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ABSTRACT. - We discuss the relationship between two recent series of
papers concerning the form in the weak coupling limit of the solutions
of certain evolution equations in a Banach space.

RESUME. - Nous discutons la relation entre deux series recentes d’ar-

ticles concernant la forme dans une limite faible des solutions de certaines

equations d’évolution dans une espace de Banach.

1. INTRODUCTION

In the last three years two series of papers have appeared studying
Banach space evolution equations of the form

in the weak coupling limit, £ - 0. While the technical hypotheses of
these papers are very different, the conclusions are so similar that an
attempt to find a common core is clearly required.
The first series [l ] - [S] [IO], which we shall call the « abstract » approach,

takes such an evolution equation on a Banach space £3 with a projection P
and studies the form of Pf (t) in the limit £ - 0, where f (t) is a solution
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266 E. B. DAVIES

of the evolution equation and Pf’(0) = f’(0). The second series [6]-[9),
which we shall call the « stochastic » approach, studies the evolution in a
Banach space Blo under the assumption that A(t) is a random time-

dependent operator, and studies the form of the expected value of j’(t) in
the limit ~, --> 0. We list some of the significant ways in which one approach
goes beyond the other.

(1) The abstract approach has only considered the case where A(t) is

independent of t, while the stochastic approach has only considered the
case where the free evolution is trivial, that is Z = 0.

(2) The stochastic approach has allowed unbounded operators A(t)
while the abstract approach has only been carried out for bounded A(t).

(3) The stochastic approach uses probabilistic notions and so is more
particular than the abstract approach. 

’

(4) The stochastic approach assumes that the mean value of the ope-
rator A(t) vanishes, while this condition is not necessary to the abstract

approach.

In Section 2 of this paper we shall outline an extension of the abstract

approach which includes the essential properties of the stochastic approach.
We do not, however, allow A(t) to be unbounded since this necessitates
further complications, such as the introduction of a scale of Banach

spaces [9]. In Section 3 we make more precise how the theorems of the
stochastic approach may be extracted, concluding with a comparison of
our estimates with those in [9]. Section 4 is devoted to the study of an
alternative abstract version of the stochastic approach [7].

2. THE GENERAL THEORY

We let P be a projection of norm one on a Banach space £3 and put
B0 = PB and B1 = (1 1 - so that £3 = Bl1.
We let A(t) be a strongly continuous bounded operator valued func-

tion on B and wish to consider the evolution equation

which is equivalent to the integral equation

We suppose that
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for all t > 0 and put

Then we consider the operator equation in ~

where 03C6~B and t  oo, or the equivalent integral equation

It is easy to show that

The equation (2.2) may now be replaced by the equivalent

Then if P/(0) = f(O) = a E ~o

and

Putting

and using (2.3) we obtain the integral equation in ~‘o,

upon which all our subsequent calculations are based. Putting ~,2t = r
and À.2u = 6 this may be rewritten as

where
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268 E. B. DAVIES

This is an operator valued Volterra integral equation which we rewrite as

on the Banach space

of continuous B0-valued functions on [0, ’to], where io is an arbitrary
finite number.

THEOREM 2. l. Suppose that for all ~, ~  1 and all 0  6  i  io

Suppose also that the operators ~~ on X converge strongly to the Volterra

operator I~o on X with constant kernel Ko. Then

uniformly for 0  i  to.

Proof : This is a minor variation of corresponding results in [3] [4].
In order to investigate further the convergence of the operators 6lx we

expand

to write u) as a sum of an infinite series

where

with similar expressions for larger n. Each of these integral kernels is

estimated by a procedure adapted to the application [3] [4]. The estimates
which are relevant to the stochastic application are the following.

THEOREM 2.2. - Suppose that for all integers n and all
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where

Suppose also that there is a bounded operator Ko on B0 such that for all
a E ~o and all integers n

Then the operators on X converge strongly to I~o as ~, -~ 0.

Proof: We first show that

Since uniform convergence of the kernels implies norm convergence of
the operators we examine

It now remains to show that the operator converges strongly to I~o.
For this it would suffice that the kernel u) converged uniformly
to Ko, but our conditions are actually much weaker. We first note that
the kernel K °~(i, u) is uniformly bounded by (2. 23) so it suffices to prove
strong convergence on any set of functions which generates X. We choose

/(i) = T" a where a E ~o.
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270 E. B. DAVIES

This proves that if r > 0

and also oo, that the convergence is uniform for 03C4
The fact that the convergence is uniform for 0 ~ To follows from

the bound

which is valid for all ~,.

3. STOCHASTIC DIFFERENTIAL EQUATIONS

Given a Banach space ~o and a probability space (Q, ~ , dw) we can
define the Banach space

as the space of essentially bounded, strongly ~ -measurable, 
functions on Q. The Banach space ~o can be identified with the constant
functions on Q and the expectation is then a projection P : ~ - ~o.
Now suppose that for 0 ~ s ~ t  oo there are u-fields ~ such that if

then

Then the conditional expectation with respect to ~’s is a projection P;
on 81 and its range is the subspace of B of those functions measurable
with respect to ;. If t  oo the following equalities may be

easily verified.

We assume a strong mixing hypothesis of the following form. If P j’ = 0
and Pg j’ = j’ then for all t > 0

where
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This holds in particular if for some a > 0 and all t ~ 0

that is, if the u-fields ~o and are independent.
Given a random operator A(t, a~) on ~o which for every t > 0 is essen-

tially bounded we define a bounded operator A, on B by

If A(t, a~) is 3fj measurable then 

Finally we suppose that A(t, w) has expectation zero for all t ~ 0, or in
operator terms

Apart from the fact that they allow unbounded operators, the above is
essentially the situation of [9]. We now abstract it by supposing that 31 is
a general Banach space with projections P, Po, PtOC) defined for all t > 0
and satisfying (3.3-3.8). We also suppose that At is a strongly continuous
operator valued function satisfying (3 .11 ), (3 .12) and also

for all 0t~.

THEOREM 3.1. - The above conditions imply that (2.23) is satisfied.
Proof: - If a E .~o then

where

satisfies

Therefore by (3.7)

after which we may proceed by induction.
We finally comment that the key estimates required for the above

theorems are (2.25), (3. 7), (3.8) and (3 .13). These correspond respectively
to (2.14), (2 .1 ), (2.18) and (2 . 3) of [9].
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4. AN ALTERNATWE APPROACH

An alternative approach to the abstraction of the above results on
stochastic differential equations has been followed by T. G. Kurtz [7].
In order to compare his work with [3] we reformulate his Theorem 2.2
in our notation, restricting attention to the case where the perturbation
is bounded.

Kurtz supposes that eZ‘ is a strongly continuous one-parameter contrac-
tion semi-group on the Banach space ~, to that Z is a dissipative operator.
He assumes

exists; P is then a projection. Putting ~o = P~‘ and ~l - (1 1 - P)~, it
may be seen that Z leaves each subspace ~‘r invariant, Z = 0 on ~o and
Z 1 = PI Z is one-one on B1. If A is a bounded dissipative operator on B
then for all £ > 0, exp (Z + ÀA)t is a one-parameter contraction semi-
group on 81.

PROPOSITION 4.1 I (Kurtz). - Suppose C = PAP = 0 and let

Define the operator Co on Do by

and suppose

for some 03BB > 0. Then the closure of’ Co restricted so that Co j’ E Do is the
infinitesimal generator ~o oj’ a strongly continuous contraction semi-

group Tt defined on Do. Moreover for all j’ E Do and t > 0.

The operator Co is somewhat similar to the operator K defined in [3] [4]
by

where The following considerations show that although Kurtz’
theorem is completely satisfactory for describing evolution in a Banach
space controlled by a Markov process, it will not encompass the quantum-
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mechanical applications which first led to our interest in the pro-
blem [1] [2].

Consider the special case where 81 is a Hilbert space and eZ‘ is a unitary
group on 81. Then (iZ) is a self-adjoint operator and P is the orthogonal
projection onto the null-space of Z. If (iA) is self-adjoint then it is easily
seen that (iCo) and hence (ico) are symmetric operators, a very special
case in terms of [3] [4].

This point may be made more explicitly for the example worked out
in [2], § 2, where 81 is a Hilbert space and ~o is one-dimensional. It may
then be shown that if Do % { 0 ~ then Co = K and Tt is unitary, which is
the case only when there is no dissipative effect.
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