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596 S.R. CZAPOR ET AL.
1. INTRODUCTION

This paper is devoted to the solution of Hadamard’s problem on Petrov
type III space-times, for the conformally invariant scalar wave equation

Ou + éRu =0, (1)
and the non-self-adjoint scalar wave equation
Ou + A°9,u + Cu =0. 2)

In the above equations [J denotes the Laplace-Beltrami operator corre-
sponding to the metric g,; of the background space-time V4, u the un-
known function, R the Ricci scalar, A% the components of a given con-
travariant vector field and C a given scalar function. The background
manifold, metric tensor, vector field and scalar function are assumed to
be C*. All considerations of this paper are entirely local.

The homogeneous equations (1) and (2) satisfy Huygens’ principle in
the sense of Hadamard [15] if u(x) depends only on the Cauchy data in an
arbitrarily small neighborhood of the intersection between the backward
characteristic conoid C~ (x) with the vertex at x and the initial surface S,
for arbitrary Cauchy data on S, arbitrary S, and for all points x in the
future of S. Hadamard’s problem for (1) and (2) is that of determining
all space-times for which Huygens’ principle is valid. We recall that
two equations (2) are said to be equivalent if and only if one may be
transformed into the other by any combination of the following trivial
transformations:

(a) a general coordinate transformation;

(b) multiplication of the equation by the function exp(—2¢ (x)), which

induces a conformal transformation of the metric

~ 2 .
8ab =€ ¢gab,

(c) substitution of Au for the unknown function u, where X is a non-
vanishing function on V.

We note that the Huygens’ character of (2) is preserved by any trivial
transformation. In the case of (1) the trivial transformations reduce to
conformal transformations with A = e?.

Carminati and McLenaghan [4] have outlined a program for the
solution of Hadamard’s problem for the scalar wave equation, Weyls’
neutrino equation and Maxwell’s equations based on the conformally
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COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES 597

invariant Petrov classification of the Weyl conformal curvature tensor.
This involves the consideration of five disjoint cases which exhausts
all the possibilities for non-conformally flat space-times. Hadamard’s
problem for (1) and (2) has been completely solved for Petrov type N
space-times by Carminati and McLenaghan [3,5] and McLenaghan and
Walton [20]. Their results may be summarized as follows:

Any non-self-adjoint equation (2) on any Petrov type N background
space-time satisfies Huygens’ principle if and only if it is equivalent
to the wave equation Ou = 0 on an exact plane wave space-time with
metric

ds® =2dv{du + [D)2* + DW)Z + e(v)zz] dv} — 2dzdz.  (3)

For Petrov type D space-times the following result was obtained by
Carminati and McLenaghan [6], McLenaghan and Williams [21] and
Wiinsch [27]:

There exist no Petrov type D space-times on which the conformally
invariant scalar wave equation (1) satisfies Huygens’ principle.

In the present paper we complete this program for the conformally
invariant scalar wave equation (1) on Petrov type III space-times by
proving the following theorem:

THEOREM 1. — There exists no Petrov type 1ll space-times on which
the conformally invariant scalar wave equation (1) satisfies Huygens’
principle.

The results on type N and type D space-times described above and
Theorem 1 lend weight to the conjecture which states that every space-
time on which the conformally invariant scalar wave equation satisfies
Huygens’ principle is conformally related to the plane wave space-time
(3) or is conformally flat [3,5].

Hadamard’s problem for the general non-self-adjoint equation (2) may
now be solved with the help of Theorem 1 and the results of Anderson,
McLenaghan and Sasse [1] where the following theorem is proved:

THEOREM 2. — Any non-self-adjoint scalar wave equation (2) which
satisfies Huygens’ principle on any Petrov type 11l background space-time
is equivalent to the conformally invariant scalar wave equation (1).

Combining these two theorems we obtain
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598 S.R. CZAPOR ET AL.

THEOREM 3. — There exist no Petrov type Il space-times on which the
non-self-adjoint scalar wave equation satisfies Huygens’ principle.

The corresponding problem for the Weyl neutrino equation and
Maxwell’s equations is solved in [19].

The starting point of our proof of Theorem 1 is the paper by Carminati
and McLenaghan [7], where the following results are obtained for Petrov
type IlI space-times:

THEOREM 4. — The validity of Huygens’ principle for the conformally
invariant scalar wave equation (1), on any Petrov type 1l space-time
implies that the space-time is conformally related to one in which every
repeated principal spinor field o of the Weyl spinor is recurrent, that is

Op;p5 = 0alpp, )

where 15 is a 2-spinor, and

WABCD;EELALBLCOEaE =0, (5)
R=0, & ,5i50"0" =0, (©6)
where 14 is any spinor field satisfying oa1* = 1.

THEOREM 5. — If any one of the following three conditions

A B D E=E

Wapep.ppt vttt o” =0, @)
A B D _E=E

WABCD;EEL L0 0 0 :0, (8)
A,B,D _E-E

Wyapcp.ppt' t 1o 0" =0, )

is satisfied, then there exist no Petrov type Il space-times on which
the conformally invariant scalar wave equation (1) satisfies Huygens’
principle.

It is important to note that these earlier results solve Hadamard’s
problem under what have proved to be fairly strong assumptions (namely,
that one of (7), (8) or (9) is satisfied). The purpose of the present paper is
to make the analysis completely general by removing these assumptions.
We follow the conventions of [7], and use the results established there to
obtain (most of) the basic equations needed for the proof of Theorem 1.

In Section 2 we give the necessary conditions for the validity of
Huygens’ principle that will be used in this paper, and give a brief
summary of their implications. From these necessary conditions, we
derive the further side relations needed for our analysis in terms of the
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COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES 599

Newman-Penrose scalars. The key to our proof is the six-index necessary
condition obtained by Rinke and Wiinsch [23] which was not used in [7].
In Section 3 we examine these side relations in the case ®;; = 0 and show
that they lead to a contradiction. The proof of Theorem 1 is completed in
Section 4, where the case @;; # 0 is treated.

It is worth mentioning that the tools of computer algebra are used
throughout this paper. Initially we employ the Maple [22] package
NPspinor [10,11] to extract dyad components of spinor versions of the
necessary conditions, and then to manipulate the resulting expressions in
Newman-Penrose form. In the case @, = 0 we use the Grobner basis
package of the Maple system to explicitly determine solutions of systems
of algebraic equations. Finally, for the case ®;; # 0 we use the GB
package of Faugere [12] to examine the solvability of a somewhat larger
system of algebraic equations.

2. FORMALISM AND BASIC EQUATIONS

The necessary conditions for the validity of Huygens’ principle for (1)
which we employ are given by

(IIT) Sapi:* — $C* o' Liy =0, (10)

% TS(3Ckablf"Ckcd1;m +8C* ' Stia + 408" Sear
—8C* 4! Sticia — 24C* 4! Sears + 4CK 1 C" ok Ly
+12C% ' C" carLim) =0, (11)

(VID) TS (Qz(zlb)cdef - ]OQc(zzb)cdef + 4QS;)cdef + SQz(zt)cdef
+Qieder) =0, (12)
where
Qtiedes =3C* b cCraetimg + Crap'ca(10Sk1e; f + 6S,p1)
+ 648 cSack . f — C* ! (3C™ caksef Lim + 5Crear;me L™ 5
+7C" carteLms + 13Skc;aLes + 12Scak i Les
+71Scar;eLiy), (13)

Q,(i)cdef = C*a'ic (Skidses + 3Saeksis + 2Sapk:caSer® — 5SupkSeaLey)
- %Ckabl;c(zcmkld:eme +3C" geksiLms + SkiaLes
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600 S.R. CZAPOR ET AL.
+3Crae™ fLim + 1584k Si5) — C*ap' (Cred™ e Lms )
+ ScarLe; f) — 75 R;cChaet; 1) (14)

Q((I3b)(_‘d€f = _Ckabl (chmncclnmd;ef —10Cc™ cdckefl;mn + 2Oclcdm Skme;f)
- 5Ckmna Clmnbckcdl;ef + Ckabl (7CkmncclmndLef
- lockeflcmcdann)’ (15)

Qﬁ,)cdef = —C* ' (2CK™ ¢;aCimndsef + 54C1cd™ ;e Skms + T4C1cd™ .k Sefm
— B Ceti™aSerm — 2 ScarSest) + 6Cc™" aC be:a Cregmins (16)

Qt(zsb)cdef = _Ckablclcdm LkmLef + %Ckablckcdl (87Lmeme + 19RLef)7

a7
where
Cabed = Rabca — 281aia Lb)c)s (18)
Sabc = La[b;c]a (19)
R
Lab = _Rab + —8ab- (20)

6

Here A, := gu»A?, Rupcq denotes the Riemann tensor, Cypcq the Weyl
tensor, R, := g"d R..pa, the Ricci tensor, and R := g°’R,;, the Ricci
scalar associated to the metric g,,. The conditions (III), (V) and (VII)
are necessarily conformally invariant. Spinor versions of conditions (III)
and (V), and the conventions used for conversion from the original tensor
form, are given in [7].

Mathisson [17], Hadamard [16], and Asgeirson [2] obtained condition
(III) for (2) in the case g” constant. Condition (III) was obtained in
the general case for (2) by Giinther [14]. Condition V' was obtained
by McLenagham [18] in the case R,, = 0, and by Wiinsch [26] for the
general case. Condition (VII) was obtained by Rinke and Wiinsch [23].

Petrov type III space-times are characterized by the existence of a
spinor field 0” satisfying

Wypcpo©oP =0, Wapcpo® #0. (21

Such a spinor field is called a repeated principal spinor of the Weyl spinor
and is determined by the latter up to an arbitrary variable complex factor.

Annales de IInstitut Henri Poincaré - Physique théorique



COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES 601
Let ¢ be any spinor field satisfying
oatt =1. (22)

The ordered set 04, t4, called a dyad, defines a basis for the 1-spinor
fields on V.

It was shown in [7] that the necessary conditions (III) and (V) imply
that there exists a dyad {o4,ta} and a conformal transformation ¢ such
that

k=oc=p=1t=¢=0, 23)
Uo=W, =W =W, =0, W=—1, (24)
Doy = DPo1 =Py =A=0, (25)
Da=Dg =Dnr =0, (26)
8D =Dy =0. 27

We notice that the expressions (24) determine the tetrad uniquely.
On the other hand, conditions (23) are invariant under any conformal
transformation satisfying

D¢ =0, 8¢ =0, (28)

which implies that we still have some conformal freedom. Under a
conformal transformation we have [25]:

511 :e_2¢§b11. (29)
Thus, we can choose ¢ such that
Py =c, (30)

where c is a constant. The conditions (28) are satisfied in view of (27).
Let us now derive some side relations that follow from the previously
obtained Eqs. (23)—(30) and the necessary conditions (10)—(12); these
will be required in the analysis of the following sections. We may assume
that afm # 0, since the case in which this is not true was already
considered in [7]. By contracting condition (IIT) with 140742 we get

8 =—p(a + p). €29

From the Bianchi identities, using the above conditions, we obtain

Vol. 71, n® 6-1999.



602 S.R. CZAPOR ET AL.

D®y, =27 &y, (32)
D®yp=-2(+ B)+2PnT +2Pp7, (33)
8P, =20 +47T +21 D —2a D)y, (34)
SPp=—-284+2ud; —2BP. (35)

From the Ricci identities we get the following relevant Pfaffians:

Dy =Ta+ Br + &y, (36)
DA=(1/2)8a — (11/2) Ba + % = 2w — 117 B — (3/2)a?, (37)
ST =DA—Tm*—7wa+7wph, (38)
DV =AT +FAR+ A0 +77 — 7Ty — 1+ Pyy, (39)
Sa=38B+aa +BB —2Ba+ Py, (40)
dn=Du—7nmn+na — Bm. 41)

We can obtain useful integrability conditions for the above Pfaffians,
by using Newman—Penrose (NP) commutation relations. By substituting
them in the commutator expression [§, D]®,; — [A, D]®;,, we get

8B =20, — Ba —4BT —2Du — BB +27wmw.  (42)

By contracting condition (V) with (ABCPTABGCD e find

2087 + 12Ba+6ma+3a>+8a+28n+ 88+ B2=0. (43)
By substituting (30) into this equation we get
SQT +@)=-207 B — 11w —67a — 3’ (44)
From (40), (41) and (30) we then obtain:
2r+a)=2na +aa — 68w —3Ba — PDy;. (45)

By contracting condition (V) with (4B€oP7ABC 50 we find
—687 — 1507 — 10a® — 6877 — 157 @ — 38 — 126 B B
+5Dy + 10D —24pa —38a—687 —1588 —3B 7
+5Dy + 10Dp — 158 B — 24Ba — 3B — 4P, =0. (46)
Using (36), (41) and the complex conjugate of (42), we get

Annales de I’ Institut Henri Poincaré - Physique théorique



COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES 603

90, + 1087 +5[Du+Du]l—27a — 1288 —2a@
— 167w+ 1087 — 27 o =0. (47)

On the other hand_,_thc NP commutator [3, 8](cx + 27) = (o — 3)8(05 +
2m) 4+ (—a + B) 8 (o« + 2m), yields the following expression

BB +22nBa+43n B — 227w+ BDu+ 227D
+120Ba +6B® — 2a7Tw + 11a®; + 187Dy,
+247 Ba + 120D =0. (48)
Eliminating D x between (47) and (48), and solving for Du, we get
Du=—1(1087 @ — 447’0 — 24T o” — 68n0 ™
+ 14408 B + 53a®,, — 2741 B + 1207 B — 24a* &
— 2427 w2 + 22087% — 17607 p — 600 B @ — 308 &y,
+577 B —110an B)/(— B + 12a +227), (49)
where we have assumed that the denominator of the expression above,
given by
dy :=—p + 120 + 227, (50)

is non-zero. The case d; = 0 will be considered later.
Substituting expression (49) for Dy into (47) we obtain

D =—1(90n®; + 128 8% — 10B°T +55aPy; + 1220 BT
—1107n? - 60w + 620 o +21 P +231n B 7
+112ax B)/(—B + 12a + 227). (51)

One side relation can now be obtained by subtracting the complex
conjugate of (49) from (51). We obtain:

Si:=1(720%? Ba +29047> T > — 1267 B + 288 *a® + 52877 @”
+52872a® +2420an BT +3056a BB +2888aaw
+1320@ wBa + 13207 Ba® + 1606w B B + 58027 B B
+ 13207 @ B + 24207 Baw + 13207 B o + 30567 Ba B
+25527 7T 20 4+ 3058 + 5708w — 518D B
+24a P10 — 86X Dy + 305 Dy B + 816w
+2552a wn? +8l6a wa? — 86T ad; — 3967 w Py,
+7208@a’ + 5707 B &)

/(=12 — 227 + B)(12@ + 227 — B)) =0. (52)
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604 S.R. CZAPOR ET AL.

We notice that (49) and (51) have the same denominator. Thus, if we
keep these expressions for Du and Dy, the Pfaffians § 8, da, &7,
given by (42), (38) and (41), respectively, and their complex conjugates,
also have the same denominator. This procedure is crucial to keep the
expressions to be obtained from the integrability conditions within a
reasonable size. Except for § «, all Pfaffians involving 8, &, applied to
o, B,  are explicitly determined. _
The following expression for S« can be obtained from the NP
commutator [§,8]8 =( —u)DB +(a— BB +(B—«)éB:
Sa=(2nDg —28(Dw) —37a? —8BDH — lla B —27n?
—daTnw —4BP; — 14T BT)/T. (53)
By substituting (49) and (51) into this equation we get:
Sa:=—1(195190, Bx + 8570%;; Bo® + 1950w’
+ 358500, 77 B2 42900, 7% B — 318072 B2 7 — 210> B 7
+1500° Bar — 13072 B2 — 180a’B B2 + 62822 B2 &
— 128072 B?a@ + 1950@ B +4668a BB + 35208 an
+ 816087 B> +3308° T 4+ 975, ,0° — 860 B> Py,
+ 179509, Barw —4200* B T 4+ 300’ B — 41160 BT
+588an@ B2+ 1758°aT)
J(B*T — 140 BT +10Baa +20B @ + 652,
—128B%+ 1307y — 318 —28B 7w —6B°), (54)
where, for now, we assume that the denominator in the expression above:
dy:=B’T — 140 BT +10Baa +20Bwa + 650D, — 128 B>
+130n®,; —318®,, —28B T —6B°w, (55)

is non-zero.
Contracting condition (VII) with (ABCDE oF GBCDTAEF yields

VI3 :=648 BT — 1657 7 58 — 40m DD, + 15578 Barn
+270a B 87 + 1448aa B + 378« DY + 20587 7
+570Du 8B +630Du B2 +21DAS @ — 201Dy 8
—36m28 @ —9545 882 — 8645 B5B — 8648 B>
—1328ada + 11160°w — 3660>8 & — 900 B8 B
—20aD®,; + 1454® ;w1 B + 7718 T B +4238aan
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COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES 605

+939qadnw —1038Dwanw — 90AD(D ) + 4578 (8 8)
— 1578 (DY) —30n s (DR) +84a B8 —1746aB 7
— 57058 & + 1808 B B + 135D(8 B)A — 45AD(DY)
— 1868 Ba 7 + 570« BD I +30DAa T — 39DA A7
—78DAT  — 744w asp — N4aa’ B — 38T’ a B
—21DA@a +351Dy B — 17138 T én +216anén
+870Dua B — 1988 aa B + 7268 a @ + 378Ba 8B
+828a% BB — 16740 B8 B — 5948 B 6B + 636m 2w
+2289a’7 e + 36D e B —660and o + 1773 BT n

— 555Dy am + 2187871 B? 42619875 — 888w B a
—1268aa B +3681B8ma B —2055ara B — 69518 Tan
— 14760 B2B + 1508w —63DAB T —30B%an

+ 934, o — 46572 BT — 16080 § T + 63DAB B
+208Dd,; +5677°BB — 4268 T S + 18DAD I
—397’Dy +397%a — 787°Dw + 7873 7

+9DADY + 32480 5B +3248a B> — 1898 @ é
+27658 Dy + 306 B °Dy +432a° 7 + 1080a%5 B

— 144337 + 36088 B — 372028 T + 6308 87
+630B2%857w +528Dm B +408T w8 + 246 T S
+6398 an B + 1560 BDy —2592a* B T +2045aa T
+1178B 8w — 6578 Br B + 1128n%a ™ — 1088aDy
—2405aD @ — 7200*D 1k — 324a’Dy + 5678 B 61
—30DA8 T —27DAS B + 11728 — 378D 6«

— 102, DA + 182¢ ;72 + 366®P,, 8 w — 600D, 58
—600®; B2+ 1008®, ;0% + 336P,, S + 1704P 00 B
+307D(8 7) — 90m8(8B) + 607 D(8 1) — 90D(S )i
—90nD(AB) — 660 8Dy — 27008 (8 B) —30a s (S @)
— 6028 (87)+3085(Dy)+60B88([Du)+90as DY)
+18008 (D) — 18088 (37) —90B & (8ar) + 4578 (8 &)
+9078(87) +30BD(3y)+60BD(S 1)+ 15AD(8 @)
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+30AD(8 ) + 60 8 (Sa) —908 3 (5 8) — 90 BD(A)

— 180 8D(Am) + 180838 (58) + 120@ 5 (8 77) + 60y D(3 )
+120yD(87) — 180w B 6 — 60 BDuw — 3158 8 B
+180B8nm =0. (56)

The second-order terms D(8¥), D(8y), D(8 i), D(AB), D(Ax),
D(Am), can be expressed in terms of known Pfaffians and § «, by using
the NP commutation relations involving each pair of operators. After the
substitutions we obtain

VII3:=2(760 B° T w S + 9600 B @y Sauwr + 25040 B Sa

— 23440 B T2 S + 240087 S B2 — 240 B2 S
+2880a B*B 8 o + 8600 P, 8 arr + 3600 BT S
+600a 8o B+ 24880 B S — 221600 BT S o
+8940a®;; S B — 5280’ BT S+ 6240 B @’ S«

— 9885300 P> B + 1130408 B* — 12000, 5 cwer’?

+ 48400073 ® || 4 402000, o’ + 22400, 5 aurr>

— 720838 — 3008w B + 142635a B &y,
—910512a* 3B — 351912 8% T — 5085800 B @,

— 14674200, Ba® — 1760®,, 5o % — 36000, a*
+35640 3o’ T — 360060 B e + 1200000, 7 2a?
—633396%, B2’ + 86400 B B2 — 158400* B T
—1553520° B2 & + 187200 B o + 17688072 B> 70

+ 20592087 B* + 858008 *wn + 47100w B«
+227170®, 7 B> — 9326200, 7% B? — 2702400728 B>
— 104176073 B2 @ — 29774407° B* 7 — 106480072 B &
— 835840’ @ B2 — 6584360%,, B o’ + 746400 B &
—66480a° B T + 7512072 B’ & — 70320720’ B 7T
—2193544a? B2 T + 72000* B B> 4461264an2325
—3128928aB7 B — 1237920 B3 an + 161720a B> T

— 16625040 @, B* — 1572528an B2a — 258 cD”)
/(=B + 120 4+ 227)% = 0. (57)

Solving this equation for § o we get
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COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES 607

So:=—(227170m B3 @y + 402007 D, + 17688072 B> 7
+ 18720 B a*a — 1467420 B’ @, — 5085800 B 7Py,
+ 858007 B4 — 106480072 B3 @ + 8640 B %>
—93262072 B2, — 15840 Bo* T + 2059207 B*B
—29774407% B2 7 — 10417607 o B2 — 2702400728 B>
—360060a* B3 —351912a° B2 7 — 155352° B2 &
— 6333960 B2, —910512a% B B> + 356400° B> T
+47100 B*aar + 142635 Bad); + 113040 B *ap
—36000* @, — 157252872 Ba@ — 16625047 B2ad,;
+1617207 B3a 7 — 8358407 B2a’w — 12379207 Baw
—4461264%a B2 T — 219354407 B2 T + 7200 B 2’7 B
— 3128928 B3amp — 9885300 B w2ad;; + 75120 B wla’ @
—70320 B 72 7T a® — 6584360 B o’ Py, + 74640 B o’n &
— 66480 B o> 7T 7 + 4840073 ®
+ 1200000’ 72 ®y; — 25 B dy;)
/(=1760 B%®;; —300B8°@ — 7208 B> + 360 B a7
—240 B? @ + 240087 B> + 600w B2« + 2880 BB
+760B° 7w — 52800’ BT — 221608 T am
+250407% @ B + 8940 Bady; + 9600 B w Py,

+62400 0? B — 2344072 B 7T +24880an @ B
+224007 P — 12000 Py + 8600 a®y;), (58)

where the denominator of (58),

d3:=—1760B°®; — 30083 a — 7208 B> + 2880a B2f
+360B8%a7T — 240 B%aw + 240087 B2 + 600w B«
+7608% 7w — 52800 BT — 22160 B Tan
+250407% @ B + 8940 Bady; + 9600 B w Py
+ 62400 o’ B — 2344072 B 7T + 24880 @ B
+224007 2@y — 120002 @, + 8600 ad,;, (59)

is assumed to be non-zero for now.
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Subtracting (54) from (58) and taking the numerator,

N, := 684288 B° %« + 2860007° 0 d7,
—729090072 B2 @32, — 7913100 &7, B + 165600 B° & *ax
— 6556807 B2 @2 +295488a> B3 w2 — 2056320 B3 a?
— 5820907 B> @2, — 1157435 B 2% o — 15177601 42
— 447840 B @ %a’ + 29900072’ ®7, + 123540 B Py ﬂ
43036007 B w2+ 51450 B a &y, — 126720n% B* 7
— 306430007 B @2, — 23040 B* 77 *a? 4 780007 o D7,
+31118407° B3 w2 — 361718 B>} o +258° 7 &y
+ 12960007 B° B2 — 143982607 B2d aa® — 57600 B wa T
+781920 B*wa 7 +89856¢° B @ T +301945 ‘o7,
— 138240 B°Ba T + 1886976 B*Ba’ T — 1119744 B*B
+682560 B waf + 972820 B *wad;; — 3755902 B w o’ @y,
— 266205 B P 10T + 1749108 B4 @) af 4 3627158 B> @110 T
— 3766320 B3 Ba’ P, + 5998800 @, B2 7T
— 30217200 @), & B2 + 68716807 B* 7 B
— 1491960072 B3 @, 8 — 1355252072 B3 @
— 138979272 B3 & 2 + 435763272 B> 7 2 4+ 29152807 Bra
+1357810072 B3, T — 371808072 B B
— 6066220072 B @ a — 71395272 B> Ta @
— 847012072 B2 @ T o — 2234384012 B2 P a @
+46000m 20’ @@ B — 644007’y B 7T
— 264007 2a @1 B B2 — 1056001 B2 T + 18064607 B d @
— 384682507 B d? a® — 1113607 B*7 2 + 33799207 By, B
— 4742007 B*®, T — 2534407 B T B + 12686407 B & B
— 16476007 B*@2a — 60104207 B2®%a — 939744 B o’
+ 19932487 B3 7 20 + 30218407 Ba T + 512647 B° T a o’
+ 140375547 B3 @10 — 14255872% B2 d) d o
— 150008407 B3Py aB — 5925007 B2 P a7
— 40746247 Bra af + 71988487 B4 7 aff

Annales de I'Institut Henri Poincaré - Physique théorique



COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE Il SPACE-TIMES 609

— 14400’y B B2 — 16800m 0> @1 B T + 12000ma’ @y @ B
— 98556007 B2, T — 111788007 B2 b @

—9297607° B> 7T & + 440003 ®y @ B

—61600m3a®;, B 7 =0. (60)

3. THE CASE ¢,; =0

Carminati and McLenaghan [7] used the conditions (IIT) and (V) given
in Section 2 to prove that Huygens’ principle is not satisfied if any of
the spin coefficients «, B or 7 vanish. We now extend the proof for the
case in which afiw # 0 and ®;; = 0; i.e., we shall prove the following
theorem:

THEOREM 6. — Let V, be any space-time which admits a spinor dyad
with the properties

0p:88 = 0alpp, (61)
where Iy is a 2-spinor, and
lpABCD;EE"LAlBLCODOEaE - O, (62)
R=0, ®,zi30"°=0. (63)
Then the validity of Huygens’ principle for the conformally invariant
equation (1) implies that
® 4550 0BT £ 0. (64)

Proof. — When @, = 0 the quantity N|, given by (60), factors in the
following form:

Ny :=—128 pips, (65)

where

p1:=128B +2na +20@ +58 + 67T +27e,  (66)
pr:=1188BBa +240a BT +440B 7 — 1265w
— 22508 B + 68302 @ + 764Tan @ + 21420 @
—690Baw@ — 108057 72 — 11529« T 7w — 30787 a®. (67)

Let us consider first the case in which p, = 0. Applying § to (67) and
solving for § o, we obtain:
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S :=—(690120 8 B — 177100 B a7 + 2475000 B x> B
—97175a B o — 186390a BB + 1716210 o* B>

— 113191502 B> — 4470219 B o> & — 38759907% B2 7

— 34128087 B> + 579182072 & B* + 9784170a° T

+ 25735860 B2 + 8639361 B T + 8903160728 B>

— 286836407 B — 1197048072 > @ + 186870607 77 o
— 63463500 T @ + 956700087 B2 + 2615220 B frrar?
+33800 8«7 + 61600 8° 7 7 + 902031907 B
—11194200* @ — 4188240 B2 7 oz + 6302070 B2 o

— 24866544 B o’ o — 46210320 B an’@ +48333948a> B T 7
+ 561548807 B 7 + 1705860a* & — 75130007 *a et

+ 118855007 7 )
/(=120 — 227 + BY(115B & + 1268 B —40B T + 7837
— 16347 @ + 14487 T — N1a@)), (68)

where the denominator of the expression above, given by

dy:= (=120 — 227 + B)(1158a + 12688 —40B T +783T7 «
—1634na + 1448n w —N2law), 69)
is assumed to be non-zero, for now.
Here Nj, and all equations obtained by comparing different expres-
sions for 8 @, are polynomials in three complex variables «, 8 and 7.

One complex variable can be eliminated by introducing the following
new variables:

X1 i=—, Xy = —. (70)

In what follows we first prove that the necessary conditions imply that
both x; and x, are constants. Then, later, we shall prove that this leads to
a contradiction.

In the new variables defined by (70), the expression (67) assumes the
form

pr=—2250Xx; x5 — 1188 x; xx) — 3078x12 — 11529x; — 10805
+7647x; X7 + 6830 + 2142x{ X% — 1265%; X1 + 440X
—690%; x X1 + 240x; x; +2142x] ¥ =0. (71)
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Subtracting (68) from (58) (with @,; = 0), and taking the numerator,
gives
N, := —75130000 %7 *x; — 568034312 %; x; X1 2 — 162662000x X7 2
— 263829680 x; X1 % + 69828000 X7 X; x2x] + 91299060 x; 2
— 105963000 3 x2x; + 328900x; * 12 — 3248115 x;
—97977600x; — 12927600x] — 278399100x3
+37400.x; * — 16070400x] X3 x5 — 277285752x% %3 2,
+6646212x% %, *x; + 78647544x] x; X — 48437136x3 X3 2x»
+15461670x; X X;° — 39517398x X, % X7
+ 12081744 %1 x; X3 2x; + 593329572x7 %; %1
+4160700x% % > X7 — 221403987x% %5 2 x;
— 42924720 X1 ¥ >xy — 459117172 5% 2 %3 x?
+ 1679968716 X1 ¥ x7 + 112691520 %7 X7 *x;
+ 163297776 %1 X3 2xpx; — 413617894 X7 %; 2x;
+ 125141836 %7 2 %3 2x; + 14366310x7 %> — 169509600x2 X; x,
— 15940800x7 %3 2x3 + 114001200x7 %5 x; X7
+62078400x7 X3 x» X7 + 11275200x] %3 x2 X7
—45650088x; X1 X3 *xz — 213660 X; *x1x2
+ 77697000 X7 x7 X3 2xp — 12134448 77 x7 X3 ° x,
— 165106878 7 2x3 X3 + 66914052 %71 *x7 X, 2
+383646000x; X7 + 136587600x] x| — 1405233644x] x;
—495836310x; x; + 78021681x7 ;% — 257647540 %7 ;2
—44763192x3 %; *x; — 14850000x3 x; X, 2 — 121050 3 *x; X7
— 11901168x7 ¥; *x3 — 4276800x; x; 2x3 — 22290588 x7 *x} X3
+ 11929896 x7 2x; ¥z 2 — 3427140 X7 *x? X, ° — 65630268x] ¥,
+ 13886406x; ;% — 939210x7 X, % — 117442205, * %, °
+ 78035680 X7 2 X; 2 4 20400 %; “x; + 1533600x3 X7 *
+ 146164809 73 *x1 + 750960x; X3 *x, X1 + 17940037 > %3 *x;
—90396000x3 x; x, — 12687610x; X7 2 %3 > + 25076106 X7 >xx2
— 528822552 i, 2x1x7 — 3492935 %, 3x) 4 23644920 x; *x,
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—397830; *x, — 336008520 x; “x, — 6426000 X7 *x]
—131992500x; X7 % + 18230400x; X; + 824256x, ¥; “x?

+ 1395480, * ¥ x5 — 2219255, * ¥ — 47574000x] ;2

— 166397000x; — 42109200x3 %, * — 836819360 x;

— 1770562898x, ¥; + 224037000x,; X; + 478803300x7 ¥;
—351507100x7 + 999889240 %; %1

+2115717928 % x1 X1 =0. (72)

We now wish to determine the solutions of the system of algebraic
equations {p, = 0, N, = 0}. This may be accomplished in principle
using the Grobner basis method of Buchberger [13] as follows. First, we
treat the quantities x;, x,, X1, X, as independent variables, and view
the quantities p,, N, as polynomials in these indeterminates over the
field of rational numbers. (In the subsequent analysis we may use the
fact that some variables are complex conjugates of each other, but this
will not be necessary for our immediate purpose.) Then, by computing
a Grobner basis for the set {p,, N} (actually, the ideal (p,, N;)) with
respect to a purely lexicographic ordering of terms (see [13]) we obtain a
new set of polynomials with the same solutions but in which the variables
have been successively eliminated as far as possible. In order to speed
the computations, we use a special variant of the algorithm [9] which
combines the nonlinear elimination with factorization of intermediate
results. (This algorithm is available in the Maple system as the function
gsolve.) For the polynomials {p,, N}, the algorithm produces the
following components, which collectively contain all solutions:

G, :=[-8+4+23Xx, 11x; 4+ 8, 66x; + 125], (73)

G, :=[9108x, x; + 247, —8+ 23X, 66x; + 125], 74)
G3:=[828x2x; +75x; + 77, =8+ 23X, 66x; + 125], (75)
G4:=[271x; + 138x,x; + 517, =8+ 23 X% ], (76)
Gs:=[36xyx; +7—5X1, 6x1 + 11], amn

Ge:= [671514624x2 ;% + 488374272x3 X3 — 220446720 %1 x,
435785728 X; “x + 88473600x, X; — 27979776, x,
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+69101568x, — 167878656 %5 > X1 % + 181020672 %1 > X,

— 26599040 % 2 + 73852416 % 2 x7 — 132857600 X7 X3

+23168456 %] — 26978094x, — 49722705 — 2204136x?

+48043776x; X3 + 111324800%; — 76454403 2,

84787237 X3 x, — 294912x; X; +423936%; % X

—382720%; 2 — 2181127 X; + 323928 x;

— 54450x, — 169493 + 24576 X; ,

13939233 3x, + 202752 %3 2x5 + 73728, X3

+69696 X, > X7 + 38456x; 2 %] — 54656 %] X,

—33280%; — 4224x; + 10432 — 11616x; X,

+22544%; +2827%;% — 11616X; > — 7986 %3 *x1,

304128x1x, X3 + 576000x; X; + 66240 %] X7

—59800%; — 191598x; — 279575 — 17424x}

+198000x; X + 3519603,

192x; X1 — 282x; — 505 + 2807 |. (78)
Using the fact that the pair (x;, x;) and (X7, X2 ) are complex conjugates
of each other, we conclude that the sets G to G5 provide solutions which

are either impossible or in which x; and x, are constant. In the case of G,
this is not immediately obvious. Its smallest term is:

192x; x; —282x; — 505 +280x; =0. (79)

Subtracting (79) from its complex conjugate we obtain the conclusion
that x; is real, which implies that it must be constant. It follows that x
must be constant as well.

Let us consider now the case

p1=12x%; +6+2x; +2x +2x1 X1 + 5x1x2=0. (80)

We then use the side relation S; given by (52), whose numerator takes the
form:

Py = —6x2 %32 + 1210xpx; + 1276x; + 1276 %1
+360x,x2 X7 +2901x, % + 1528x1x2 X2 + 660x X3 X1
+ 660x,x7 + 408x; X1 2 + 660X, 2 x; + 408 %] x]
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+2645%7 % + 144x7 372 + 1452 4 264x?
+1210%; x; + 1444 x; x; + 1528x, X1 X3
+660x; X7 x1 + 803x2x1 X3 X7 + 360x; X; X7 2 = 0. (81)

Applying our nonlinear elimination algorithm as before to p;, p3 we
obtain the following equivalent system of equations:

§1:=6x%; 4 31x; X] +56x; + X1 +3=0, (82)

83 1= 72X, X1 + 132x1x, 4+ 31x; X1 2 + 56 %1 x;
+x1243x =0, (83)

83 :=X1x; —22x1 — 12x1x; =0. 84)

Subtracting (82) from its complex conjugate yields x; = x;. Subtracting
(84) from its complex conjugate now gives x; = x; = 12x; + 22.
Substituting these relations back in (82) and (83) results in a system with
no solution.

It thus follows that in either of the cases which arise from Eq. (65), x;
and x, must necessarily be constant. However, it may be shown (though
we postpone the details until the following section) that this too leads to
a contradiction.

We must finally consider the case in which the denominator of Dy,
given by (49), is zero. Here we shall suppose that @;; is not necessarily
zero, so that the side relations derived in Section 2 will remain valid in
the following section as well. According to (50) and (70),

dy =224 12x; — x; =0. (85)

From (49) we obtain
E|:=—=53x1¢11 + 242 — 220x; + 24 X1 x7 + 30X, p11 + 274x, X3
—5X% + 1103 X1 +24x] + 44X + 144x,x,X; — 1086y,
— 120x1x, + 68x; X1 + 176x; +60Xx] X3 x; =0, (86)
where ¢;; is defined as follows:

Py

T

o1 = 87

Applying § to fi, using (30), (38) and (36), and solving for S, we get

Sa=120Ba + 66wa + 2207 B + 33a* — B2. (88)
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By applying é to d;, now using (40)—(42) and (47) and solving for Du,
we get

Du=@Am7a+2988 +64aa — 3708w + 327w
—190Ba + 114na + 58 & — 68%;,)/20. (89)

Subtracting D i, given by (47), from the complex conjugate of (89),
gives

Ey :=20¢11 — 2x2%; — 22x1 — 24x, X1 + 66x,

+35x1x, — 227 +35% X +66%; =0. (90)
Applying § to (90) gives
E3 :=1168x;¢11 + 3980x,x7 — 264 4 14520x, — 3584 X7 x?

—255%; 1) — 2838x, X3 — 9482x; X7 — 24200 %;

—12870Xx; X — 12870x, ¥; — 3784x? — 1210%; 2

— 49287 — 1514x1x2 5 +20x, %2 — 6253, 2 X7

+2046¢,, + 15180x; x, — 7480x, — 6835 %] X, x; =0. (91)

Applying nonlinear elimination to d, ]Tl , E, E,, E and E5, we find
that this system has no solution.

The cases where each of the denominators d,, d3 and d4, that appeared
in the preceeding equations are zero lead to contradictions, according
to [24]. The demonstration of this fact follows the steps described above
and will not be presented here for brevity.

Thus, for Huygens’ principle to be satisfied on Petrov type III space-
times we must have @;; # 0, and Theorem 6, which states this result in a
conformally invariant way, is proved.

4. THE CASE &;, #0

We shall now examine the sole case which remains after the analysis of
the previous section, namely that in which ez # 0 and @, # 0. This, in
view of Theorem 6, will complete the proof of Theorem 1. Our approach
is related to that of the previous section, in that we reduce the problem to
an issue of solvability of a purely algebraic system of equations.

We first observe that, in addition to the algebraic equations given by
(52) and (60), an extra independent equation may be obtained by applying
the NP operator & to (52). All of the Pfaffians which result are known
explicitly, and may be replaced using the expressions found in Section 2
to obtain a (very large) expression in the complex variables «, B, and
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and the real quantity @;,. Upon transforming variables according to (70)
and (87), we obtain a complex quantity in the new variables x;, x,, X7,
X2, and ¢y,. (This polynomial contains 408 terms of maximum total
degree 9.) Together with the equations which similarly follow from (52)
and (60), we have in effect a system of five equations in five real variables.
Let us denote the set of polynomials which arise in this system (i.e., when
the equations are written with a right hand side of 0) by F.

It must be mentioned that the approach of the previous section, namely
computing the solutions by explicit elimination, is impossible in the
present case due to the intrinsic computational complexity of nonlinear
elimination and the high degree of our polynomials. It is possible and will
suffice, however, to bound the number of solutions using the following
result due to Buchberger [13]:

THEOREM 7. - Let G be a Grobner basis for (F) (the polynomial
ideal generated by F') with respect to a given ordering of terms, and let
H denote the set of leading terms of the elements of G with respect to the
chosen term ordering. Then the system of equations corresponding to F
has finitely many solutions if and only if for every indeterminate x in F
there is a natural number m such that x™ € H.

The key to using this result is that we may use an ordering of terms
based on total degree (i.e., a non-elimination ordering) for which the
computational complexity of Buchberger’s algorithm for Grobner bases
is much lower. Unfortunately, even in this setting a Grobner basis for F
cannot easily be computed due to the extreme size of intermediate results
produced by the algorithm.

It would be highly desirable to apply modular homomorphisms in
the manner used in algorithms for factorization (i.e., so-called Chinese
remainder, or Hensel algorithms [13]) in the present situation. This is
not currently possible due to a number of unresolved problems with the
approach. Nonetheless, it provides a useful probabilistic experimental
approach: treat the elements of F as polynomials over a prime field Z,
(rather than the rationals), where p is of modest size, and compute the
Grobner basis of F modulo p over Z,. For a single prime, it is possible
that the result so obtained may have no useful relationship with the
Grobner basis of F over the rationals. However, if the basis polynomials
computed using a large number of different primes all exhibit identical
monomial structures, it is extremely likely that they each represent a
distinct homomorphic image of the true Grobner basis of F. The question
of accurately computing the probability of success for a specific series of
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primes remains an open problem. However, the individual prime field
computations are comparatively easy since (unlike the rational case) no
single coefficient may be larger than the chosen prime. This provides
an experimental “sampling” method which gives clues on how best to
compute the true result, and what that result will likely be.

We must also consider that if we were able to compute a Grobner basis
for F over the rationals, we would derive information on all solutions of
the corresponding system including those which were examined in the
previous section (i.e., for which @1, = 0). It is possible to exclude those
solutions entirely by adding an additional constraint and variable,

¢pnuz—1=0 92)

to our equations to produce the augmented system F . Still, only an actual
computation reveals whether this improves or worsens the tractability of
the problem. In our case, a large number (a few thousand) prime field
“sample” computations (done using the GB package of Faugere [12],
which is far more efficient than the general-purpose Maple system) all
suggested that the addition of Eq. (92) made the Grobner basis calculation
much more efficient. More importantly, once the solutions examined
in the previous section were in effect discarded, only a finite number
remained when Theorem 7 is taken into account. With this in mind, it
was possible (and worthwhile) to compute the true Grobner basis of F
over the rationals in the indeterminates x;, X2, Xy, X2, ¥i1, Z using a
total degree ordering of terms. Since this basis contains polynomials with
leading terms

x5, %0, 00, ¢4, 2, 93)
we may conclude that there are only finitely many solutions for which
o11, and hence @, as well, is nonzero. (For this last computation the
latest and most efficient version of Faugere’s GB package, known as
FGB, was required.) It follows that x;, x2, X1, X2, ¢11 must be constants;
it remains only to show that this yields a contradiction.

Since ¢;; must be constant (including the case in lvhich P =0)
it follows from (70), (87) that the quantities 77, BB and o /B are
all constant as well. From the equation 8(88) = 0 we obtain, in the
variables x;, X, ¢11 given by (70), (87), the side relation

(731 +25%; + 2)p11 +374x, 3% + 19951 X253 — 5%, %2
+60x; X X2 + 6071 2 %5 + 110x; x5 + 110x7%; + 68x1 X7
+24x, X1 2+ 24572+ 44x; + 116X +132=0. (94)
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Next, from &(x;) = 0 we obtain the Pfaffian
87T =—7(a + B). (95)

Using this, along with the previously determined Pfaffians, we then
obtain from 8(r ) = 0 another side relation; on subtracting this result
from (94) (and ignoring the possibility that d; = 0, which has already
been considered) we obtain

x(x;+ X2 +4)+¢11=0. (96)
Finally, from & (o /8) = 0 we obtain
x1(x1 +5x 4+2)+9x; =0. 97)

The collection of polynomials given by (94), (96), (97), (52) and their
complex conjugates has a Grobner basis (computed easily using Maple)
containing only the polynomial 1. This is equivalent to showing that there
exists a combination of these polynomials which equals 1, and hence that
they cannot vanish simultaneously (see [13]); i.e., the associated system
of equations has rno solutions. This completes the proof.

5. CONCLUSION

In completing the proof of Theorem 1, we have fully solved Hada-
mard’s problem for the scalar wave equation in the case of Petrov type III
space-times. Essential to our proof were use of the six-index necessary
condition obtained by Rinke and Wiinsch [23], and separate analyses
(and different ideal-theoretic tools) for the cases @1; = 0 and ®;; # 0.
To complete the proof of the conjecture stated in the Introduction it
remains to consider the space-times of Petrov types I and II. A partial
result for type II has been obtained by Carminati, Czapor, McLenaghan
and Williams [8]. However, it is not yet clear whether the complicated
equations which arise from conditions (III), (V), and (VII) can be solved
by the method used in the present paper.
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FGB package. This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada in the form of individual
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