ANNIE MILLET

On convergence and regularity of two-parameter
(A) submartingales

Annales de I'l. H. P, section B, tome 19, n°1 (1983), p. 25-42
<http://www.numdam.org/item?id=AIHPB_1983__19_1_25 0>

© Gauthier-Villars, 1983, tous droits réservés.

L’acces aux archives de la revue « Annales de 1'l. H. P, section B »
(http://www.elsevier.com/locate/anihpb) implique 1’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIHPB_1983__19_1_25_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Henri Poincaré, Section B :

Vol. XIX, n°® 1, 1983, p. 25-42. Calcul des Probabilités et Statistique.

On convergence and regularity
of two-parameter (Al) submartingales

by
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REsUME . — Une sous-martingale indicée par N? ou RZ est une sous-
martingale (Al) si 'espérance conditionnelle de I’accroissement rectan-
gulaire X(s, t] par rapport a la tribu &/ est positive. Nous montrons que
les sous-martingales (Al) bornées dans L LogL convergent presque
siirement et admettent des modifications continues a droite limitées dans
le quatriéme quadrant.

ABSTRACT. — We introduce (Al) submartingales which are submartin-
gales indexed by N? or R% such that the conditional expectation of the
rectangular increment X(s, t] given %! is non negative. We show that
L Log L-bounded (A1) submartingales converge almost surely, and have
right-continuous modifications which have limits in the fourth quadrant.

It is known that under the conditional independence assumption (F4)
L_-bounded two-parameter submartingales (X,, t€ N?) do not converge
almost surely [7]; there is only equality between the upper limit of X, and
its Ly-limit [77], [15]. Thus in the continuous case the existence of regular
modifications for two-parameter submartingales requires more stringent
assumptions on the process. R. Cairoli [6] strengthened the definition
of submartingale by adding the property (S): for all indices s « ¢, the
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26 A. MILLET

conditional expectation of the rectangular increment X(s, t] given & is
non negative. He studied the existence of a Doob-Meyer decomposition
of these processes, and their almost sure convergence under a boundedness
assumption on the « quadratic variation ».

In this paper we relax the assumption (F4) on the o-algebras, and define
(A1) submartingales as submartingales satisfying the property (Al): for all
indices s « t, the conditional expectation of X(s, t] given the vertical
o-algebra #! is non negative. This extends the notion of 1-martingale
as defined in [/4]. We show that L Log L-bounded positive (A1) submar-
tingales converge almost surely, and have right-continuous modifications
with limits in the fourth quadrant. This generalizes theorems proved
in [14], and the techniques are similar: the proof consists in showing that
the processes are amarts with respect to the totally ordered family of
o-algebras (#}), and applying the amart theorems on convergence and
regularity. However our methods do not give the existence of left-limited
versions proved by D. Bakry [2] for martingales with respect to product
o-algebras.

The first section states the precise definitions. The second section consi-
ders discrete parameter (A1) submartingales. The existence of regular modifi-
cations for continuous parameter (Al) submartingales is studied in the
third section.

1. DEFINITIONS AND NOTATIONS

Let I denote Z? or R%2 with the usual order s = (sq, 5,) < (t;,t,) =t
if s; <t; and s, < t,; then I is filtering to the right. Set s « ¢ if s; < ¢,
ands, < t,.Let(s, t]denote therectangle { ue R?:s <« u < t }. Let(Q, #,P)
be a complete probability space, and let (,) be a stochastic basis indexed
by I, i. e, an increasing family of complete sub-sigma-algebras of #. For
every t = (ty, t,), set

Fl __ 7y — 2 __ 273 — (73 —
e/‘ét —\/ﬂtl’“—flhx, *g'—t —\/’jbu,tz-g:oo,tz’ and e/'oo,oo_\/'gtt'

u u 1

A process (X,) is adapted if X, is % -measurable for every t€l. Given a
process (X,) and s « t, set

X(S’ t] =X - Xt;,s; - XS1,t2 + sz,sz'

11,02

An integrable adapted process (X,) is a submartingale [supermartingale]
if EX,| %) = X, [E(X,| #) < X,] whenever s < t. A martingale is both
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CONVERGENCE AND REGULARITY OF TWO-PARAMETER (Al) SUBMARTINGALES 27

a submartingale and a supermartingale. An adapted integrable process (X,)
is a (A1) submartingale if it is a submartingale and has the property (Al):

(A1) E[X(s,t]|#!1 =0 whenever s<«t.

An adapted integrable process is a (Al) supermartingale if it is a supermar-
tingale, and has the property (P1):

(P1) E[X(s,t]|#!1 <0 whenever s<«t.

Remark that the property (A1) [(P1)] may be interpreted as follows: for
every fixed b > athemapu — E(X,, — X,,| #, ) is increasing [decreas-
ing].

Suppose that the space is the product of two probability spaces, and
that X, (01, @;) = Y (@01)Zyw,). If (Y,, a > 0) is a one-parameter posi-
tive martingale and (Z,, b > 0) is a one-parameter submartingale, or if (Y,)
is a positive submartingale and (Z,) is a positive increasing one-parameter
process, then (X,, t 1) is a (A1) submartingale. We give another example
of a discrete (Al) submartingale. For i > 0 let (M, ;, j > 0) be a submar-
tingale for the increasing family of g-algebras (.«
(i, j)e N2, set

Xij= Z(Mk,j — My 0)s Fij= \/ﬂk,j:
: kxi

and suppose that #; ; and \/&ik, ; are independent for every (i, j). The
k>1i

process (X,, #,,te N?) is a (Al) submartingale. Indeed the property (B1)

is clearly satisfied, and to check the submartingale property, it suffices

to verify that X;; < E(X;;+,|Z, ) for every (i, ). For every

] = 0). For every

Aedj, ..., Aesd,,,
one has

E [IAl n...r\Ai(Xi,j+ 1 Xi,j)]

=§:P(A1 NN A A L 0 A)ENT, M e — M )] =00

k<i

Set ¢(x) = x Log™ x; a random variable X belongs to L LogL if
E[¢o(] X])] < oo, and a process (X,) is bounded in LLogL if

sup {E[¢(|X,)]: tel} < =.

Vol. XIX, n°® 1-1983.



28 A. MILLET

Let J be a directed set filtering to the right, and let (%4,, t €J) be a sto-
chastic basis. A map t: Q — J is a stopping time for (9)if {1 <t}e¥,
forevery t € J. A I-stopping time is a stopping time for (%}, t € 1), where [ =72
or R% . A stopping time is called simple if it takes on finitely many values.
Let T! denote the set of simple 1-stopping times. If 7 is a stopping time for
(%), let

4. ={AeF  :An{t<t1}e¥, forallt}.

An adapted integrable process (X,, #,, te€ Z?) is a I-amart [descending
I-amart] if the net (EX,, te T") converges when t — (00, 0) [t — (—00, —00)].

We now give definitions relative to the continuous case. Given an index
teR?, denote the quadrants determined by t by Q) = {s:s>1t},
Qut)={s:5,<t;,5>1},Qut)={s:s<t},and Qu(t)={s: 85, > 1,5 <1, }.
A stochastic process (X,:teR?) is continuous in Q;, i=1, ..., 1V, if
X, =1lim(X,:s — t,seQyt)) for every t. For every i =L, ..., IV, denote
Q?(t) the interior of Qyt) for the euclidian topology. The process has
limits in Q;, i =1, ...,IV, if lim(X,:s — ¢ seQP(t)) exists for every t.

A sequence ©(n) of 1-stopping times I-decreases to t in Q[Q] if
lim 7(n) = 7, the sequence t(n),; decreases, and t(n) > t for every n

1t(m), = 1, ™(n), < t, for every n].

A sequence (n) of 1-stopping times I-recalls t in Q[Qyy]if 7(n) 1-decreases
to v in Q;[Q], and t(n) > t for every n[t(n), > 1;, 1(n), < 7, on the set
{1, > 0} for every n]. An integrable process (X,, %, neN) [(X,, 4, ne —N)]
is an ascending [a descending | amart if the net (EX_, 7€ T) [(EX,, 1e — T)]
converges, where T denotes the set of simple stopping times for (%,). If &,
decreasesforn > 0,Y_, = X,, #_, = 4, then(X,,%,, n € N)isa descending
amart if (Y,, #,, ne — N) is one. A one-parameter integrable process
(X,,%,,t > 0) is an ascending [a descending] amart if for every stopping
time t for (%), and for every sequence (t(n), ne N) [(t¢(n), ne — N)] of
simple stopping times for (¥,) that increases to t, the process (X, %> nEN)
[(Xenys Gemy»n€ — N)] is an ascending [a descending] amart. A process
(X,,%,,t = 0) is of class (AD) if for every uniformly bounded sequence of
simple stopping times t(n), sup E|X,, | < co. An integrable process
(X, #,te R3) is a I-amart in Q, [Q] if for every bounded 1-stopping
time t, and for every uniformly bounded sequence (t(n): ne N) in T* which
L-recalls t in Q, [Qyv], the process (X Zmy n € N) is a descending amart.
The process (X,, #,,t€ R?) is a descending 1-amart if it is a 1-amart in Q
and Quy, and if for every b > 0, the one-parameter process (X, ;, #5-
t = 0) is a descending amart.
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CONVERGENCE AND REGULARITY OF TWO-PARAMETER (Al) SUBMARTINGALES 29

2. DISCRETE PARAMETER

In this section we prove that L Log L-bounded positive (A1) submar-

tingales converge almost surely by showing that they are 1-amarts. This
generalizes Theorem 1.1 [14].

THeOREM 2.1. — Let (X,, #,, t € Z%) be an L Log L-bounded (A1) sub-
martingale [submartingale with (P1)] such that X, > E(Y | #,) for some
random variable Ye L Log L. Then (X,,te N?) is a 1-amart, and hence
converges almost surely when t — (o0, o0), while (X,,te — N2?) is a des-
cending 1-amart, and converges almost surely when t — (— oo, — w0).

Proof. — We at first prove the 1-amart property of the (A1) submartin-
gale (X,,teN?). Given an increasing sequence (t,) of indices in N2, the
process (X,,, #,,,n = 0) is an L Log L-bounded submartingale, and X,
converges in L;. Hence the net (X,) converges in L, to a random variable
XeLLogL, such that X, < E(X | #,) for every t. Fix je N; the one-para-
meter submartingale (X, ;, 7, ;, n = 0) [(X;,, %, n > 0)] converges a. s.
and in L, to an & ; [#; .. ] random variable X, ; [X;.., ] that belongs to
L Log L. The submartingale property and the L, convergence of the nets
(X,j>n = 0) and (X;,, n > 0) show asymptotically in n that (X, ;, Z.,,
J=0)and (X; ., #; ,,j = 0) are L Log L-bounded submartingales. Both
sequences convergea.s.andin L, to X whenj — +o0.SetI=(NuU {400 })?,

Xpw=X,and F, = \/ Z,. It is easy to see that the process (X,, Z,,
teN 2

tel) is a (Al) submartingale. By Doob’s maximal inequality applied to

the positive submartingales X", X7 ,, X;7,, and to the positive martin-

gales E(Y™ | #, ), E(Y™ | #,,) and E(Y™ | Z,,) (see e. g. [16], p. 69),

one has E(sup | X, . |:n>0)< oo, E(sup | X, |:n>0)< oo, and

E(sup | X, 0l :n = 0) < oc. Hence the sequences (sup | X; ., — X|:n > 0),

jzn

(sup | X, ;—X|:n = 0),and (sup | X, o—X., 0| : n > 0) are uniformly inte-
jzn jzn

grable, and they converge a. s. to zero. Fix ¢ > 0, and choose K such that

Efsup{|X;,. —X|:j>K}]<e,
Efsup {|X, ;= X|:j=K}]<e,

and Efsup{|X;0 — X, ol j2K)]<e.

Vol. XIX, n° 1-1983.



30 A. MILLET

Let © > (K, K) be a simple 1-stopping time. The property (Al) applied
to the rectangle ((t;,0), (o0,t,)] implies

EX. = ZEU{:::}X:]

t

- zﬁu{,:ﬂ(xw,u X0 = Xo )]

t
< EX 4+ E(sup[X.; = X|) + E(sup | X;0 — X0 )
iz j=K ’
< EX + 2¢.

Conversely, the property (A1) applied to the rectangle (¢, (0o, c0)] shows that

EX, = EE[I{I=I}(XHsOO + Xy = X)]

t

> EX — E(Sup|Xj,oo - XI) - E(Suplxoo,j - X1)
j=zK jizK
> EX — 2¢.

Hence (X,) is an L;-bounded 1-amart.

Consider now a submartingale (X,, #,,t e N?) with the property (P1).
Extend the process to a submartingale with (P1) (X,,te]) as in the first
part of the argument. Fix ¢ > 0, and choose K as above. Let 7 > (K, K)
be a simple 1-stopping time. A similar argument shows that the property (P1)
applied to the rectangle ((t,0), (c0,t,)] leads to EX, > EX — 2¢, while
the property (P1) applied to the rectangle (¢, (c0, o0)] gives EX, < EX + 2e.
This concludes the proof of the 1-amart property of (X,). Finally similar
proofs show the descending 1-amart property of the processes in the des-
cending case.

The stochastic basis (%) is totally ordered, and hence satisfies the
Vitali condition V. The almost sure convergence of (X,) when t — (+ oo, + o0)
or (— oo, — co) follows from Astbury’s theorem [/] [

Remark. — An analog of Theorem 2.1 can be proved by a similar tech-
nique for (A1) supermartingales [supermartingales having the property (Al)],
say (X,,te(N U { + oo })?), under the additional assumption:

E@up{|X;;l:ieNU{+w}})< oo,
and

E(sup {|X;;|:ieNU{+ow}})<oo forevery jeNuU{+ow}].

We prove a Doob-Meyer decomposition of (Al) submartingales. The

Annales de I'Institut Henri Poincaré-Section B



CONVERGENCE AND REGULARITY OF TWO-PARAMETER (Al) SUBMARTINGALES 31

stochastic basis (#,) has the property (F4) if #}! and #? are conditionally
independent given %, for all t. A process (M,) is a martingale for (F') if
it has both properties (A1) and (P1) (but is not necessarily a martingale).
Under the assumption (F4), every martingale is a martingale for (#1).
Given any process (X, j), set AX(i, )=X((i—1,j—1), (i, )]ifi=1and j> 1,
AX(0,)) = Xo,; — Xp,j—1 f j =1, AX(;,0) =X; o — X;—1 0 if i>1, and
AX(0,0) = 0. A process (A;) is an increasing process if AA(i,j) > 0 for
every (i, j). The following proposition is an analog of [6 ] Theorem 2, and [9]
Lemma 3.

PrROPOSITION 2.2. — Suppose that the stochastic basis (%,) has the
property (F4).

(i) Let (X,, #,, te N?) satisfy (A1). Then (X,) has a unique decomposi-
tion X,=M, + A,, where (M,) is a martingale for (#'),and (A,) is an increasing
process such that A, , is measurable with respect to %, 1,V F . 1.

(ii) Let (X,, #,, te N?) be a (Al) submartingale.

Then (X,) can be decomposed into X, = M, + A, — B,, where (M,) is
a martingale, (A,) and (B,) are increasing processes.

Proof. — (i) Set ay ; = a;,=0 for j >0, and a,; ;=E[AX(, j) | Fi-1.0]
fori > 1 andj > 1. The conditional independence of #! and #? given Z,
implies that a,, , is measurable with respect to #,,_; , V &, ,—1 (cf. [9]). Set
and M,» = Xon — Apn-

i<m j<n
It is easy to check that (A,) and (M,) have the required properties, and
give the unique decomposition.
(i1) Setmg o = Xg,0, @00 = boo =0,
my ;= Xo,; — E(XO,jlg;O,j—lL
Qo,j = E(XO,jlg'—O,j—l) — Xo,j-1>
by =0 for j > 1,
mio = Xio — EXi ol Fio1,0)
1 aio = E(Xi,o | g:i—uo) - Xi—l,O 5

-

bio =0 for i >1,
m; ; = AX(@i,j) — E(AX(L ) | #i-1,) — B(AX(G ) | F5-1)

+ E(AX(L ) | Fi-1,5-1)s
a;; = E(AX(, )| Fi-1 ) + E(X;; — Xi,j-1 | Fii-1)s

bi; = EAX( )| Fioq;-1) + EXioy; — Xioy oy | F:ii-1)
L for every (i,7) > (1, 1).

Vol. XIX, n® 1-1983. 2



32 A. MILLET .
The property (F4) and the submartingale property imply

EXioy,; — Xic1j-1 1 Fij-1) = 0.

et
Mm,n= E § m ;, Am,n= é é ai js Bm,n= § § bi,j'
i<m j<n i<m j<n i<m j<n

The processes (A,;) and (B,) are clearly increasing, and the process (M,) is
a martingale. []

S

3. CONTINUOUS PARAMETER

We prove that L Log L-bounded positive (A1) submartingales indexed
by R2 have modifications which are well-behaved in the quadrants Q;
and Qy. This extends a result shown in [/4] for 1-martingales. For every
n>0,set D(n)={i.27":i>0},and D = U D(n). If S is a subset of R3,
denote by TX(S) the set of simple 1-stopping times with all the values
in S.

LemMMA 3.1. — Let (X, #,,teR%) be an L Log L-bounded (A1) sub-
martingale [submartingale with (P1)] such that X, > E(Y|#,) for some ran-
dom variable YeL Log L. Then for every M > 0,thenet { X, : te T{(D x D),
7 < (M, M) } is uniformly integrable.

Proof. — First consider the (Al) submartingale (X,). Fix a > 0, and
let 1e TYD x D) satisfy © « (M, M). Then the property (Al) applied to
((tl’ 0)9 (M’ IZ)] giVeS

E [l(x,>a}Xz] = Z E [1{t=t}r\{Xt>a}Xt]

t

< ZE[1{1=t}n{X,>a}(XM,t2 + X0 — Xm0l

t
< E[lx,>qsup {|Xy,|:b <M, beD}]
+ E[lix,>q sup {|X,0l:a <M, aeD}]
+ E[I{Xz>a} | XM,O I
Since the positive submartingales (Xy, :u > 0) and (X7, :u > 0) are
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CONVERGENCE AND REGULARITY OF TWO-PARAMETER (Al) SUBMARTINGALES 33

bounded in LLogL, and since Xy, <E(|Y | |Fm.), and X, o < E(|Y| | #, ),
the random variables S; = sup (| Xy, |:4 <M, ueD), and

S, =sup(|X,0l:u<M,ueD)

are integrable. Also P(X, > a) < a 'B(X,lx.> ) < @ '[ES; +ES, + E|Xy0l].
Given ¢ > 0, choose o such that P(A) < o implies E[1,(S;+ S+ [ Xm0 )] <e,
and choose a such that a™ ' [ES; + ES, +E[Xu ol ] <. Then E[1x - 4 X, ] <¢
for every te TH(D x D) with 1 « (M, M).

Apply the property (Al) to the rectangle (z, (M, M)] to obtain

Ellx,<-alX: 1= - ZE[I{r=r}o{xt<—a}Xt]

t

= ZE[I{Izt}”{Xt<_“)(XM,M = Xmp, — Xi, M1
t

< E[lx,<-q sUp (| Xup|: b <M, beD)]

+ E[lx,<-q sup (| X,m|:a <M, aeD)]

+ E[l{xr<—a}|XM,M|]-

The random variable S; = sup (| X, u|: 4 < M, ue D) is integrable, and
similarly it suffices to show that lim P(X, < — a) = 0 when a — + oo.
The inequalities

PX. < —a) < a“E(X:l{Xt_N}) <a YES; + ES; + E[Xyuml)

conclude the proof in the case of a 1-submartingale.

Let (X,) be a submartingale with (P1). Similarly the property (P1) applied
to (t, (M, M)] proves the uniform integrability of X", and the property (P1)
applied to ((t{,0),(M, t,)] gives the uniform integrability of X, . [

The following lemma indicates perturbations of a sequence t(n) which
do not affect EX,,, asymptotically.

Lemma 3.2. — Let (X,, #,,teR%) be an L Log L-bounded (A1) sub-
martingale [submartingale with (P1)] such that X, > E(Y | #,) for some
random variable Ye L LogL. Let t be a bounded 1-stopping time, and
let 7(n) be a sequence of simple 1-stopping times taking on valuesin D x D,
bounded by (M, M), such that ¢, < ©(n);, and lim||t(n); — 1, ||, = 0.
Then for every sequence of positive numbers o, that converges to zero,
one has lim EX 4, 14, :m, — EXym = 0.

Vol. XIX, n° 1-1983.



34 A. MILLET

Proof. — First study the case of a (A1) submartingale (X,). The property
(A1) applied to the rectangle ((t;,0), (t; + o, t,)] implies

EXt(n) < ZE [l{r(n)=!}(Xt1 + ot t2 + Xt1,0 —‘Xn +an,0)]
t
<E[sup {|X,0—X,0l: (@ b)eD x D, 7y <a<b<t+o,+| t(n)—1[l, } ]
+ EX ), + ety
= EX!(M)l +an,t(n)2 + Bn .

Conversely the property (A1) applied to the rectangle (t, (£, + o,, M)]implies

EXr(nn +an,t(n)2 Z E [1{t(n) = t}Xu +amtz]

t
< E[sup {|X,nm—Xpml: (@ b)eD x D, 1y <a<b <1+, + || c(n)—1 ||, }]
+ EX,
= EXt(,,)‘l'a".

The one-parameter submartingales (X, 9, Z,0.a = 0), and (X,m Fum
a > 0) have right limits almost surely along the elements of D. Also
sup (| X 0l :aeD,a < K) and sup (| X,m|:aeD,a < K) are integrable
for every K. Hence the sequences f3, and J, converge to zero. A similar
argument concludes the proof in the case of submartingales satisfying the
condition (P1). [

We now prove the amart property of positive (Al) submartingales.

TueoreM 3.3. — Let (X,, #,, te R%) be an L Log L-bounded (A1) sub-
martingale [submartingale satisfying (P1)] such that X, > E(Y | #,) for
some random variable YeL LogL. Then (X,) is a descending 1-amart.

Proof. — Suppose (X,) is a (Al) submartingale. Fix b > 0; the amart
property of the one-parameter submartingale (X, ;, #,,;,a > 0) has been
proved in [10]. Let © be a 1-stopping time bounded by (M, M). Let ¢, be
a sequence of positive numbers which decreases to zero. For every a > 0,
the one-parameter submartingale (X,,, %,,,b > 0) has left and right
limits almost surely along the elements of D, and sup (| X, ,|: beD, b <M)
is integrable. Choose «, > 0 such that P(A) < «, implies.

E[l sup{|X,,|:aeD(n),beD,(a,b) < (M+4,M+4)}] < g, Choose
an integer k, such that

P[ U {sup(1Xay = Xl : (.)€ D x D,

acDin).a<M+4 ,<b<c<t,+4.2">¢}]<a,

Annales de IInstitut Henri Poincaré-Section B



CONVERGENCE AND REGULARITY OF TWO-PARAMETER (Al) SUBMARTINGALES 35

and

P[ U {sup(|X,p — X,c|: (h,c)eD x D,

aeD(n),a<M+4 T, —42Tm<cbhb<ce<t) >8] <0,

and P[0 <1, <4.27%] < o, Finally by Lemma 3.1 choose ,>0
such that P(A) < B, implies

sup { EIA | X.]): teTY(D x D), t < (M, M) } < ¢,.

Changing o, if necessary, we may and do assume that o, < f,/2. Set
a,=E[sup {|X,0 — Xpol:(a,b)eD x D, 1, <a<b<rt, +4.27"}]
and b, =E[sup { | X,m+s—Xpm+al:(a, b)eD xD, 1, <a<b<t,+4.27"}]
The one-parameter submartingales (X, o, .0, a > 0), and (X, p+ 4, Fam+4
a > 0) have right limits almost surely along the elements of D. Since
sup (| X,0l:aeD, a < M+4) and sup (| X, p+4| : a€eD, a<M+4) are
integrable, lima, = lim b, = 0. Finally set

¢ =E[sup{[X,, — X,.|:aeDmn),a <M + 4,(b,c)eD x D,
L<b<c<t,+4.27%}],
d, = E[sup{|X,p — X,c|:aeDm),a <M +4,(b,c)eD x D,
T, =427 <ch<c<,}].
Then ¢, < 3¢,,and d, < 3g,.

We prove first the 1-amart property in Q at the 1-stopping time .
Let t(n) be a bounded sequence of simple 1-stopping times which 1-recalls ©
in Q,. Changing M if necessary in the conditions above, we may and do
assume that the sequence t(n) is bounded by (M, M). To lighten the nota-
tions we will assume that the t(n) take on dyadic values, and it will be
clear in the proof that this is no loss of generality. We define a sequence T(n)
which is « universal » for 7, compare EX,,, with EXr,), and show that EXr,
converges.

For every n > 0 let v(n) be the dyadic approximation of ¢ defined by
vn)=((i+4).27" (j+4).27%)on {(i.27" /.27 ") <t <((i+1).27" (j+1).27*}.
Choose p, such that p > p, implies that

Plu(p); = 1, + 27"+ Plt(p), = 1, + 275 < B,.

We may and do assume that the sequence of integers p, is strictly increasing.
Fix p with p, < p < p,+1, and set

T(p) = v(n),
a(p) = w(p) A [T(p) — 27"+, 27*)].
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Then T(p) and a(p) belong to TY(D x D), and P[a(p) # ©(p)] < B,. Hence

|EX,(» — EXyp | < 2¢,. Furthermore, for every @),
T(p) = (i~2_naj'2—k")€fn+2‘",oo < 91(?)1"’2‘",00-

Set S(p)=(o(p); +27",0(p)2) for p, <p < pps+. Clearly lim || o(p)— 1, ||, =0;
Lemma 2.2 implies that lim EX,, —EXg,=0. Fix p with p,<p<p,.,,
and to lighten the notations set S=S(p) and T=T(p). One has

(i) t«S«T<1t+4+@.27"4.27%), TeT'(D(n) x D(k,)).

(ii) T is measurable with respect to Fg,

Since { S=s} N { T=t} € #/, the property (A1) applied to the rectangle
((s1, 0), (t1, 55)] gives

EXS < Z ZE[I{S=s}n{T=t}(Xn,sz + Xs1,0 - th,O)]
s t

< EX; + a, + ¢, < EX1 + a, + 3s,.

Conversely the property (Al) applied to the rectangle (s, t] shows that

EXg > z ZE[I{S=s}ﬁ{T=t}(Xs1,tz + Xips, — X9

—EXT_a_

o= Z EE[I{S Sn(T= X = X, D1
ﬁ = 2 ZE[I{S=S}A(T=t}(Xt - th,sz)]‘
s t

Applying the property (Al) to the rectangle ((sy, £5), (t;, M + 4)], one obtains

o< 2 ZE[l(S=s}n{T=t}(X11,M+4 — X, M+ Db
s t

The property (A1) applied to the rectangle (¢4, s;), (M + 4, t,)] shows that

p< z ZE[I{s=s}n{T=:}(XM+4,:2 — Xmas)] < 6 < 3e,.
s 1

where

Hence lim EXg,, — EXy(,,) = 0. The argument showing that EXg and EXry
are close depends only on the properties (i) and (ii) of S and T. Fix n < m,
p and g with p, < p < ppi1> Pm < g < Dm+1- This argument applied to
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S = T(q) and T = T(p) shows that the sequence EXy, converges, which
completes the proof of the 1-amart property in Q.

We show that (X)) is a 1-amart in Q. Let t(n) be a sequence of simple
1-stopping times taking on values in D x D, which 1-recalls 7 in Q and
is bounded by (M, M). For every n = 0, let p(n) be the dyadic approxi-
mation of 7 defined by

p(n) = ((i + 4).27", (j — 4).27*)
2 << (D2 (G .27} for 24,
p)=((i+4).27"0) on {i27"<t, <(i+1).27"} {1, <4.27"},

Choose an integer g, such that p > g, implies
Plu(p); = 1 + 27" + Plt(p)y < 15 — 27%] < B,/2.

We may and do assume that the sequence g, is strictly increasing. Fix p
with ¢, < p < ¢,+1, and set

T(p) = p(n),
a(p)=(t(p)s A [T(ph—2"""" 1, w(ph V [T(ph+27%]) on {7,>4.27%},
a(p)=(t(p); A [T(p); —27""'L,0) on {1, <4.27"}.
Then
Plo(p) # Up)] < Ple(p); = 11 + 27" + P[0 < 1, < 4.27%]
+ Pl(p), <12 —27"]
< o, + B2 < B,

Set S(p)=(a(p) +2", o(p),). By Lemma 3.2 one has lim EX,,—EXg,=0.
By Lemma 3.1 one has lim EX,,,—EX,,,=0. We compare the sequence
EXg(, to the « universal » sequence EXr(,, and show the convergence
of EXy(,)- Fixpwith g, < p < g,+1,and set S = S(p)and T = T(p); one has

(") 1, <S;<T, <1, +4.27" TeT (D) x D(k,)),
(ii") 1, — 427" <T,<S,<t,0n {1,>4.27%}
(ii'y S, =T,=0o0n {1, =0},

(iv") T is measurable with respect to Fg, .

The random variable 7, is measurable with respect to %, . ; hence

(=0} {S=s}n{T=r]cs
and
{(1,>427 A {S=5s}n{T=t}esFl.
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The property (Al) applied to the rectangle ((sy, t,), (1, s,)] implies
EXs < Ellg,-0X1] + 4,
+ Ello<r,<a2-uXp + [ Xs| + [ X1 ])]

+ Z ZE[1{t2>4.2”‘n}r\{S=s}n{T=t}(Xs1,tz + X5, — X))
s t

<EXr+a,+2,+a +p,

o = Z ZE[1{S=s}r\{T=t}n(tz>4.2"‘h}(Xsl,tz - Xr)]:
S t

ﬂ' = z 2E[1{S=s}r\{T=t}r‘\{rz>4.2‘k"}(Xn,sz - Xz)]~
N t

Applying the property (A1) to the rectangle ((s, 0), t] one obtains

o < 2 ZE[1{S=S}n{T=t)n{tz>4.2‘kn}(Xsl,O = X0l < a,.
S t

On the other hand B’ < d, < 3e,. Conversely,

EXs > Z ZE[1{tz=0}n{S=s}n{T=t}Xs1,O]
N t

+ E [1{1:2>4.2‘k"}r\{S=s}n{T=t}Xs] —E[lpcr,ca2-*m | Xs!]

N t
= E[XT1{1:2=0}] — a, + 2 ZE[l{rz>4.2"‘n}n{S=s}n(T=t}Xs]_'sn'
s t

where

For every s in the range of S; choose s € D, s5 > s,, such that setting
A=|_J{S=s5}n{0<c,<s3}), one has P(A) < a,2. Apply the

property (A1) to the rectangle ((s1, S2), (t1, s3)]. Then
EXS = E[XTl{r2=0)]—an—8n_E[1A I XS | ]

+ Z Z E[1{r2>4.2‘kn}n{lz>s'2}r\{S=s}n{T=t)(Xs1,s'2 + Xt,,sz - th,s'z)]
N t

= E[XTl{t2=0}] —a, — 2, + E[XT1{12>4.2"<n}nA°]

- 2 ZE[1{12>4A2“’<n}r\{t2>s’2}n{S=s}n{T=t}(Xt1,tz - Xt;,sz+X11,s'2—X51,S'2)]
N t

= EXT—a,,—2en—E[ [ Xt lAu{o<rzs4,2-kn}]—dn—bn
= EXr—a,—2¢,~2¢,~3¢,—b,.
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Hence lim EXg,) — EXt,) = 0 when p — oo. This argument also shows
that the sequence EXy(, converges, and hence that the sequence EX,,
converges too. This completes the proof of the 1-amart property in Qqy
in the case of a (A1) submartingale. A similar argument shows that submar-
tingales with (P1) are 1-amarts in Q;and Qy, which concludes the proof. [

The following theorem proves the existence of regular modifications of
positive (A1) submartingales.

THEOREM 3.4. — Suppose that (X,, #,, t€ R2) is an L Log L-bounded
(Al) submartingale [submartingale with (P1)] such that X, > E(Y | %))
for some random variable Y e L Log L. Assume that (&) is right-conti-

nuous, and that for every a > 0 the one-parameter family (%,,, b = 0)
is right-continuous.

(i) If for every a = 0 the map b — EX,, is right-continuous, then (X,)
has a modification almost every trajectory of which has right limits.

(ii) If for every b > 0 the map a — EX,, is right-continuous, then (X,)
has a modification almost every trajectory of which has limits in Q;and Qqy.

(iii) If for every a > 0 the maps b — EX,, and b - EX, , are right-
continuous, then (X,) has a right-continuous modification almost every
trajectory of which has limits in Qy.

Proof. — Our definition of descending l-amart is slightly different
from the one introduced in [/4]. The difference lies in the fact that we
only require the horizontal processes (X, ;, F,p @ = 0) [and not (X,
Fapa > 0)] to be descending amarts for all b > 0. However it is clear
from the proofs of Proposition 2.2, Theorems 2.4, 2.5, and Corollaries 2.6,

2.7 [14] that the statements made there remain true for our notion of
descending 1-amart.

(i) For every a > 0 the one-parameter submartingale (X, ,, #,,, b = 0)
is a descending and an ascending amart of class (AL) [9]. The right-conti-
nuity of the map b — EX,, insures the existence of a right-continuous
modification of this process. Hence for every sequence 1(n) of simple one-
dimensional stopping times for (#,,,b>0), b =lim \ 1(n) implies
EX,, = lim EX, .. The existence of right limits follows from Theo-
rem 3.3, and from [/4], Theorem 2.4.

(i) A similar argument shows that Theorem 3.3 together with [/4]
Theorem 2.4 imply the existence of a modification having limits in Q,
and Q.

(iti) The argument is similar to the one given in [/4], Theorem 2.5.
By (ii) the process (X,) has a modification (Y,) having a. s. limits in Q,.
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Set Z, = lim (Y : s » t); it is easy to see that (Z,) is right-continuous.
To prove that (Z,) is a modification of (X,), it suffices to prove that for every ¢,
Z, =Y, =X, a. s. Fix a > 0; the right-continuity of the maps b — EX_,
and b — EX,, insures the existence of right-continuous modifications
for the one-parameter submartingales (Y, ,, b > 0) and (Y, ,, b > 0). Fix t;
we may and do assume that the processes (Y,, ,, b > 0), (Y}, b > 0), and
all the processes (Y, 4 np, b = 0)and (Y, 1, b > 0)are right-continuous.
Let g, N 0, and for every fixed n > 0 let k, be an integer such that

ENYe t tmst 1k — Yo v1mel] < e,
E[|Yt1,t2+1/k,. - Y, |]<e,. Set E[lYtl+1/n -Y, 1= Oy

Fix Ae #!, set (n) = t on A, and t(n) = (t, + 1/n, t, + 1/k,) on A. Sup-
pose that (X,) is a 1-submartingale; then

EYT(") = E[IACYI‘] + E[IA(Yt1+1/n,tz + Ytl,t2+1/kn - Yt)]
> EY, — ¢, — a,.
Conversely
EY’(") <E [1A°Yf1 + 1/",t2] +E [IAY:1+ 1/n,12+ 1/k,.]
< E[Yz,+1/n,r2+1/k,,] + ¢g,.

The map t — EX, = EY, is right-continuous by assumption. Hence
lim E[Y,, +1mem+14] = EY,,  and  lim EY,, = EY,.
Lemma 3.1 implies the uniform integrability of Y,u; clearly
lim Y, = 1,.Y, + 1,7, a.s..

Hence E(1,Z,)=E(1,Y,) for every Ae #/. Given any index ¢ the #/-measu-
rable random variables Z, and Y, agree almost surely.
A similar argument concludes the proof for submartingales with (P1). [

Remark. — A theorem analogous to Theorem 3.4 can be proved if (X,)
is a (A1) supermartingale [a supermartingale satisfying (A1)] under the
additional assumption that for every b > 0, and for every M > 0, one has
Efsup | X,;|:aeD,a<M]<oand E[sup | X;, | : aeD, a<M] < 0.

Finally we state a Doob-Meyer decomposition of (A1) submartingales.
The proof, similar to the argument given in [6], [4] and [9], is omitted.
An adapted integrable process (A,, %, te R%) is a l-increasing process
if A, is a. s. right-continuous, null on the y-axis, and satisfies A(s,t]>=0
for every s « t. Recall that an adapted integrable process (M,, #,, t € R})
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is a martingale for (') if it satisfies the conditions (A1) and (P1). A process
(X,) is of class (D) if for every t » (0, 0), the sequence

i i+1j+1
@ ZEH(? 2—) Mo (T’T) A t] | Fhangend = °>
i J

is uniformly integrable. For every t set o/(t)={(u, 0] x Atu < v < t,Ae Z },
and let 2(t) be the s-algebra generated by /(t). Set

px((u, v] x A) = E[1,X(u, v]].

THEOREM 3.5. — Let (X,, %, teR2%) be a (Al) submartingale right-
continuous in L;, and let (&) satisfy (F4). The following are equivalent:

(i) (X)) is of class (D1).

(ii) px has a unique countably additive extension to 2(¢) for all t.

(iii) There exists a decomposition X, = M, + A,, where (M,) is a mar-

tingale for (#1), (A,) is a l-increasing process, and both processes are
adapted.
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