under the conditional independence assumption (F4) L_{∞} -bounded two-parameter submartingales $(X_t, t \in \mathbb{N}^2)$ do not converge almost surely [7]; there is only equality between the upper limit of X_t and its L_1 -limit [11], [15]. Thus in the continuous case the existence of regular modifications for two-parameter submartingales requires more stringent assumptions on the process. R. Cairoli [6] strengthened the definition of submartingale by adding the property (S): for all indices $s \ll t$, the conditional expectation of the rectangular increment X(s,t] given \mathcal{F}_s is non negative. He studied the existence of a Doob-Meyer decomposition of these processes, and their almost sure convergence under a boundedness assumption on the « quadratic variation ». In this paper we relax the assumption (F4) on the σ -algebras, and define ($\Delta 1$) submartingales as submartingales satisfying the property ($\Delta 1$): for all indices $s \ll t$, the conditional expectation of X(s,t] given the vertical σ -algebra \mathscr{F}_s^1 is non negative. This extends the notion of 1-martingale as defined in [14]. We show that L Log L-bounded positive ($\Delta 1$) submartingales converge almost surely, and have right-continuous modifications with limits in the fourth quadrant. This generalizes theorems proved in [14], and the techniques are similar: the proof consists in showing that the processes are amarts with respect to the totally ordered family of σ -algebras (\mathscr{F}_t^1), and applying the amart theorems on convergence and regularity. However our methods do not give the existence of left-limited versions proved by D. Bakry [2] for martingales with respect to product σ -algebras. The first section states the precise definitions. The second section considers discrete parameter ($\Delta 1$) submartingales. The existence of regular modifications for continuous parameter ($\Delta 1$) submartingales is studied in the third section. #### 1. DEFINITIONS AND NOTATIONS Let I denote \mathbb{Z}^2 or \mathbb{R}^2_+ with the usual order $s=(s_1,s_2)\leq (t_1,t_2)=t$ if $s_1\leq t_1$ and $s_2\leq t_2$; then I is filtering to the right. Set $s\ll t$ if $s_1< t_1$ and $s_2< t_2$. Let (s,t] denote the rectangle $\{u\in\mathbb{R}^2:s\ll u\leq t\}$. Let (Ω,\mathcal{F},P) be a complete probability space, and let (\mathcal{F}_t) be a stochastic basis indexed by I, i. e., an increasing family of complete sub-sigma-algebras of \mathcal{F} . For every $t=(t_1,t_2)$, set $$\mathscr{F}_t^1 = \bigvee_{u} \mathscr{F}_{t_1,u} = \mathscr{F}_{t_1,\infty}, \ \mathscr{F}_t^2 = \bigvee_{u} \mathscr{F}_{u,t_2} = \mathscr{F}_{\infty,t_2}, \ \text{and} \ \mathscr{F}_{\infty,\infty} = \bigvee_{u} \mathscr{F}_{u,t_2}$$ A process (X_t) is adapted if X_t is \mathcal{F}_t -measurable for every $t \in I$. Given a process (X_t) and $s \ll t$, set $$X(s, t] = X_{t_1,t_2} - X_{t_1,s_2} - X_{s_1,t_2} + X_{s_1,s_2}.$$ An integrable adapted process (X_t) is a submartingale [supermartingale] if $E(X_t | \mathscr{F}_s) \ge X_s$ [$E(X_t | \mathscr{F}_s) \le X_s$] whenever $s \le t$. A martingale is both a submartingale and a supermartingale. An adapted integrable process (X_t) is a $(\Delta 1)$ submartingale if it is a submartingale and has the property $(\Delta 1)$: ($$\Delta 1$$) $\mathbb{E}[X(s,t) | \mathscr{F}_s^1] \ge 0$ whenever $s \ll t$. An adapted integrable process is a $(\Delta 1)$ supermartingale if it is a supermartingale, and has the property (P1): (P1) $$E[X(s, t) | \mathcal{F}_s^1] \le 0$$ whenever $s \ll t$. Remark that the property ($\Delta 1$) [(P1)] may be interpreted as follows: for every fixed b > a the map $u \mapsto \mathrm{E}(\mathrm{X}_{b,u} - \mathrm{X}_{a,u} | \mathscr{F}_{a,\infty})$ is increasing [decreasing]. Suppose that the space is the product of two probability spaces, and that $X_{a,b}(\omega_1, \omega_2) = Y_a(\omega_1)Z_b(\omega_2)$. If $(Y_a, a \ge 0)$ is a one-parameter positive martingale and $(Z_b, b \ge 0)$ is a one-parameter submartingale, or if (Y_a) is a positive submartingale and (Z_b) is a positive increasing one-parameter process, then $(X_t, t \in I)$ is a $(\Delta 1)$ submartingale. We give another example of a discrete $(\Delta 1)$ submartingale. For $i \ge 0$ let $(M_{i,j}, j \ge 0)$ be a submartingale for the increasing family of σ -algebras $(\mathscr{A}_{i,j}, j \ge 0)$. For every $(i, j) \in \mathbb{N}^2$, set $$\mathbf{X}_{i,j} = \sum_{k \leq i} (\mathbf{M}_{k,j} - \mathbf{M}_{k,0}), \qquad \mathscr{F}_{i,j} = \bigvee_{k \leq i} \mathscr{A}_{k,j},$$ and suppose that $\mathscr{F}_{i,j}$ and $\bigvee_{k>i}\mathscr{A}_{k,j}$ are independent for every (i,j). The process $(X_t, \mathscr{F}_t, t \in \mathbb{N}^2)$ is a $(\Delta 1)$ submartingale. Indeed the property (B1) is clearly satisfied, and to check the submartingale property, it suffices to verify that $X_{i,j} \leq E(X_{i,j+1} | \mathscr{F}_{i,j})$ for every (i,j). For every $$A_1 \in \mathcal{A}_{1,j}, \ldots, A_1 \in \mathcal{A}_{1,i},$$ one has $$E[1_{A_{1} \cap ... \cap A_{i}}(X_{i,j+1} - X_{i,j})] = \sum_{k < i} P(A_{1} \cap ... \cap A_{k-1} \cap A_{k+1} \cap ... \cap A_{i}) E[1_{A_{k}}(M_{k,j+1} - M_{k,j})] \ge 0.$$ Set $\phi(x) = x \operatorname{Log}^+ x$; a random variable X belongs to L Log L if $\operatorname{E}[\phi(|X|)] < \infty$, and a process (X_t) is bounded in L Log L if $$\sup \{ E[\phi(|X_t|)] : t \in I \} < \infty.$$ Let J be a directed set filtering to the right, and let $(\mathcal{G}_t, t \in J)$ be a stochastic basis. A map $\tau: \Omega \to J$ is a stopping time for (\mathcal{G}_t) if $\{\tau \leq t\} \in \mathcal{G}_t$ for every $t \in J$. A *I-stopping time* is a stopping time for $(\mathcal{F}_t^1, t \in I)$, where $I = \mathbb{Z}^2$ or \mathbb{R}^2_+ . A stopping time is called *simple* if it takes on finitely many values. Let T^1 denote the set of simple 1-stopping times. If τ is a stopping time for (\mathcal{G}_t) , let $\mathcal{G}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{G}_{t} \text{ for all } t \}.$ An adapted integrable process $(X_t, \mathcal{F}_t, t \in \mathbb{Z}^2)$ is a *1-amart* [descending *1-amart*] if the net $(EX_\tau, \tau \in T^1)$ converges when $\tau \to (\infty, \infty)$ [$\tau \to (-\infty, -\infty)$]. We now give definitions relative to the continuous case. Given an index $t \in \mathbb{R}^2$, denote the quadrants determined by t by $Q_I(t) = \{s: s \ge t\}$, $Q_{II}(t) = \{s: s_1 \le t_1, s_2 \ge t_2\}$, $Q_{III}(t) = \{s: s \le t\}$, and $Q_{IV}(t) = \{s: s_1 \ge t_1, s_2 \le t_2\}$. A stochastic process $(X_t: t \in \mathbb{R}^2)$ is continuous in Q_i , $i = I, \ldots, IV$, if $X_t = \lim (X_s: s \to t, s \in Q_i(t))$ for every t. For every $t = I, \ldots, IV$, denote $Q_i^0(t)$ the interior of $Q_i(t)$ for the euclidian topology. The process has limits in Q_i , $i = I, \ldots, IV$, if $\lim (X_s: s \to t, s \in Q_i^0(t))$ exists for every t. A sequence $\tau(n)$ of 1-stopping times 1-decreases to τ in $Q_1[Q_{IV}]$ if A sequence $\tau(n)$ of 1-stopping times 1-decreases to τ in $Q_1[Q_{1V}]$ if $\lim \tau(n) = \tau$, the sequence $\tau(n)_1$ decreases, and $\tau(n) \ge \tau$ for every n $$[\tau(n)_1 \ge \tau_1, \ \tau(n)_2 \le \tau_2 \text{ for every } n].$$ A sequence $\tau(n)$ of 1-stopping times 1-recalls τ in $Q_I[Q_{IV}]$ if $\tau(n)$ 1-decreases to τ in $Q_1[Q_{1V}]$, and $\tau(n) \gg \tau$ for every $n[\tau(n)_1 > \tau_1, \tau(n)_2 < \tau_2$ on the set $\{\tau_2 > 0\}$ for every n. An integrable process $(X_n, \mathcal{G}_n, n \in \mathbb{N})$ $[(X_n, \mathcal{G}_n, n \in -\mathbb{N})]$ is an ascending [a descending] amart if the net $(EX_{\tau}, \tau \in T)$ [$(EX_{\tau}, \tau \in T)$] converges, where T denotes the set of simple stopping times for (\mathcal{G}_n) . If \mathcal{G}_n decreases for $n \ge 0$, $Y_{-n} = X_n$, $\mathcal{H}_{-n} = \mathcal{G}_n$, then $(X_n, \mathcal{G}_n, n \in \mathbb{N})$ is a descending amart if $(Y_n, \mathcal{H}_n, n \in -\mathbb{N})$ is one. A one-parameter integrable process $(X_t, \mathcal{G}_t, t \geq 0)$ is an ascending [a descending] amart if for every stopping time τ for (\mathcal{G}_t) , and for every sequence $(\tau(n), n \in \mathbb{N})$ $[(\tau(n), n \in -\mathbb{N})]$ of simple stopping times for (\mathcal{G}_t) that increases to τ , the process $(X_{t(n)}, \mathcal{G}_{\tau(n)}, n \in \mathbb{N})$ $[(X_{\tau(n)}, \mathcal{G}_{\tau(n)}, n \in -\mathbb{N})]$ is an ascending [a descending] amart. A process $(X_t, \mathcal{G}_t, t \ge 0)$ is of class (AI) if for every uniformly bounded sequence of simple stopping times $\tau(n)$, sup $E | X_{\tau(n)} | < \infty$. An integrable process $(X_t, \mathcal{F}_t, t \in \mathbb{R}^2_+)$ is a 1-amart in $Q_1[Q_{IV}]$ if for every bounded 1-stopping time τ , and for every uniformly bounded sequence $(\tau(n): n \in \mathbb{N})$ in T^1 which 1-recalls τ in $Q_I[Q_{IV}]$, the process $(X_{\tau(n)}, \mathscr{F}^1_{\tau(n)}, n \in \mathbb{N})$ is a descending amart. The process $(X_t, \mathcal{F}_t, t \in \mathbb{R}^2_+)$ is a descending 1-amart if it is a 1-amart in Q_1 and Q_{IV} , and if for every $b \ge 0$, the one-parameter process $(X_{t,b}, \mathcal{F}_{t,b}, \mathcal{F}_{t,b})$ $t \ge 0$) is a descending amart. #### 2. DISCRETE PARAMETER In this section we prove that L Log L-bounded positive ($\Delta 1$) submartingales converge almost surely by showing that they are 1-amarts. This generalizes Theorem 1.1 [14]. THEOREM 2.1. — Let $(X_t, \mathcal{F}_t, t \in \mathbb{Z}^2)$ be an L Log L-bounded ($\Delta 1$) submartingale [submartingale with (P1)] such that $X_t \geq E(Y \mid \mathcal{F}_t)$ for some random variable $Y \in L$ Log L. Then $(X_t, t \in \mathbb{N}^2)$ is a 1-amart, and hence converges almost surely when $t \to (\infty, \infty)$, while $(X_t, t \in -\mathbb{N}^2)$ is a descending 1-amart, and converges almost surely when $t \to (-\infty, -\infty)$. *Proof.* — We at first prove the 1-amart property of the (Δ1) submartingale $(X_t, t \in \mathbb{N}^2)$. Given an increasing sequence (t_n) of indices in \mathbb{N}^2 , the process $(X_{t_n}, \mathscr{F}_{t_n}, n \geq 0)$ is an L Log L-bounded submartingale, and X_{t_n} converges in L₁. Hence the net (X_t) converges in L₁ to a random variable $X \in L$ Log L, such that $X_t \leq E(X \mid \mathscr{F}_t)$ for every t. Fix $j \in \mathbb{N}$; the one-parameter submartingale $(X_{n,j}, \mathscr{F}_{n,j}, n \geq 0)$ $[(X_{j,n}, \mathscr{F}_{j,n}, n \geq 0)]$ converges a. s. and in L₁ to an $\mathscr{F}_{\infty,j}$ $[\mathscr{F}_{j,\infty}]$ random variable $X_{\infty,j}$ $[X_{j,\infty}]$ that belongs to L Log L. The submartingale property and the L₁ convergence of the nets $(X_{n,j}, n \geq 0)$ and $(X_{j,n}, n \geq 0)$ show asymptotically in n that $(X_{\infty,j}, \mathscr{F}_{\infty,j}, j \geq 0)$ and $(X_{j,\infty}, \mathscr{F}_{j,\infty}, j \geq 0)$ are L Log L-bounded submartingales. Both sequences converge a. s. and in L₁ to X when $j \to +\infty$. Set $\overline{I} = (\mathbb{N} \cup \{+\infty\})^2$, $$X_{\infty,\infty} = X$$, and $\mathscr{F}_{\infty,\infty} = \bigvee_{t \in \mathbb{N}^2} \mathscr{F}_t$. It is easy to see that the process $(X_t, \mathscr{F}_t, X_t)$ $t\in\overline{1}$) is a $(\Delta 1)$ submartingale. By Doob's maximal inequality applied to the positive submartingales $X_{n,\infty}^+$, $X_{\infty,n}^+$, $X_{n,0}^+$, and to the positive martingales $\mathrm{E}(Y^-\mid\mathscr{F}_{n,\infty})$, $\mathrm{E}(Y^-\mid\mathscr{F}_{\infty,n})$ and $\mathrm{E}(Y^-\mid\mathscr{F}_{n,0})$ (see e. g. [16], p. 69), one has $\mathrm{E}(\sup\mid X_{n,\infty}\mid:n\geq 0)<\infty$, $\mathrm{E}(\sup\mid X_{\infty,n}\mid:n\geq 0)<\infty$, and $\mathrm{E}(\sup\mid X_{n,0}\mid:n\geq 0)<\infty$. Hence the sequences $(\sup_{j\geq n}\mid X_{j,\infty}-X\mid:n\geq 0)$, ($\sup_{j\geq n} |X_{\infty,j} - X| : n \geq 0$), and ($\sup_{j\geq n} |X_{n,0} - X_{\infty,0}| : n \geq 0$) are uniformly integrable, and they converge a. s. to zero. Fix $\varepsilon > 0$, and choose K such that $$\begin{split} & \mathbb{E}\left[\sup\left\{\,|\,\mathbf{X}_{j,\infty}-\mathbf{X}\,|\,:j\geq \mathbf{K}\,\right\}\,\right]\leq \varepsilon, \\ & \mathbb{E}\left[\sup\left\{\,|\,\mathbf{X}_{\tau,j}-\mathbf{X}\,|\,:j\geq \mathbf{K}\,\right\}\,\right]\leq \varepsilon, \end{split}$$ and $\mathbb{E}\left[\sup\left\{\,|\,X_{j,0}\,-X_{\infty,0}\,|\,:j\geq K\,\right\}\,\right]\leq \varepsilon.$ Vol. XIX, nº 1-1983. Let $\tau \geq (K, K)$ be a simple 1-stopping time. The property ($\Delta 1$) applied to the rectangle $((t_1, 0), (\infty, t_2)]$ implies $$\begin{split} \mathrm{EX}_{\tau} &= \sum_{t} \mathrm{E} \left[\mathbf{1}_{\{\tau = t\}} \mathrm{X}_{t} \right] \\ &\leq \sum_{t} \mathrm{E} \left[\mathbf{1}_{\{\tau = t\}} (\mathrm{X}_{\infty, t_{2}} + \mathrm{X}_{t_{1}, 0} - \mathrm{X}_{\infty, 0}) \right] \\ &\leq \mathrm{EX} + \mathrm{E} \left(\sup_{j \geq \mathbf{K}} |\mathrm{X}_{\infty, j} - \mathrm{X}| \right) + \mathrm{E} \left(\sup_{j \geq \mathbf{K}} |\mathrm{X}_{j, 0} - \mathrm{X}_{\infty, 0}| \right) \\ &\leq \mathrm{EX} + 2\varepsilon. \end{split}$$ Conversely, the property ($\Delta 1$) applied to the rectangle $(t, (\infty, \infty)]$ shows that $$\begin{split} \operatorname{EX}_{\tau} &\geq \sum_{t} \operatorname{E} \left[1_{\{\tau = t\}} (X_{t_{1},\infty} + X_{\infty,t_{2}} - X) \right] \\ &\geq \operatorname{EX} - \operatorname{E} \left(\sup_{j \geq K} |X_{j,\infty} - X| \right) - \operatorname{E} \left(\sup_{j \geq K} |X_{\infty,j} - X| \right) \\ &\geq \operatorname{EX} - 2\varepsilon. \end{split}$$ Hence (X_t) is an L_1 -bounded 1-amart. Consider now a submartingale $(X_t, \mathscr{F}_t, t \in \mathbb{N}^2)$ with the property (P1). Extend the process to a submartingale with (P1) $(X_t, t \in \overline{I})$ as in the first part of the argument. Fix $\varepsilon > 0$, and choose K as above. Let $\tau \geq (K, K)$ be a simple 1-stopping time. A similar argument shows that the property (P1) applied to the rectangle $((t_1, 0), (\infty, t_2)]$ leads to $EX_\tau \geq EX - 2\varepsilon$, while the property (P1) applied to the rectangle $(t, (\infty, \infty)]$ gives $EX_\tau \leq EX + 2\varepsilon$. This concludes the proof of the 1-amart property of (X_t) . Finally similar proofs show the descending 1-amart property of the processes in the descending case. The stochastic basis (\mathcal{F}_t^1) is totally ordered, and hence satisfies the Vitali condition V. The almost sure convergence of (X_t) when $t \to (+\infty, +\infty)$ or $(-\infty, -\infty)$ follows from Astbury's theorem [1] Remark. — An analog of Theorem 2.1 can be proved by a similar technique for $(\Delta 1)$ supermartingales [supermartingales having the property $(\Delta 1)$], say $(X_t, t \in (\mathbb{N} \cup \{+\infty\})^2)$, under the additional assumption: $$\mathbb{E}\left(\sup\left\{\left|X_{i,j}\right|:i\in\mathbb{N}\cup\left\{\right.+\infty\left.\right\}\right.\right\}\right)<\infty,$$ and $$\mathbb{E}\left(\sup\left\{\left|X_{i,i}\right|:i\in\mathbb{N}\cup\left\{+\infty\right\}\right\}\right)<\infty\quad\text{for every}\quad j\in\mathbb{N}\cup\left\{+\infty\right\}.$$ We prove a Doob-Meyer decomposition of $(\Delta 1)$ submartingales. The stochastic basis (\mathscr{F}_t) has the property (F4) if \mathscr{F}_t^1 and \mathscr{F}_t^2 are conditionally independent given \mathscr{F}_t for all t. A process (M_t) is a martingale for (\mathscr{F}^1) if it has both properties $(\Delta 1)$ and (P1) (but is not necessarily a martingale). Under the assumption (F4), every martingale is a martingale for (\mathscr{F}^1) . Given any process $(X_{i,j})$, set $\Delta X(i,j) = X((i-1,j-1),(i,j)]$ if $i \ge 1$ and $j \ge 1$, $\Delta X(0,j) = X_{0,j} - X_{0,j-1}$ if $j \ge 1$, $\Delta X(i,0) = X_{i,0} - X_{i-1,0}$ if $i \ge 1$, and $\Delta X(0,0) = 0$. A process $(A_{i,j})$ is an increasing process if $\Delta A(i,j) \ge 0$ for every (i,j). The following proposition is an analog of [6] Theorem 2, and [9] Lemma 3. **PROPOSITION** 2.2. — Suppose that the stochastic basis (\mathcal{F}_t) has the property (F4). (i) Let $(X_t, \mathcal{F}_t, t \in \mathbb{N}^2)$ satisfy $(\Delta 1)$. Then (X_t) has a unique decomposition $X_t = M_t + A_t$, where (M_t) is a martingale for (\mathcal{F}^1) , and (A_t) is an increasing process such that $A_{m,n}$ is measurable with respect to $\mathcal{F}_{m-1,n} \vee \mathcal{F}_{m,n-1}$. (ii) Let $(X_t, \mathcal{F}_t, t \in \mathbb{N}^2)$ be a $(\Delta 1)$ submartingale. Then (X_t) can be decomposed into $X_t = M_t + A_t - B_t$, where (M_t) is a martingale, (A_t) and (B_t) are increasing processes. *Proof.* — (i) Set $a_{0,j} = a_{j,0} = 0$ for $j \ge 0$, and $a_{i,j} = \mathbb{E}[\Delta X(i,j) \mid \mathscr{F}_{i-1,\infty}]$ for $i \ge 1$ and $j \ge 1$. The conditional independence of \mathscr{F}_t^1 and \mathscr{F}_t^2 given \mathscr{F}_t implies that $a_{m,n}$ is measurable with respect to $\mathscr{F}_{m-1,n} \lor \mathscr{F}_{m,n-1}$ (cf. [9]). Set $$A_{m,n} = \sum_{i \leq m} \sum_{j \leq n} a_{i,j}, \quad \text{and} \quad M_{m,n} = X_{m,n} - A_{m,n}.$$ It is easy to check that (A_t) and (M_t) have the required properties, and give the unique decomposition. (ii) Set $$m_{0,0} = X_{0,0}$$, $a_{0,0} = b_{0,0} = 0$, $$\begin{cases} m_{0,j} = X_{0,j} - E(X_{0,j} | \mathscr{F}_{0,j-1}), \\ a_{0,j} = E(X_{0,j} | \mathscr{F}_{0,j-1}) - X_{0,j-1}, \\ b_{0,j} = 0 & \text{for } j \ge 1, \end{cases}$$ $$\begin{cases} m_{i,0} = X_{i,0} - E(X_{i,0} | \mathscr{F}_{i-1,0}) \\ a_{i,0} = E(X_{i,0} | \mathscr{F}_{i-1,0}) - X_{i-1,0}, \\ b_{i,0} = 0 & \text{for } i \ge 1, \end{cases}$$ $$\begin{cases} m_{i,j} = \Delta X(i,j) - E(\Delta X(i,j) | \mathscr{F}_{i-1,j}) - E(\Delta X(i,j) | \mathscr{F}_{i,j-1}) \\ + E(\Delta X(i,j) | \mathscr{F}_{i-1,j-1}), \\ a_{i,j} = E(\Delta X(i,j) | \mathscr{F}_{i-1,j}) + E(X_{i,j} - X_{i,j-1} | \mathscr{F}_{i,j-1}), \\ b_{i,j} = E(\Delta X(i,j) | \mathscr{F}_{i-1,j-1}) + E(X_{i-1,j} - X_{i-1,j-1} | \mathscr{F}_{i,j-1}) \\ \text{for every } (i,j) \ge (1,1). \end{cases}$$ The property (F4) and the submartingale property imply $$E(X_{i-1,j} - X_{i-1,j-1} | \mathscr{F}_{i,j-1}) \ge 0.$$ Set $$\mathbf{M}_{m,n} = \sum_{i \le m} \sum_{j \le n} m_{i,j}, \quad \mathbf{A}_{m,n} = \sum_{i \le m} \sum_{j \le n} a_{i,j}, \quad \mathbf{B}_{m,n} = \sum_{i \le m} \sum_{j \le n} b_{i,j}.$$ The processes (A_t) and (B_t) are clearly increasing, and the process (M_t) is a martingale. \square #### 3. CONTINUOUS PARAMETER We prove that L Log L-bounded positive ($\Delta 1$) submartingales indexed by \mathbb{R}^2_+ have modifications which are well-behaved in the quadrants Q_I and Q_{IV} . This extends a result shown in [14] for 1-martingales. For every $n \geq 0$, set $D(n) = \{i.2^{-n}: i \geq 0\}$, and $D = \bigcup D(n)$. If S is a subset of \mathbb{R}^2_+ , denote by $T^1(S)$ the set of simple 1-stopping times with all the values in S. LEMMA 3.1. — Let $(X_t, \mathcal{F}_t, t \in \mathbb{R}^2_+)$ be an L Log L-bounded ($\Delta 1$) submartingale [submartingale with (P1)] such that $X_t \ge E(Y | \mathcal{F}_t)$ for some random variable $Y \in L$ Log L. Then for every M > 0, the net $\{X_\tau : \tau \in T^1(D \times D), \tau \le (M, M)\}$ is uniformly integrable. *Proof.* — First consider the ($\Delta 1$) submartingale (X_t). Fix a > 0, and let $\tau \in T^1(D \times D)$ satisfy $\tau \ll (M, M)$. Then the property ($\Delta 1$) applied to $((t_1, 0), (M, t_2)]$ gives $$\begin{split} \mathrm{E} \left[\mathbf{1}_{\{\mathbf{X}_{\tau} > a\}} \mathbf{X}_{\tau} \right] &= \sum_{t} \mathrm{E} \left[\mathbf{1}_{\{\tau = t\} \cap \{\mathbf{X}_{t} > a\}} \mathbf{X}_{t} \right] \\ &\leq \sum_{t} \mathrm{E} \left[\mathbf{1}_{\{\tau = t\} \cap \{\mathbf{X}_{t} > a\}} (\mathbf{X}_{\mathbf{M}, t_{2}} + \mathbf{X}_{t_{1}, 0} - \mathbf{X}_{\mathbf{M}, 0}) \right] \\ &\leq \mathrm{E} \left[\mathbf{1}_{\{\mathbf{X}_{\tau} > a\}} \sup \left\{ | \mathbf{X}_{\mathbf{M}, b} | : b \leq \mathbf{M}, \ b \in \mathbf{D} \right\} \right] \\ &+ \mathrm{E} \left[\mathbf{1}_{\{\mathbf{X}_{\tau} > a\}} \sup \left\{ | \mathbf{X}_{a, 0} | : a \leq \mathbf{M}, \ a \in \mathbf{D} \right\} \right] \\ &+ \mathrm{E} \left[\mathbf{1}_{\{\mathbf{X}_{\tau} > a\}} | \mathbf{X}_{\mathbf{M}, 0} | \right]. \end{split}$$ Since the positive submartingales $(X_{M,u}^+: u \ge 0)$ and $(X_{u,0}^+: u \ge 0)$ are bounded in L Log L, and since $X_{M,u}^- \le E(|Y| | \mathscr{F}_{M,u})$, and $X_{u,0}^- \le E(|Y| | \mathscr{F}_{u,0})$, the random variables $S_1 = \sup(|X_{M,u}| : u \le M, u \in D)$, and $$S_2 = \sup (|X_{u,0}| : u \le M, u \in D)$$ are integrable. Also $P(X_{\tau} > a) \le a^{-1} E(X_{\tau} 1_{\{X_{\tau} > a\}}) \le a^{-1} [ES_1 + ES_2 + E | X_{M,0}|]$. Given $\varepsilon > 0$, choose α such that $P(A) \le \alpha$ implies $E[1_A(S_1 + S_2 + | X_{M,0}|)] \le \varepsilon$, and choose a such that $a^{-1} [ES_1 + ES_2 + E | X_{M,0}|] \le \alpha$. Then $E[1_{\{X_{\tau} > a\}} X_{\tau}] \le \varepsilon$ for every $\tau \in T^1(D \times D)$ with $\tau \ll (M, M)$. Apply the property ($\Delta 1$) to the rectangle (t, (M, M)] to obtain $$\begin{split} E\left[\mathbf{1}_{\{X_{\tau}<-a\}}\,|\,X_{\tau}\,|\,\right] &=\, -\, \sum_{t} E\left[\mathbf{1}_{\{\tau=t\}\cap\{X_{t}<-a\}}\!(X_{t}\,|\,\\ &\leq \sum_{t} E\left[\mathbf{1}_{\{\tau=t\}\cap\{X_{t}<-a\}}\!(X_{M,M}-X_{M,t_{2}}-X_{t_{1},M})\right] \\ &\leq E\left[\mathbf{1}_{\{X_{\tau}<-a\}}\,\sup\left(|\,X_{M,b}\,|\,:\,b\leq M,\,b\in D\right)\right] \\ &+\, E\left[\mathbf{1}_{\{X_{\tau}<-a\}}\,\sup\left(|\,X_{a,M}\,|\,:\,a\leq M,\,a\in D\right)\right] \\ &+\, E\left[\mathbf{1}_{\{X_{\tau}<-a\}}\,|\,X_{M,M}\,|\,\right]. \end{split}$$ The random variable $S_3 = \sup (|X_{u,M}| : u \le M, u \in D)$ is integrable, and similarly it suffices to show that $\lim P(X_t < -a) = 0$ when $a \to +\infty$. The inequalities $$P(X_{\tau} < -a) \le a^{-1}E(X_{\tau}^{-}1_{\{X_{\tau}^{-} > a\}}) \le a^{-1}(ES_{1} + ES_{3} + E | X_{M,M}|)$$ conclude the proof in the case of a 1-submartingale. Let (X_t) be a submartingale with (P1). Similarly the property (P1) applied to (t, (M, M)] proves the uniform integrability of X_t^+ , and the property (P1) applied to $((t_1, 0), (M, t_2)]$ gives the uniform integrability of X_t^- . \square The following lemma indicates perturbations of a sequence $\tau(n)$ which do not affect $\mathrm{EX}_{\tau(n)}$ asymptotically. LEMMA 3.2. — Let $(X_t, \mathscr{F}_t, t \in \mathbb{R}^2_+)$ be an L Log L-bounded ($\Delta 1$) submartingale [submartingale with (P1)] such that $X_t \geq E(Y \mid \mathscr{F}_t)$ for some random variable $Y \in L$ Log L. Let τ be a bounded 1-stopping time, and let $\tau(n)$ be a sequence of simple 1-stopping times taking on values in $D \times D$, bounded by (M, M), such that $\tau_1 < \tau(n)_1$, and $\lim \|\tau(n)_1 - \tau_1\|_{\infty} = 0$. Then for every sequence of positive numbers α_n that converges to zero, one has $\lim EX_{\tau(n)_1 + \alpha_n, \tau(n)_2} - EX_{\tau(n)} = 0$. *Proof.* — First study the case of a ($\Delta 1$) submartingale (X_t). The property ($\Delta 1$) applied to the rectangle ($(t_1, 0), (t_1 + \alpha_n, t_2)$] implies $$\begin{split} & \operatorname{EX}_{\tau(n)} \leq \sum_{t} \operatorname{E} \left[\mathbf{1}_{\{\tau(n) = t\}} (\mathbf{X}_{t_{1} + \alpha_{n}, t_{2}} + \mathbf{X}_{t_{1}, 0} - \mathbf{X}_{t_{1} + \alpha_{n}, 0}) \right] \\ & \leq \operatorname{E} \left[\sup \left\{ |\mathbf{X}_{a, 0} - \mathbf{X}_{b, 0}| : (a, b) \in \mathbf{D} \times \mathbf{D}, \, \tau_{1} < a < b < \tau_{1} + \alpha_{n} + || \, \tau(n)_{1} - \tau_{1} \, ||_{\infty} \right\} \right] \\ & + \operatorname{EX}_{\tau(n)_{1} + \alpha_{n}, \tau(n)_{2}} + \beta_{n}. \end{split}$$ Conversely the property ($\Delta 1$) applied to the rectangle $(t, (t_1 + \alpha_n, M)]$ implies $$\begin{split} & \mathrm{EX}_{\tau(n)_{1} + \alpha_{n}, \tau(n)_{2}} = \sum_{t} \mathrm{E}\left[1_{\{\tau(n) = t\}} X_{t_{1} + \alpha_{n}, t_{2}}\right] \\ & \leq \mathrm{E}\left[\sup\left\{|X_{a, \mathbf{M}} - X_{b, \mathbf{M}}| : (a, b) \in \mathbf{D} \times \mathbf{D}, \tau_{1} < a < b < \tau_{1} + \alpha_{n} + \|\tau(n)_{1} - \tau_{1}\|_{\infty}\right\}\right] \\ & + \mathrm{EX}_{\tau(n)} \\ & = \mathrm{EX}_{\tau(n)} + \delta_{n}. \end{split}$$ The one-parameter submartingales $(X_{a,0}, \mathscr{F}_{a,0}, a \ge 0)$, and $(X_{a,M}, \mathscr{F}_{a,M}, a \ge 0)$ have right limits almost surely along the elements of D. Also $\sup(|X_{a,0}|: a \in D, a \le K)$ and $\sup(|X_{a,M}|: a \in D, a \le K)$ are integrable for every K. Hence the sequences β_n and δ_n converge to zero. A similar argument concludes the proof in the case of submartingales satisfying the condition (P1). \square We now prove the amart property of positive ($\Delta 1$) submartingales. THEOREM 3.3. — Let $(X_t, \mathscr{F}_t, t \in \mathbb{R}^2_+)$ be an L Log L-bounded ($\Delta 1$) submartingale [submartingale satisfying (P1)] such that $X_t \geq E(Y \mid \mathscr{F}_t)$ for some random variable $Y \in L \text{ Log } L$. Then (X_t) is a descending 1-amart. *Proof.* — Suppose (X_t) is a $(\Delta 1)$ submartingale. Fix $b \ge 0$; the amart property of the one-parameter submartingale $(X_{a,b}, \mathscr{F}_{a,b}, a \ge 0)$ has been proved in [10]. Let τ be a 1-stopping time bounded by (M, M). Let ε_n be a sequence of positive numbers which decreases to zero. For every $a \ge 0$, the one-parameter submartingale $(X_{a,b}, \mathscr{F}_{a,b}, b \ge 0)$ has left and right limits almost surely along the elements of D, and sup $(|X_{a,b}|:b\in D, b\le M)$ is integrable. Choose $\alpha_n > 0$ such that $P(A) \le \alpha_n$ implies. $E[1_A \sup \{ |X_{a,b}| : a \in D(n), b \in D, (a, b) \le (M+4, M+4) \}] \le \varepsilon_n$. Choose an integer k_n such that $$P \left[\bigcup_{a \in D(n), a \le M+4} \left\{ \sup \left(|X_{a,b} - X_{a,c}| : (b,c) \in D \times D, \atop \tau_2 < b < c < \tau_2 + 4 \cdot 2^{-k_n} \right) \ge \varepsilon_n \right\} \right] \le \alpha_n,$$ and $$P \left[\bigcup_{a \in D(n), a \leq M+4} \left\{ \sup \left(|X_{a,b} - X_{a,c}| : (b,c) \in D \times D, \atop \tau_2 - 4 \cdot 2^{-k_n} < b < c < \tau_2 \right) \geq \varepsilon_n \right\} \right] \leq \alpha_n,$$ and $P[0 < \tau_2 \le 4.2^{-k_n}] \le \alpha_n$. Finally by Lemma 3.1 choose $\beta_n > 0$ such that $P(A) \le \beta_n$ implies $$\sup \left\{ E(1_A \mid X_\tau \mid) : \tau \in T^1(D \times D), \ \tau \leq (M, M) \right\} \leq \varepsilon_n.$$ Changing α_n if necessary, we may and do assume that $\alpha_n \leq \beta_n/2$. Set $a_n = \mathrm{E} \left[\sup \left\{ \mid X_{a,0} - X_{b,0} \mid : (a,b) \in \mathrm{D} \times \mathrm{D}, \ \tau_1 < a < b < \tau_1 + 4 \cdot 2^{-n} \right\} \right]$, and $b_n = \mathrm{E} \left[\sup \left\{ \mid X_{a,M+4} - X_{b,M+4} \mid : (a,b) \in \mathrm{D} \times \mathrm{D}, \tau_1 < a < b < \tau_1 + 4 \cdot 2^{-n} \right\} \right]$. The one-parameter submartingales $(X_{a,0}, \mathscr{F}_{a,0}, a \geq 0)$, and $(X_{a,M+4}, \mathscr{F}_{a,M+4}, a \geq 0)$ have right limits almost surely along the elements of D. Since $\sup \left(\mid X_{a,0} \mid : a \in \mathrm{D}, \ a \leq \mathrm{M} + 4 \right)$ and $\sup \left(\mid X_{a,M+4} \mid : a \in \mathrm{D}, \ a \leq \mathrm{M} + 4 \right)$ are integrable, $\lim a_n = \lim b_n = 0$. Finally set $$\begin{split} c_n &= \mathrm{E} \left[\sup \left\{ \, | \, \mathbf{X}_{a,b} - \mathbf{X}_{a,c} \, | \, : \, a \in \mathbf{D}(n), \, a \leq \mathbf{M} \, + \, 4, \, (b,c) \in \mathbf{D} \, \times \, \mathbf{D}, \right. \\ & \left. \tau_2 < b < c < \tau_2 + 4 . \, 2^{-k_n} \, \right\} \, \right], \\ d_n &= \mathrm{E} \left[\sup \left\{ \, | \, \mathbf{X}_{a,b} - \mathbf{X}_{a,c} \, | \, : \, a \in \mathbf{D}(n), \, a \leq \mathbf{M} \, + \, 4, \, (b,c) \in \mathbf{D} \, \times \, \mathbf{D}, \right. \\ & \left. \tau_2 - 4 . \, 2^{-k_n} < b < c < \tau_2 \, \right\} \, \right]. \end{split}$$ Then $c_n \leq 3\varepsilon_n$, and $d_n \leq 3\varepsilon_n$. We prove first the 1-amart property in Q_I at the 1-stopping time τ . Let $\tau(n)$ be a bounded sequence of simple 1-stopping times which 1-recalls τ in Q_I . Changing M if necessary in the conditions above, we may and do assume that the sequence $\tau(n)$ is bounded by (M, M). To lighten the notations we will assume that the $\tau(n)$ take on dyadic values, and it will be clear in the proof that this is no loss of generality. We define a sequence T(n) which is « universal » for τ , compare $EX_{\tau(n)}$ with $EX_{T(n)}$, and show that $EX_{T(n)}$ converges. For every $n \ge 0$ let v(n) be the dyadic approximation of τ defined by $v(n) = ((i+4), 2^{-n}, (j+4), 2^{-k_n})$ on $\{(i, 2^{-n}, j, 2^{-k_n}) \le \tau < ((i+1), 2^{-n}, (j+1), 2^{-k_n}\}$. Choose p_n such that $p \ge p_n$ implies that $$P[\tau(p)_1 \ge \tau_1 + 2^{-n}] + P[\tau(p)_2 \ge \tau_2 + 2^{-k_n}] \le \beta_n.$$ We may and do assume that the sequence of integers p_n is strictly increasing. Fix p with $p_n \le p < p_{n+1}$, and set $$T(p) = v(n),$$ $\sigma(p) = \tau(p) \wedge [T(p) - (2^{-n+1}, 2^{-k_n})].$ Vol. XIX, nº 1-1983. Then T(p) and $\sigma(p)$ belong to $T^1(D \times D)$, and $P[\sigma(p) \neq \tau(p)] \leq \beta_n$. Hence $|EX_{\sigma(p)} - EX_{\tau(p)}| \leq 2\varepsilon_n$. Furthermore, for every (i, j), $$\mathsf{T}(p) = (i.2^{-n}, j.2^{-k_n}) \in \mathscr{F}_{\tau_1 + 2^{-n}, \infty} \subset \mathscr{F}_{\sigma(p)_1 + 2^{-n}, \infty}.$$ Set $S(p) = (\sigma(p)_1 + 2^{-n}, \sigma(p)_2)$ for $p_n \le p < p_{n+1}$. Clearly $\lim \|\sigma(p)_1 - \tau_1\|_{\infty} = 0$; Lemma 2.2 implies that $\lim EX_{\sigma(p)} - EX_{S(p)} = 0$. Fix p with $p_n \le p < p_{n+1}$, and to lighten the notations set S = S(p) and T = T(p). One has (i) $$\tau \ll S \ll T \le \tau + (4.2^{-n}, 4.2^{-k_n}), T \in T^1(D(n) \times D(k_n)).$$ (ii) T is measurable with respect to $\mathscr{F}_{S_1,\infty}$. Since $\{S = s\} \cap \{T = t\} \in \mathscr{F}_s^1$, the property ($\Delta 1$) applied to the rectangle $((s_1, 0), (t_1, s_2)]$ gives $$\begin{split} \mathrm{EX}_{\mathbf{S}} & \leq \sum_{s} \sum_{t} \mathrm{E} \left[\mathbf{1}_{\{\mathbf{S}=s\} \cap \{\mathbf{T}=t\}} (\mathbf{X}_{t_{1},s_{2}} + \mathbf{X}_{s_{1},0} - \mathbf{X}_{t_{1},0}) \right] \\ & \leq \mathrm{EX}_{\mathbf{T}} + a_{n} + c_{n} \leq \mathrm{EX}_{\mathbf{T}} + a_{n} + 3\varepsilon_{n}. \end{split}$$ Conversely the property ($\Delta 1$) applied to the rectangle (s, t] shows that $$\begin{aligned} \mathrm{EX}_{\mathrm{S}} &\geq \sum_{s} \sum_{t} \mathrm{E} \left[\mathbf{1}_{\{\mathrm{S}=s\} \cap \{\mathrm{T}=t\}} (\mathrm{X}_{s_{1},t_{2}} + \mathrm{X}_{t_{1},s_{2}} - \mathrm{X}_{t}) \right] \\ &= \mathrm{EX}_{\mathrm{T}} - \alpha - \beta, \end{aligned}$$ where $$\alpha = \sum_{s} \sum_{t} E[1_{\{S=s\} \cap \{T=t\}}(X_{t} - X_{s_{1},t_{2}})],$$ $$\beta = \sum_{s} \sum_{t} E[1_{\{S=s\} \cap \{T=t\}}(X_{t} - X_{t_{1},s_{2}})].$$ Applying the property ($\Delta 1$) to the rectangle ($(s_1, t_2), (t_1, M + 4)$], one obtains $$\alpha \leq \sum_{s} \sum_{t} \mathrm{E}\left[1_{\{S=s\} \cap \{T=t\}} (X_{t_1,M+4} - X_{s_1,M+4})\right] \leq b_n.$$ The property ($\Delta 1$) applied to the rectangle ($(t_1, s_2), (M + 4, t_2)$] shows that $$\beta \leq \sum_{s} \sum_{t} \mathrm{E}\left[1_{\{S=s\} \cap \{T=t\}} (X_{M+4,t_2} - X_{M+4,s_2})\right] \leq c_n \leq 3\varepsilon_n.$$ Hence $\lim \mathrm{EX}_{\mathrm{S}(p)} - \mathrm{EX}_{\mathrm{T}(p)} = 0$. The argument showing that EX_{S} and EX_{T} are close depends only on the properties (i) and (ii) of S and T. Fix n < m, p and q with $p_n \le p < p_{n+1}$, $p_m \le q < p_{m+1}$. This argument applied to S = T(q) and T = T(p) shows that the sequence $EX_{T(p)}$ converges, which completes the proof of the 1-amart property in Q_1 . We show that (X_t) is a 1-amart in Q_{IV} . Let $\tau(n)$ be a sequence of simple 1-stopping times taking on values in $D \times D$, which 1-recalls τ in Q_{IV} and is bounded by (M, M). For every $n \ge 0$, let $\rho(n)$ be the dyadic approximation of τ defined by $$\rho(n) = ((i+4).2^{-n}, (j-4).2^{-k_n})$$ on $$\{(i.2^{-n}, j.2^{-k_n}) \ll \tau \le ((i+1).2^{-n}, (j+1).2^{-k_n}))\} \text{ for } j \ge 4,$$ $$\rho(n) = ((i+4).2^{-n}, 0) \text{ on } \{i.2^{-n} < \tau_1 \le (i+1).2^{-n}\} \cap \{\tau_2 \le 4.2^{-k_n}\}.$$ Choose an integer q_n such that $p \ge q_n$ implies $$P[\tau(p)_1 \ge \tau_1 + 2^{-n}] + P[\tau(p)_2 < \tau_2 - 2^{-k_n}] \le \beta_n/2.$$ We may and do assume that the sequence q_n is strictly increasing. Fix p with $q_n \le p < q_{n+1}$, and set $$\begin{split} \mathsf{T}(p) &= \rho(n), \\ \sigma(p) &= (\tau(p)_1 \, \wedge \, [\mathsf{T}(p)_1 - 2^{-n+1}], \, \tau(p)_2 \, \vee \, [\mathsf{T}(p)_2 + 2^{-k_n}]) \quad \text{on} \quad \big\{ \, \tau_2 > 4 \, . \, 2^{-k_n} \big\}, \\ \sigma(p) &= (\tau(p)_1 \, \wedge \, [\mathsf{T}(p)_1 \, - \, 2^{-n+1}], \, 0) \quad \text{on} \quad \big\{ \, \tau_2 \leq 4 \, . \, 2^{-k_n} \big\}. \end{split}$$ Then $$\begin{split} \mathbf{P}[\sigma(p) \neq \tau(p)] &\leq \mathbf{P}[\tau(p)_1 \geq \tau_1 + 2^{-n}] + \mathbf{P}[0 < \tau_2 \leq 4.2^{-k_n}] \\ &+ \mathbf{P}[\tau(p)_2 < \tau_2 - 2^{-k_n}] \\ &\leq \alpha_n + \beta_n/2 \leq \beta_n. \end{split}$$ Set $S(p) = (\sigma(p)_1 + 2^{-n}, \sigma(p)_2)$. By Lemma 3.2 one has $\lim EX_{\sigma(p)} - EX_{S(p)} = 0$. By Lemma 3.1 one has $\lim EX_{\tau(p)} - EX_{\sigma(p)} = 0$. We compare the sequence $EX_{S(p)}$ to the « universal » sequence $EX_{T(p)}$, and show the convergence of $EX_{T(p)}$. Fix p with $q_n \le p < q_{n+1}$, and set S = S(p) and T = T(p); one has (i') $$\tau_1 < S_1 < T_1 < \tau_1 + 4.2^{-n}, T \in T^1(D(n) \times D(k_n)),$$ (ii') $$\tau_2 - 4.2^{-k_n} < T_2 < S_2 < \tau_2 \text{ on } \{ \tau_2 > 4.2^{-k_n} \},$$ (iii') $$S_2 = T_2 = 0$$ on $\{ \tau_2 = 0 \}$, (iv') T is measurable with respect to $\mathscr{F}_{S_1,\infty}$. The random variable τ_2 is measurable with respect to $\mathscr{F}_{S_1,\infty}$; hence $$\{\tau_2 = 0\} \cap \{S = s\} \cap \{T = t\} \in \mathscr{F}_s^1$$ $$\{\tau_2 > 4 \cdot 2^{-k_n}\} \cap \{S = s\} \cap \{T = t\} \in \mathscr{F}_s^1.$$ Vol. XIX, nº 1-1983. and The property ($\Delta 1$) applied to the rectangle ($(s_1, t_2), (t_1, s_2)$] implies $$\begin{split} \mathrm{EX}_{\mathbf{S}} &\leq \mathrm{E}[\mathbf{1}_{\{\tau_{2}=0\}} X_{\mathrm{T}}] + a_{n} \\ &+ \mathrm{E}[\mathbf{1}_{\{0 < \tau_{2} < 4.2^{-k_{n}}\}} (X_{\mathrm{T}} + |X_{\mathrm{S}}| + |X_{\mathrm{T}}|)] \\ &+ \sum_{s} \sum_{t} \mathrm{E}[\mathbf{1}_{\{\tau_{2} > 4.2^{-k_{n}}\} \cap \{S = s\} \cap \{T = t\}} (X_{s_{1},t_{2}} + X_{t_{1},s_{2}} - X_{t})] \\ &\leq \mathrm{EX}_{\mathrm{T}} + a_{n} + 2\varepsilon_{n} + \alpha' + \beta', \end{split}$$ where $$\begin{split} \alpha' &= \sum_{s} \sum_{t} \mathrm{E} \big[\mathbf{1}_{\{S=s\} \cap \{T=t\} \cap \{\tau_2 \geq 4.2^{-k_n}\!\}} (X_{s_1,t_2} - X_t) \big], \\ \beta' &= \sum_{s} \sum_{t} \mathrm{E} \big[\mathbf{1}_{\{S=s\} \cap \{T=t\} \cap \{\tau_2 \geq 4.2^{-k_n}\!\}} (X_{t_1,s_2} - X_t) \big]. \end{split}$$ Applying the property ($\Delta 1$) to the rectangle ((s_1 , 0), t] one obtains $$\alpha' \leq \sum_{s} \sum_{i} E\left[1_{\{S=s\} \cap \{T=t\} \cap \{\tau_2 \geq 4.2^{-k_n}\}} (X_{s_1,0} - X_{t_1,0})\right] \leq a_n.$$ On the other hand $\beta' \leq d_n \leq 3\varepsilon_n$. Conversely, $\geq EX_T - a_n - 2\varepsilon_n - 2\varepsilon_n - 3\varepsilon_n - b_n$ $$\begin{split} \mathrm{EX}_{\mathbf{S}} &\geq \sum_{s} \sum_{t} \mathrm{E}\left[\mathbf{1}_{\{\tau_{2}=0\} \cap \{\mathbf{S}=s\} \cap \{\mathbf{T}=t\}} X_{s_{1},0}\right] \\ &+ \sum_{s} \sum_{t} \mathrm{E}\left[\mathbf{1}_{\{\tau_{2}>4,2^{-k_{n}}\} \cap \{\mathbf{S}=s\} \cap \{\mathbf{T}=t\}} X_{s}\right] - \mathrm{E}\left[\mathbf{1}_{\{0 < \tau_{2} \leq 4,2^{-k_{n}}\}} \mid X_{\mathbf{S}}\mid\right] \\ &\geq \mathrm{E}\left[\mathbf{X}_{\mathbf{T}} \mathbf{1}_{\{\tau_{2}=0\}}\right] - a_{n} + \sum_{s} \sum_{t} \mathrm{E}\left[\mathbf{1}_{\{\tau_{2}>4,2^{-k_{n}}\} \cap \{\mathbf{S}=s\} \cap \{\mathbf{T}=t\}} X_{s}\right] - \varepsilon_{n}. \end{split}$$ For every s in the range of S, choose $s_2' \in D$, $s_2' > s_2$, such that setting $A = \bigcup_{s} (\{S = s\} \cap \{0 < \tau_2 \le s_2'\})$, one has $P(A) \le \alpha_n/2$. Apply the property ($\Delta 1$) to the rectangle $((s_1, s_2), (t_1, s_2')]$. Then $EX_S \ge E[X_T 1_{\{\tau_1 = 0\}}] - a_n - \varepsilon_n - E[1_A | X_S|]$ $$+ \sum_{s} \sum_{t} E\left[1_{\{\tau_{2} > 4.2^{-k_{n}}\} \cap \{\tau_{2} > s'_{2}\} \cap \{S = s\} \cap \{T = t\}} (X_{s_{1}, s'_{2}} + X_{t_{1}, s_{2}} - X_{t_{1}, s'_{2}})\right]$$ $$\geq E\left[X_{T}1_{\{\tau_{2} = 0\}}\right] - a_{n} - 2\varepsilon_{n} + E\left[X_{T}1_{\{\tau_{2} > 4.2^{-k_{n}}\} \cap A^{c}}\right]$$ $$- \sum_{s} \sum_{t} E\left[1_{\{\tau_{2} > 4.2^{-k_{n}}\} \cap \{\tau_{2} > s'_{2}\} \cap \{S = s\} \cap \{T = t\}} (X_{t_{1}, t_{2}} - X_{t_{1}, s_{2}} + X_{t_{1}, s'_{2}} - X_{s_{1}, s'_{2}})\right]$$ $$\geq EX_{T} - a_{n} - 2\varepsilon_{n} - E\left[|X_{T}| 1_{A \cup \{0 < \tau_{2} \leq 4.2^{-k_{n}}\}}\right] - d_{n} - b_{n}$$ Hence $\lim EX_{S(p)} - EX_{T(p)} = 0$ when $p \to \infty$. This argument also shows that the sequence $EX_{T(p)}$ converges, and hence that the sequence $EX_{\tau(p)}$ converges too. This completes the proof of the 1-amart property in Q_{IV} in the case of a $(\Delta 1)$ submartingale. A similar argument shows that submartingales with (P1) are 1-amarts in Q_1 and Q_{IV} , which concludes the proof. \square The following theorem proves the existence of regular modifications of positive ($\Delta 1$) submartingales. - THEOREM 3.4. Suppose that $(X_t, \mathscr{F}_t, t \in \mathbb{R}^2_+)$ is an L Log L-bounded ($\Delta 1$) submartingale [submartingale with (P1)] such that $X_t \geq E(Y \mid \mathscr{F}_t)$ for some random variable $Y \in L$ Log L. Assume that (\mathscr{F}_t^1) is right-continuous, and that for every $a \geq 0$ the one-parameter family $(\mathscr{F}_{a,b}, b \geq 0)$ is right-continuous. - (i) If for every $a \ge 0$ the map $b \to \mathrm{EX}_{a,b}$ is right-continuous, then (X_t) has a modification almost every trajectory of which has right limits. - (ii) If for every $b \ge 0$ the map $a \to \mathrm{EX}_{a,b}$ is right-continuous, then (X_t) has a modification almost every trajectory of which has limits in Q_1 and Q_{1V} . - (iii) If for every $a \ge 0$ the maps $b \to \mathrm{EX}_{a,b}$ and $b \to \mathrm{EX}_{b,a}$ are right-continuous, then (X_t) has a right-continuous modification almost every trajectory of which has limits in Q_{IV} . - *Proof.* Our definition of descending 1-amart is slightly different from the one introduced in [14]. The difference lies in the fact that we only require the horizontal processes $(X_{a,b}, \mathscr{F}_{a,b}, a \ge 0)$ [and not $(X_{a,b}, \mathscr{F}_{a,b}, a \ge 0)$] to be descending amarts for all $b \ge 0$. However it is clear from the proofs of Proposition 2.2, Theorems 2.4, 2.5, and Corollaries 2.6, 2.7 [14] that the statements made there remain true for our notion of descending 1-amart. - (i) For every $a \ge 0$ the one-parameter submartingale $(X_{a,b}, \mathscr{F}_{a,b}, b \ge 0)$ is a descending and an ascending amart of class (AL) [9]. The right-continuity of the map $b \to EX_{a,b}$ insures the existence of a right-continuous modification of this process. Hence for every sequence $\tau(n)$ of simple one-dimensional stopping times for $(\mathscr{F}_{a,b}, b \ge 0)$, $b = \lim_{n \to \infty} \tau(n)$ implies $EX_{a,b} = \lim_{n \to \infty} EX_{a,\tau(n)}$. The existence of right limits follows from Theorem 3.3, and from [14], Theorem 2.4. - (ii) A similar argument shows that Theorem 3.3 together with [14] Theorem 2.4 imply the existence of a modification having limits in Q_I and Q_{IV} . - (iii) The argument is similar to the one given in [14], Theorem 2.5. By (ii) the process (X_t) has a modification (Y_t) having a. s. limits in Q_1 . Set $Z_t = \lim (Y_s : s \gg t)$; it is easy to see that (Z_t) is right-continuous. To prove that (Z_t) is a modification of (X_t) , it suffices to prove that for every t, $Z_t = Y_t = X_t$ a. s. Fix $a \geq 0$; the right-continuity of the maps $b \to EX_{a,b}$ and $b \to EX_{b,a}$ insures the existence of right-continuous modifications for the one-parameter submartingales $(Y_{a,b}, b \geq 0)$ and $(Y_{b,a}, b \geq 0)$. Fix t; we may and do assume that the processes $(Y_{t_1,b}, b \geq 0)$, $(Y_{b,t_2}, b \geq 0)$, and all the processes $(Y_{t_1+1/n,b}, b \geq 0)$ and $(Y_{b,t_2+1/n}, b \geq 0)$ are right-continuous. Let $\varepsilon_n \searrow 0$, and for every fixed n > 0 let k_n be an integer such that $$\begin{split} & \mathbb{E}\left[\| \mathbf{Y}_{t_1 + 1/n, t_2 + 1/k_n} - \mathbf{Y}_{t_1 + 1/n, t_2} \| \right] \le \varepsilon_n, \\ & \mathbb{E}\left[\| \mathbf{Y}_{t_1, t_2 + 1/k_n} - \mathbf{Y}_t \| \right] \le \varepsilon_n. \quad \text{Set} \quad \mathbb{E}\left[\| \mathbf{Y}_{t_1 + 1/n} - \mathbf{Y}_t \| \right] = \alpha_n. \end{split}$$ Fix $A \in \mathcal{F}_t^1$, set $\tau(n) = t$ on A^c , and $\tau(n) = (t_1 + 1/n, t_2 + 1/k_n)$ on A. Suppose that (X_t) is a 1-submartingale; then $$\begin{split} \mathrm{E} \mathrm{Y}_{\tau(n)} & \geq \mathrm{E} [\mathbf{1}_{\mathrm{A}^c} \mathrm{Y}_t] + \mathrm{E} [\mathbf{1}_{\mathrm{A}} (\mathrm{Y}_{t_1 + 1/n, t_2} + \mathrm{Y}_{t_1, t_2 + 1/k_n} - \mathrm{Y}_t)] \\ & \geq \mathrm{E} \mathrm{Y}_t - \varepsilon_n - \alpha_n. \end{split}$$ Conversely $$\begin{split} \mathrm{E} \mathrm{Y}_{\tau(n)} & \leq \mathrm{E} \big[\mathbf{1}_{\mathrm{A}^c} \mathrm{Y}_{t_1 + 1/n, t_2} \big] + \mathrm{E} \big[\mathbf{1}_{\mathrm{A}} \mathrm{Y}_{t_1 + 1/n, t_2 + 1/k_n} \big] \\ & \leq \mathrm{E} \big[\mathrm{Y}_{t_1 + 1/n, t_2 + 1/k_n} \big] + \varepsilon_n. \end{split}$$ The map $t \to EX_t = EY_t$ is right-continuous by assumption. Hence $$\label{eq:energy_energy} \lim \, E\left[Y_{t_1+1/n,t_2+1/k_n}\right] = EY_t, \qquad \text{and} \qquad \lim \, EY_{\tau(n)} = EY_t.$$ Lemma 3.1 implies the uniform integrability of $Y_{\tau(n)}$; clearly $$\lim Y_{\tau(n)} = 1_{A^c} Y_t + 1_A Z_t \text{ a. s.}.$$ Hence $E(1_A Z_t) = E(1_A Y_t)$ for every $A \in \mathcal{F}_t^1$. Given any index t the \mathcal{F}_t^1 -measurable random variables Z_t and Y_t agree almost surely. A similar argument concludes the proof for submartingales with (P1). Remark. — A theorem analogous to Theorem 3.4 can be proved if (X_t) is a $(\Delta 1)$ supermartingale [a supermartingale satisfying $(\Delta 1)$] under the additional assumption that for every $b \geq 0$, and for every M > 0, one has $E[\sup |X_{a,b}| : a \in D, a \leq M] < \infty$ and $E[\sup |X_{b,a}| : a \in D, a \leq M] < \infty$. Finally we state a Doob-Meyer decomposition of $(\Delta 1)$ submartingales. The proof, similar to the argument given in [6], [4] and [9], is omitted. An adapted integrable process $(A_t, \mathcal{F}_t, t \in \mathbb{R}^2_+)$ is a 1-increasing process if A_t is a. s. right-continuous, null on the y-axis, and satisfies $A(s, t] \ge 0$ for every $s \ll t$. Recall that an adapted integrable process $(M_t, \mathcal{F}_t, t \in \mathbb{R}^2_+)$ is a martingale for (\mathcal{F}^1) if it satisfies the conditions ($\Delta 1$) and (P1). A process (X_t) is of class (D1) if for every $t \gg (0,0)$, the sequence $$\left(\sum_{i}\sum_{j}\mathrm{E}\bigg[\mathrm{X}\bigg(\bigg(\frac{i}{2^{n}},\frac{j}{2^{n}}\bigg)\wedge\ t,\bigg(\frac{i+1}{2^{n}},\frac{j+1}{2^{n}}\bigg)\wedge\ t\ \bigg]|\ \mathscr{F}^{1}_{i/2^{n},j/2^{n}}],\quad n\geq 0\right)$$ is uniformly integrable. For every t set $\mathcal{A}(t) = \{(u, v] \times A : u \ll v \le t, A \in \mathcal{F}_u^1\}$, and let $\mathcal{P}(t)$ be the σ -algebra generated by $\mathcal{A}(t)$. Set $$\mu_{\mathbf{X}}((u, v] \times \mathbf{A}) = \mathbf{E}[\mathbf{1}_{\mathbf{A}}\mathbf{X}(u, v]].$$ THEOREM 3.5. — Let $(X_t, \mathcal{F}_t, t \in \mathbb{R}^2_+)$ be a $(\Delta 1)$ submartingale right-continuous in L_1 , and let (\mathcal{F}_t) satisfy (F4). The following are equivalent: - (i) (X_t) is of class (D1). - (ii) μ_X has a unique countably additive extension to $\mathcal{P}(t)$ for all t. - (iii) There exists a decomposition $X_t = M_t + A_t$, where (M_t) is a martingale for (\mathcal{F}^1) , (A_t) is a 1-increasing process, and both processes are adapted. #### REFERENCES - [1] K. ASTBURY, Amarts indexed by directed sets, Ann. Prob., t. 6, 1978, p. 267-278. - [2] D. BAKRY, Sur la régularité des trajectoires des martingales à deux indices, Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 50, 1979, p. 149-157. - [3] D. BAKRY, Limites « quadrantales » des martingales, Colloque ENST CNET, Paris, 1980, Lecture Notes in Math., t. 863, 1981, p. 40-49. - [4] M. D. Brennan, Planar Semimartingales, J. Multivariate Analysis, t. 9, 1979, p. 465-486. - [5] R. CAIROLI, Une inégalité pour martingales à indices multiples, Séminaire de Probabilité IV, Université de Strasbourg, Lecture Notes in Math., t. 124, 1970, p. 1-27. - [6] R. CAIROLI, Décomposition de processus à indices doubles, Séminaire de Probabilité V, Université de Strasbourg, Lecture Notes in Math., t. 191, 1971, p. 37-57. - [7] R. CAIROLI, J. B. WALSH, Stochastic integrals in the plane, Acta M., t. 134, 1975, p. 111-183. - [8] C. Dellacherie, P. A. Meyer, Probabilité et Potentiel, Herman 1975, 1980. - [9] M. Dozzi, On the decomposition and integration of two-parameter stochastic processes, Colloque ENST-CNET, Paris 1980, Lecture Notes in Math., t. 863, 1981, p. 162-171. - [10] G. A. EDGAR, L. SUCHESTON, Amarts: A class of asymptotic martingales, A: Discrete parameter, B: Continuous parameter, J. Multivariate Analysis, t. 5, 1976, p. 193-221; p. 572-591. - [11] G. A. EDGAR, L. SUCHESTON, Démonstration de lois des grands nombres par les sousmartingales descendantes, C. R. Acad. Sci. Paris, Série I, t. 292, 1981, p. 967-969. - [12] J. P. FOUQUE, A. MILLET, Régularité des martingales fortes à plusieurs indices, C. R. Acad. Sci. Paris, Série A, t. 290, 1980, p. 773-776. - [13] A. MILLET, Convergence and regularity of strong submartingales, Colloque ENST-CNET, Paris 1980, *Lecture Notes in Math.*, t. **863**, 1981, p. 50-58. 42 [14] A. MILLET, L. SUCHESTON, On regularity of multiparameter amarts and martingales, Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 56, 1981, p. 21-45. A. MILLET - [15] A. MILLET, L. SUCHESTON, Demi convergence des processus à deux indices, Ann. Inst. Henri Poincaré, to appear. - [16] J. NEVEU, Discrete parameter martingales, North-Holland, Amsterdam, 1975. - [17] J. B. Walsh, Convergence and regularity of multiparameter strong martingales, Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 46, 1979, p. 177-192. (Manuscrit reçu le 21 septembre 1981)