SHMUEL GLASNER On Choquet-Deny measures

Annales de l'I. H. P., section B, tome 12, nº 1 (1976), p. 1-10 <http://www.numdam.org/item?id=AIHPB_1976__12_1_1_0>

© Gauthier-Villars, 1976, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On Choquet-Deny measures

by

Shmuel GLASNER

Tel-Aviv University. Depart. of Math. Sciences. Ramat-Aviv. Tel-Aviv, Israël

ABSTRACT. — Let μ be a probability measure on a group G; we give necessary and sufficient conditions for μ to be a Choquet-Deny measure (i. e. for μ to admit only constants as μ -harmonic functions). Most of the conditions are given in terms of the iterates of μ .

Résumé. — Soit μ une probabilité sur un groupe G. Nous nous donnons des conditions nécessaires et suffisantes pour qu'elles n'admettent que les fonctions constantes comme fonctions harmoniques. Ces conditions sont essentiellement données à l'aide des itérés des μ .

1. INTRODUCTION

Let G be a locally compact topological group, λ a left Haar measure on G. Let M be the Banach algebra of bounded real measures on G with the total variation norm and the operation of convolution defined by

$$(\mu * \nu)(f) = \int \int f(gh) d\mu(g) d\nu(h) \, .$$

Here f is a continuous function on G which vanishes at infinity. Let M_a be the two sided ideal of M which consists of all absolutely continuous measures (with respect to λ), and let M_a^0 be the subideal of measures v with the property v(G) = 0. For a measure $\mu \in M$ we let $||\mu||$ be its total variation.

A probability measure μ on G is called *aperiodic* if its support generates

I wish to thank S. Horowitz for helpfull discussions.

Annales de l'Institut Henri Poincaré - Section B - Vol. XII, nº 1 - 1976.

S. GLASNER

a dense subgroup of G. It is called *strictly aperiodic* if the support of μ is not contained in a coset of a proper closed normal subgroup of G. μ is *étalée* [1] if for some positive integer n, $\mu^n = \mu * \ldots * \mu$ is not singular with respect to λ . It is easy to see that this is equivalent to the existence of a k such that μ^k dominates a positive constant multiple of λ on a nonempty open subset of G. If μ is étalée we let S_{μ} be the open semigroup of elements $g \in G$ such that for some k, μ^k dominates a positive constant multiple of λ on a neighbourhood of g. A bounded real valued measurable function f on G is called μ -harmonic if for every $g \in G$

$$(f * \mu)(g) = \int f(gh)d\mu(h) = f(g).$$

If μ is étalée and $f \in L_{\chi}(\lambda)$ satisfies $f * \mu = f$ a. e. λ then it is easy to see that there exists a function f' which is in the equivalence class of f in $L_{\chi}(\lambda)$ and such that $f' * \mu = f'$ everywhere; i. e., f' is μ -harmonic. Moreover f' is necessarily continuous.

We say that μ is a Choquet-Deny (C. D.) measure if the only μ -harmonic functions are the constants. G is a C. D. group if every aperiodic probability measure on G is C. D. G is a Liouville group if every étalée aperiodic probability measure on G is C. D. [5].

We say that μ satisfies the condition (F) with the positive integer k if for some positive integer n the measures μ^n and μ^{n+k} are not mutually singular. The following result is due to S. R. Foguel [3].

Let μ be a probability measure on G satisfying condition (F) with the positive integer k; then for $v \in M_a^0$

 $\lim ||v * \mu^n|| = 0$

iff $\langle v, f \rangle = \int f(g)dv(g) = 0$ for every $f \in L_{\infty}(\lambda)$ satisfying $f * \mu^{k} = f$ a. e. λ .

We will see that in many cases the assumption $\ll \mu$ satisfies condition (F) » is redundant. Let us write P(G) for the set of probability measures on G.

2. THE ITERATES OF μ ON M⁰_a

PROPOSITION 1. — If $\mu \in P(G)$ is strictly aperiodic étalée measure for which $S_{\mu}S_{\mu}^{-1} = G$, then μ satisfies condition (F) with k = 1.

Proof. — Let S_i be the set of elements $g \in G$ such that μ^i dominates a positive constant multiple of λ on some neighbourhood of g; since μ is

étalée there exists an *l* for which $S_l \neq \emptyset$. Let l_0 be the minimal *l* with this property. For $k, l \ge l_0$ we have $S_k S_l \subseteq S_{k+l}$. Put $S = \bigcup_{l \ge l_0} S_l$ then $S = S_{\mu}$ is an open subsemigroup of G. By our assumption $SS^{-1} = G$.

If, for some positive integers n and k, $S_n \cap S_{n+k} \neq \emptyset$ then μ^n and μ^{n+k} are not mutually singular and μ satisfies condition (F) with a positive integer less than or equal to k. Thus, if μ does not satisfy condition (F) with k = 1 then one of the following cases occurs.

- Case I : $S_l \cap S_k = \emptyset$ whenever $l \neq k$.
- Case II: There exist positive integers n_0 and $k_0 > 1$ such that $S_{n_0+k_0} \cap S_{n_0} \neq \emptyset$ and whenever $n, m \ge l_0, 0 < |n-m| < k_0$ then $S_n \cap S_m = \emptyset$.

In the first case we let, for $i \in \mathbb{Z}$ (= integers)

$$T_{i} = \bigcup \{ S_{k} S_{l}^{-1} : k - l = i ; k, l \ge l_{0} \}$$

$$T_{i}' = \bigcup \{ S_{l}^{-1} S_{k} : k - l = i ; k, l \ge l_{0} \}$$

Next we show that (a) $T_i^{-1} = T_{-i}$, (b) $T'_i \subseteq T_i$, (c) $T_i T_j \subseteq T_{i+j}$, (d) $i \neq j$ implies $T_i \cap T_j = \emptyset$ and (e) $G = \bigcup \{T_i : i \in \mathbb{Z}\}$.

(a) Is clear. To show (b) let $s_l \in S_l$ and $s_k \in S_k$ where k - l = i. Then since $S_l^{-1}S_k \subseteq S S^{-1} = G$, there are p and q and $s_p \in S_p$, $s_q \in S_q$ such that $s_l^{-1}s_k = s_ps_q^{-1}$. This implies $s_ks_q = s_ls_p$ and $S_{q+k} \cap S_{p+l} \neq \emptyset$. Hence q + k = p + l or i = k - l = p - q. Thus $T'_i \subseteq T_i$. (c) If $a \in T_i$ and $b \in T_j$ then $a = s_ks_l^{-1}$, $b = s_ps_q^{-1}$ where k - l = i and p - q = j. Since $T'_{p-l} \subseteq T_{p+l}$ we have $s_l^{-1}s_p = s_us_v^{-1}$ for some u and v such that u - v = p - l. Now

$$ab = s_k s_l^{-1} s_p s_q^{-1} = s_k s_u s_v^{-1} s_q^{-1} \in S_{k+u} S_{v+q}^{-1}$$

$$\subseteq T_{k+u-(v+q)} = T_{k+p-l-q} = T_{i+j}.$$

Thus $T_iT_j \subseteq T_{i+j}$. (d) is proved similarly and (e) follows from the equality $SS^{-1} = G$.

In the second case, for $p = l_0, l_0 + 1, \ldots, l_0 + k_0 - 1$, let

$$\mathbf{R}_p = \bigcup \{ \mathbf{S}_{p+nk_0} : n \text{ a non negative integer.} \}$$

We claim that for $p \neq q$ $R_p \cap R_q = \emptyset$. Indeed, if $R_p \cap R_q \neq \emptyset$ then $S_u \cap S_v \neq \emptyset$ for some $u > v \ge l_0$ such that $u - v \ne 0 \pmod{k_0}$. Denote $V = S_{n_0+k_0} \cap S_{n_0}$ then for every m > 1

$$\mathbf{V}^m \subseteq \mathbf{S}_{m(n_0+k_0)} \cap \mathbf{S}_{mn_0} \, .$$

By choosing an appropriate *m* we can have

$$0 < (u + mn_0) - (v + m(n_0 + k_0)) = u - (v + mk_0) < k_0$$

Vol. XII, nº 1 - 1976.

Since $V^m(S_u \cap S_v) \subseteq S_{u+mn_0} \cap S_{v+m(n_0+k_0)}$, this is a contradiction to the definition of k_0 . We now define for $i \in \{0, 1, ..., k_0 - 1\}$

$$T_i = \bigcup \{ \mathbf{R}_p \mathbf{R}_q^{-1} : p - q = i \}$$

$$T'_i = \bigcup \{ \mathbf{R}_q^{-1} \mathbf{R}_p : p - q = i \}$$

If we let $Z_{k_0} = \{0, 1, \ldots, k_0 - 1\}$ be the cyclic group of order k_0 and consider *i* and *j* as elements of this group then statements (*a*)-(*e*) above (where in (*e*) Z should be replaced by Z_{k_0}) still hold and the proofs are very similar.

In both cases, using (a) and (c) with i = j = 0, we see that T_0 is a subgroup of G. Moreover, for every $x \in G$ there exists an *i* such that $x \in T_i$, and therefore

$$xT_0x^{-1} \subseteq T_iT_0T_{-i} \subseteq T_0$$

Thus T_0 is an open and closed, normal subgroup of G.

To complete the proof we let, for $k \ge l_0$, $\mu^k = \eta^{(k)} + \theta^{(k)}$ where $\eta^{(k)}$ is absolutely continuous and $\theta^{(k)}$ is singular with respect to λ . Clearly, $\eta^{(k)}(S_k) > 0$ and moreover, if $\eta^{(k)}(S_l) > 0$ then $(\eta^{(k)})^2$ and hence also μ^{2k} dominate a positive constant multiple of λ on an open non-empty subset of $S_{k+l} \ge S_k S_l$. This implies $S_{k+l} \cap S_{2k} \ne \emptyset$ and we conclude that k = lin case I and that $k \equiv l \pmod{k_0}$ in case II. Thus $\eta^{(k)}$ is supported by S_k in the first case and by R_p , where p is the unique integer for which $S_k \subseteq R_p$, in the second case.

Since, in the first case, $S_k \subseteq S_k T_0 = T_k$ and in the second $R_p \subseteq R_p T_0 = T_{\bar{k}}$ (where $\bar{k} \in \{0, 1, \ldots, k_0 - 1\}$ is the residue of p, and hence also of k, modulo k_0) we can deduce that for every k, $\eta^{(k)}$ is supported by T_k ($T_{\bar{k}}$ respectively).

Now

and

$$\mu^{2k} = (\eta^{(k)} + \theta^{(k)})^2 = (\eta^{(k)})^2 + \eta^{(k)} * \theta^{(k)} + \theta^{(k)} * \eta^{(k)} + (\theta^{(k)})^2$$
$$\eta^{(2k)} \ge (\eta^{(k)})^2 + \eta^{(k)} * \theta^{(k)} + \theta^{(k)} * \eta^{(k)}.$$

If $\theta^{(k)}(T_j) > 0$ (where $j \in \mathbb{Z}$ in case I and $j \in \mathbb{Z}_{k_0}$ in case II) then

$$\theta^{(k)} * \eta^{(k)}(T_{i+k}) > 0$$

 $(\theta^{(k)} * \eta^{(k)}(T_{j+\bar{k}}) > 0$ respectively). But this implies j = k ($\overline{2k} = j + \bar{k}$ and hence $j = \bar{k}$ respectively). We conclude that $\theta^{(k)}$ and therefore also μ^k are supported by T_k ($T_{\bar{k}}$ respectively). Since the latter is a coset of T_0 in G this contradicts the strict aperiodicity of μ . The proof is completed.

Remarks. — (1) The assumption « μ is strictly aperiodic » can be dropped

in proposition 1.1, if G is a connected group, or more generally, if G does not admit a nontrivial cyclic group as a factor.

(2) If μ is étalée and C. D. then by [1, prop. IV. 3, p. 83] $S_{\mu}S_{\mu}^{-1} = G$.

THEOREM 2. — Let G be a locally compact topological group. A strictly aperiodic étalée measure μ in P(G) is C. D. iff

(1)
$$\lim ||v * \mu^n|| = 0 \quad \forall v \in \mathbf{M}^0_a$$

In particular, G is Liouville iff (1) is satisfied by every strictly aperiodic étalée measure.

Proof. — If (1) is satisfied by a probability measure μ and f is μ -harmonic then

$$\langle v, f \rangle = \langle v, f * \mu^n \rangle = \langle v * \mu^n, f \rangle \to 0$$

Therefore, $\langle v, f \rangle = 0$ for every $v \in M_a^0$ and f is a constant. Conversely, if μ is strictly aperiodic étalée and C. D. then $S_{\mu}S_{\mu}^{-1} = G$ and by proposition 1, μ satisfies condition (F) with k = 1. Now (1) follows from Foguel's theorem.

To complete the proof we have to show that if (1) holds for every étalée strictly aperiodic μ then G is Liouville. Indeed if μ is étalée aperiodic and f is μ -harmonic then $\mu' = \Sigma(1/2^n)\mu^n$ is étalée, strictly aperiodic and f is also μ' -harmonic. Thus by our assumption f must be a constant and G is Liouville; the proof is completed.

Remarks. — (1) Let us observe that if $\Delta = (a, b)$ is an open interval of the real line, then there always are n and k, positive integers, such that $n\Delta \cap (n + k)\Delta \neq \emptyset$ ($l\Delta = \Delta + \ldots + \Delta$, l times). Indeed, we have to consider only the case a > 0 and in that case we can choose k = 1 and nsuch that n(b - a) > a. For then na < (n + 1)a < nb. It follows that whenever S_{μ} intersects a one parameter subgroup of G then μ satisfies condition (F). For example, if G is a simply connected solvable Lie group, then the image of the exponential map is dense in G (see [2], theorem 2) and we can conclude that every étalée probability measure on a connected solvable Lie group satisfies condition (F) with k = 1.

(2) Let G be the free group on two generators a and b; then it is easy to see that the probability measure $\mu(a) = \mu(b) = \mu(ab^{-1}a^2) = \frac{1}{3}$ is strictly aperiodic, étalée and does not satisfy condition (F).

(3) Let $\mu \in P(G)$ be a strictly aperiodic, étalée and C. D. and let *n* be a positive integer. Let V be the space of μ^n -harmonic functions and denote by P the operator $Pf = f * \mu$. If $Q = I + P + \ldots + P^{n-1}$ and we put W = V + iV, the complexification of V, then QW is the one-dimensional

Vol. XII, nº 1 - 1976.

S. GLASNER

space of constant functions. If W is more than one-dimensional then there exists a non-constant function $f \in W$ such that $Pf = \alpha f$ for α an n^{th} root of unity. By remark (2) above and proposition 1, μ satisfies condition (F) with k = 1 and as was observed in [4] this implies $\alpha = 1$, a contradiction to the fact that μ is C. D. Thus μ^n is C. D. for each positive integer *n* (Actually it can be shown that this conclusion holds without the assumption that μ is étalée).

3. THE ITERATES OF μ ON SPACES OF CONTINUOUS FUNCTIONS

We let C be the space of all bounded continuous functions on G. For $f \in C$ and $g \in G$ we define the functions $l_g(f) = {}_g f$ and $r_g(f) = f_g$ as follows:

$$_{g}f(h) = f(gh)$$
 and $f_{g}(h) = f(hg)$ $(h \in G)$.

The function f is left uniformly continuous (l. u. c.) if whenever $g_i \to e$ is a convergent net in G then $||_{g_i} f - f||_{\infty} \to 0$, where $||f||_{\infty} = \sup_{g \in G} |f(g)|$.

Wet Let L be the Banach algebra of all l. u. c. functions. The space R of all *right uniformly continuous* functions is defined similarly; we denote $U = R \cap L$. C, R and L are invariant under both r_g and $l_g(g \in G)$. Write $C_l^0(C_r^0)$ for the closed subspace of C which consists of all functions which vanishes under alleft (right) invariant means on C. $L_l^0, L_r^0, R_l^0, R_r^0$ are defined similarly. When G is non-amenable these subspaces coincide with the whole space. Let |U| stand for the maximal ideal space of U.

If $\mu \in P(G)$ and $f \in C$ we define

$$(\mu * f)(g) = \int f(g'g)d\mu(g')$$
$$(f*\mu)(g) = \int f(gg')d\mu(g')$$

One can check that each of the spaces C, R, L and U is invariant under both right and left convolution with μ . Notice that if $v \in P(G)$ and $f \in C$ then $(\mu * v) * f = v * (\mu * f)$.

If we write $\tilde{f}(g) = f(g^{-1})$ then the map $f \to \tilde{f}$ is an isometric involutive isomorphism of R onto L and

$$\mu * f = \tilde{f} * \tilde{\mu}$$
 where $\int f(g) d\tilde{\mu}(g) = \int f(g^{-1}) d\mu(g)$

For $\mu \in P(G)$ we let

$$\begin{split} \mathbf{J}_{\mu} &= \left\{ f \in \mathbf{C} : || \ \mu^n \ast f \ ||_{\infty} \ \rightarrow \ 0 \right\}, \\ \mathbf{K}_{\mu} &= \left\{ f \in \mathbf{C} : || \ f \ast \mu^n \ ||_{\infty} \ \rightarrow \ 0 \right\}. \end{split}$$

Annales de l'Institut Henri Poincaré - Section B

It was shown in [4] that if G is abelian and μ is strictly aperiodic then $U_l^0 = U_r^0 = K_{\mu} \cap U$. Next we shall see how this theorem can be extended to the non-abelian case when μ is étalée.

LEMMA 3. — Let $\mu \in P(G)$, if $L_l^0 \subseteq K_{\mu}$ then μ is C. D.

Proof. — Suppose $f \in L$ is μ -harmonic, then so is ${}_{g}f$. Hence $({}_{g}f - f) * \mu = {}_{g}f - f$. Now by our assumption $||({}_{g}f - f) * \mu^{n}||_{\infty} \to 0$ thus ${}_{g}f - f = 0$ and f is a constant. This implies that μ is C. D.

LEMMA 4. — Let $\mu \in P(G)$ be étalée strictly aperiodic, C. D. measure then for every $g \in G$

$$||(\delta_e - \delta_g) * \mu^n|| \to 0$$

Proof. — By theorem 2 $||v * \mu^n|| \to 0 \quad \forall v \in \mathbf{M}_a^0$. Write $\mu^n = \eta^{(n)} + \theta^{(n)}$ where $\eta^{(n)}$ is absolutely continuous and $\theta^{(n)}$ is singular with respect to λ . Then, for large n, $||\theta^{(n)}||$ is small. We notice that $(\delta_e - \delta_g) * \eta^{(n)} \in \mathbf{M}_a^0$ and write

$$\begin{aligned} || (\delta_e - \delta_g) * \mu^{n+k} || &= || [(\delta_e - \delta_g) * \eta^{(n)} + (\delta_e - \delta_g) * \theta^{(n)}] * \mu^k || \\ &\leq || (\delta_e - \delta_g) * \eta^{(n)} * \mu^k || + || (\delta_e - \delta_g) * \theta^{(n)} * \mu^k || \\ &\leq || (\delta_e - \delta_g) * \eta^{(n)} * \mu^k || + 2 || \theta^{(n)} ||. \end{aligned}$$

Letting k tend to infinity we conclude that $\lim ||(\delta_e - \delta_g) * \mu^n|| = 0$.

LEMMA 5. — For μ as in Lemma 4.

(1)
$$|| \mu^n * f ||_{\infty} \to 0 \quad \forall f \in C^0_l$$

(2)
$$|| f * \tilde{\mu}^n ||_{\infty} \to 0 \qquad \forall f \in \mathbf{C}^0_r.$$

Proof. — Let $f \in C$ then

$$\begin{aligned} || \,\mu^n * (f - {}_g f) \,||_{\infty} &= || \,\mu^n * ((\delta_e - \delta_g) * f) \,||_{\infty} \\ &= || \,((\delta_e - \delta_g) * \mu^n) * f \,||_{\infty} \leq || \,(\delta_e - \delta_g) * \mu^n \,|| \,. \,|| \,f \,||_{\infty} \to 0 \,. \end{aligned}$$

By the Hahn-Banach theorem

$$C_l^0 = \overline{\bigcup_{g \in G} (L - l_g) C},$$

and (1) follows. To see (2) we observe that $\mu^n * f = \tilde{f} * \tilde{\mu}^n$ and that $C_l^0 = C_r^0$.

LEMMA 6. — Let $\mu \in P(G)$ and suppose that

$$|| \mu^n * f ||_{\infty} \to 0 \qquad \forall f \in \mathbf{C}^0_l$$

then for every $f \in C_l^0$, $f * \mu^n \to 0$ point-wise on G, and μ is C. D. Vol. XII, n° 1 - 1976. *Proof.* — Our assumption implies that for every $f \in C$ and $g \in G$

$$(\mu^n * ({}_{g}f - f))(e) = \int (f - {}_{g}f)d\mu^n \rightarrow 0$$

Now let $h \in G$ then $_{h}(_{g}f - f) = -\frac{1}{hgh}(_{h}f) - _{h}f$, therefore

$$[(_{g}f - f) * \mu^{n}](h) = \int (_{g}f - f)(hg')d\mu^{n}(g')$$

= $\int_{h}(_{g}f - f)(g')d\mu^{n}(g') = \int [_{hg}^{-1}(_{h}f) - _{h}f]d\mu^{n} \to 0$

Now this convergence is pointwise and not necessarily uniform, however if $f \in C$ is μ -harmonic then so is ${}_{g}f$ and it follows that $({}_{g}f-f)*\mu^{n}={}_{g}f-f=0$. Thus f is a constant and μ is C. D.

THEOREM 7. — Let $\mu \in P(G)$ then

(1) $L_l^0 \subseteq K_\mu \Rightarrow \mu \text{ is C. D.}$

In general, this implication cannot be reversed.

(2) If μ is strictly aperiodic étalée, then

 μ is C. D. \Leftrightarrow $C_r^0 \subseteq K_{\tilde{\mu}} \Leftrightarrow C_l^0 \subseteq J_{\mu}$

(3) If μ is strictly aperiodic étalée then μ is C. D. iff $f * \mu^n \to 0$ pointwise $\forall f \in C_1^0$.

Proof. — Statement (1) is just lemma 3. Statements (2) and (3) follow from lemmas 5 and 6.

Let G be a group with equivalent uniform structures and suppose $\mu \in P(G)$ is étalée, strictly aperiodic, symmetric and C. D. Since $\mu = \tilde{\mu}$ we have by (2) $U_r^0 \subseteq K_{\mu} \cap U$. If v is a right invariant mean on U and $f \in U$ then one can check that $v(f * \mu) = v(f)$. Hence $||f * \mu^n||_{\infty} \to 0$ implies v(f) = 0 and we conclude that $U_r^0 = K_{\mu} \cap U$.

Suppose that the converse of the implication of (1) is true; then we also have $U_l^0 \subseteq K_u$ and thus $U_l^0 \subseteq U_r^0$. By symmetry $U_l^0 = U_r^0$.

In particular, every left invariant mean on G must also be right invariant.

Now it is shown in ([8], p. 239) that the group $G = Z_2 * Z_2$ (free product) has a left invariant mean which is not right invariant. Since G is discrete every measure on it is étalée and the uniform structures on G are equivalent. Moreover, G is a Z_2 extension of Z and it is hence easy to see that G is a C. D. group. Therefore, choosing the symmetric measure on G which assignés mass 1/2 to each of the two free generators, we have a measure for which the converse of the implication of (1) fails. This completes the proof.

Remark. — Let $G = Z_2 * Z_2$ be the free product generated by *a* and *b* with the relations $a^2 = b^2 = e$. We give an alternative proof to that of [6] that U = U(G) has a left invariant mean which is not right invariant. Let A be the subset of G of all words of the form *a*, *ba*, *aba*, *baba*, ... i. e., words which end with *a*. If we take \overline{A} in |U| then it is clear that \overline{A} is a closed left-invariant subset of the left G-space |U|. Since G is amenable, there exists a left G-invariant probability measure on \overline{A} . Now |U| is also a right G-space and clearly $\overline{A}b \cap \overline{A} = \emptyset$ (take a function on G which is zero on A and one on Ab). Thus v is not right invariant.

Remark. — There is a group G and a measure $\mu \in P(G)$ such that μ is C. D. while $\tilde{\mu}$ is not. Indeed, it was shown by Azencott ([1], p. 121) that an étalée probability measure μ on the group of matrices of the form $\begin{pmatrix} a & b \end{pmatrix}$

$$g = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$
 where a, b are real and $a > 0$ is C. D. if
(i)
$$0 < \int \log |a| du(g) \le \infty$$

(i)
$$0 < \int \log |a| d\mu(g) \leq \infty$$

and it is not C. D. if

(ii)
$$-\infty \leq \int \log |a| d\mu(g) < 0, \qquad \int |b| d\mu(g) \leq \infty$$

and

$$\int |b|^2 d\mu(g) < \infty$$

Thus, if μ is étalée and satisfies the conditions (*ii*) then μ is not C. D. while $\tilde{\mu}$ which then satisfies (*i*) is C. D. For this μ we have $C_r^0 \subseteq K_{\mu}$ yet μ is not C. D.

We conclude with the following

THEOREM 8. — Let G be a connected locally compact topological group on which the right and left uniform structures are equivalent then G is Liouville.

Proof. — Let S be an open sub-semigroup of G; we show that $SS^{-1} = G$. Let U be an open neighbourhood of the identity of G such that for some $g \in G$, $gU \subseteq S$. We can assume that $U^{-1} = U$ and we let

$$\mathbf{V} = \cap \left\{ g^n \mathbf{U} g^{-n} : n \in \mathbf{Z} \right\}.$$

Since the uniform structures on G are equivalent $V = V^{-1}$ is a neighbourhood of the identity and $gVg^{-1} = V$.

Vol. XII, nº 1 - 1976.

Let T be the semigroup generated by gV then clearly $T = \bigcup \{ g^n V^n : n \ge 1 \}$ and

$$TT^{-1} = \bigcup \{ g^{n-m}V^{n+m} : n, m \ge 1 \}.$$

The latter is an open subgroup of G. Since G is connected $TT^{-1} = G$ and *a fortiori* $SS^{-1} = G$.

Let μ be an étalée probability measure on G then it follows that $S_{\mu}S_{\mu}^{-1} = G$. We let W be a neighbourhood of the identity such that \overline{W} is compact and $gWg^{-1} \subseteq W$ for every $g \in G$. Theorem IV.1 of [1] implies now that for every μ -harmonic function f and every $g \in G$ and $h \in W$, f(gh) = f(g). Since G is connected, this equality holds for every $h \in G$; i. e., f is a constant. This completes the proof.

REFERENCES

- [1] R. AZENCOTT, Espace de Poisson des groupes localement compacts. Lecture Notes, n° 148, Springer-Verlag, 1970.
- [2] J. DIXMIER, L'application exponentielle dans les groupes de Lie résolubles. Bull. Soc. Math. France, t. 85, 1957, p. 113-121.
- [3] S. R. FOGUEL, Iterates of a convolution on a non-abelian group. Ann. Inst. Henri Poincaré, Vol. XI, nº 2, 1975, p. 199-202.
- [4] S. R. FOGUEL, Convergence of the iterates of a convolution. To appear.
- [5] Y. GUIVARCH, Croissance polynomiale et période des fonctions harmoniques. Bull. Soc. Math. France, t. 101, 1973, p. 333-379.
- [6] E. HEWITT and K. A. Ross, Abstract Harmonic analysis. Vol. I, Springer-Verlag, Berlin, 1963.

(Manuscrit reçu le 12 février 1976)