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1. INTRODUCTION

This paper is devoted to the solution of Hadamard’s problem on Petrov
type III space-times, for the conformally invariant scalar wave equation

and the non-self-adjoint scalar wave equation

In the above equations D denotes the Laplace-Beltrami operator corre-
sponding to the metric gab of the background space-time V4, u the un-
known function, R the Ricci scalar, Aa the components of a given con-
travariant vector field and C a given scalar function. The background
manifold, metric tensor, vector field and scalar function are assumed to
be All considerations of this paper are entirely local.
The homogeneous equations ( 1 ) and (2) satisfy NMy’ principle in

the sense of Hadamard [ 15 ] if u(x) depends only on the Cauchy data in an
arbitrarily small neighborhood of the intersection between the backward
characteristic conoid C- (x) with the vertex at x and the initial surface S,
for arbitrary Cauchy data on S, arbitrary S, and for all points x in the
future of S. problem for ( 1 ) and (2) is that of determining
all space-times for which Huygens’ principle is valid. We recall that

two equations (2) are said to be equivalent if and only if one may be
transformed into the other by any combination of the following trivial
transformations:

(a) a general coordinate transformation;
(b) multiplication of the equation by the function which

induces a conformal transformation of the metric

(c) substitution of 03BBu for the unknown function u, where 03BB is a non-

vanishing function on V4.
We note that the Huygens’ character of (2) is preserved by any trivial
transformation. In the case of ( 1 ) the trivial transformations reduce to
conformal transformations with À == ~.

Carminati and McLenaghan [4] have outlined a program for the
solution of Hadamard’s problem for the scalar wave equation, Weyls’
neutrino equation and Maxwell’s equations based on the conformally
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597COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES

invariant Petrov classification of the Weyl conformal curvature tensor.
This involves the consideration of five disjoint cases which exhausts
all the possibilities for non-conformally flat space-times. Hadamard’s
problem for ( 1 ) and (2) has been completely solved for Petrov type N
space-times by Carminati and McLenaghan [3,5] and McLenaghan and
Walton [20]. Their results may be summarized as follows:

Any non-self-adjoint eguation (2) on any Petrov type N background
space-time satisfies Huygens’ principle af and only if it is equivalent
to the wave equation ~u = 0 on an exact plane wave space-time with
metric

For Petrov type D space-times the following result was obtained by
Carminati and McLenaghan [6], McLenaghan and Williams [21 ] and
Wunsch [27] :

There exist no Petrov type D space-times on which the conformally
invariant scalar wave eguation (1 ) satisfies Huygens’ principle.

In the present paper we complete this program for the conformally
invariant scalar wave equation ( 1 ) on Petrov type III space-times by
proving the following theorem:

THEOREM 1. - There exists no Petrov type III space-times on which
the conformally invariant scalar wave equation ( 1 ) satisfies Huygens’
principle.

The results on type N and type D space-times described above and
Theorem 1 lend weight to the conjecture which states that every space-
time on which the conformally invariant scalar wave equation satisfies
Huygens’ principle is conformally related to the plane wave space-time
(3) or is conformally flat [3,5].

Hadamard’s problem for the general non-self-adjoint equation (2) may
now be solved with the help of Theorem 1 and the results of Anderson,
McLenaghan and Sasse [ 1 ] where the following theorem is proved:
THEOREM 2. - Any non-self-adjoint scalar wave equation (2) which

satisfies Huygens’ principle on any Petrov type III background space-time
is equivalent to the conformally invariant scalar wave equation ( 1 ).

Combining these two theorems we obtain

Vol. 71, n ° 6-1999.



598 S . R. CZAPOR ET AL.

THEOREM 3. - There exist no Petrov type III space-times on which the
non-selfadjoint scalar wave equation satisfies Huygens’ principle.
The corresponding problem for the Weyl neutrino equation and

Maxwell’s equations is solved in [19].
The starting point of our proof of Theorem 1 is the paper by Carminati

and McLenaghan [7], where the following results are obtained for Petrov
type III space-times:
THEOREM 4. - The validity of Huygens’ principle for the conformally

invariant scalar wave equation (1), on any Petrov type III space-time
implies that the space-time is conformally related to one in which every
repeated principal spinor field oA, of the Weyl spinor is recurrerct, that is

where IBB is a 2-spinor; and

where iA is any spinor field satisfying oAlA = 1.

THEOREM 5. - If anyone of the following three conditions

is satisfied, then there exist no Petrov type III space-times on which
the conformaLLy invariant scalar wave equation (1) satisfies Huygens’
principle.

It is important to note that these earlier results solve Hadamard’s
problem under what have proved to be fairly strong assumptions (namely,
that one of (7), (8) or (9) is satisfied). The purpose of the present paper is
to make the analysis completely general by removing these assumptions.
We follow the conventions of [7], and use the results established there to
obtain (most of) the basic equations needed for the proof of Theorem 1.

In Section 2 we give the necessary conditions for the validity of
Huygens’ principle that will be used in this paper, and give a brief
summary of their implications. From these necessary conditions, we
derive the further side relations needed for our analysis in terms of the
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Newman-Penrose scalars. The key to our proof is the six-index necessary
condition obtained by Rinke and Wunsch [23] which was not used in [7].
In Section 3 we examine these side relations in the case (Pn = 0 and show
that they lead to a contradiction. The proof of Theorem 1 is completed in
Section 4, where the case ~11 ~ 0 is treated.

It is worth mentioning that the tools of computer algebra are used
throughout this paper. Initially we employ the Maple [22] package
NPspinor [ 10,11 ] to extract dyad components of spinor versions of the
necessary conditions, and then to manipulate the resulting expressions in
Newman-Penrose form. In the case Ø11 = 0 we use the Grobner basis
package of the Maple system to explicitly determine solutions of systems
of algebraic equations. Finally, for the case ~11 ~ 0 we use the GB
package of Faugere [ 12] to examine the solvability of a somewhat larger
system of algebraic equations.

2. FORMALISM AND BASIC EQUATIONS

The necessary conditions for the validity of Huygens’ principle for ( 1 )
which we employ are given by

where

~bl.71,n°6-1999.



600 S.R. CZAPOR ET AL.

where

Here Aa := denotes the Riemann tensor, Cabcd the Weyl
tensor, Rab := the Ricci tensor, and R := gab Rab the Ricci
scalar associated to the metric gab. The conditions (III), (V) and (VII)
are necessarily conformally invariant. Spinor versions of conditions (III)
and (V), and the conventions used for conversion from the original tensor
form, are given in [7].

Mathisson [ 17], Hadamard [ 16], and Asgeirson [2] obtained condition
(III) for (2) in the case gi~ constant. Condition (III) was obtained in
the general case for (2) by Gunther [ 14] . Condition V was obtained

by McLenagham [ 18] in the case Rab = 0, and by Wunsch [26] for the

general case. Condition (VII) was obtained by Rinke and Wunsch [23].
Petrov type III space-times are characterized by the existence of a

spinor field oA satisfying

Such a spinor field is called ’ a repeated principal spinor of the Weyl spinor
and 0 is determined ’ by the latter up to an arbitrary variable complex factor.

Annales de l’ Institut Henri Poincare - Physique théorique



601COMPLETE SOLUTION OF HADAMARD’S PROBLEM ON TYPE III SPACE-TIMES

Let lA be any spinor field satisfying

The ordered set ~, called a dyad, defines a basis for the 1-spinor
fields on V4.

It was shown in [7] that the necessary conditions (III) and (V) imply
that there exists a dyad and a conformal transformation ~ such
that

We notice that the expressions (24) determine the tetrad uniquely.
On the other hand, conditions (23) are invariant under any conformal
transformation satisfying

which implies that we still have some conformal freedom. Under a

conformal transformation we have [25] :

Thus, we can choose ~ such that

where c is a constant. The conditions (28) are satisfied in view of (27).
Let us now derive some side relations that follow from the previously

obtained Eqs. (23)-(30) and the necessary conditions (10)-(12); these
will be required in the analysis of the following sections. We may assume
that 0, since the case in which this is not true was already
considered in [7]. By contracting condition (III) with we get

From the Bianchi identities, using the above conditions, we obtain

Bbl.71,n° 6-1999.



602 S.R. CZAPOR ET AL.

From the Ricci identities we get the following relevant Pfaffians:

We can obtain useful integrability conditions for the above Pfaffians,
by using Newman-Penrose (NP) commutation relations. By substituting
them in the commutator expression [~ , D]~22 2014 [ 0 , ~]~i2. we get

By contracting condition (V) with lABCD-ABCD, we find

By substituting (30) into this equation we get

From (40), (41 ) and (30) we then obtain:

By contracting condition (V) with we find

Using (36), (41 ) and the complex conjugate of (42), we get
Annales de l’Institut Henri Poincare - Physique theorique
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On the other hand, the NP commutator [ ~ , 8 ] (a + 27r) = (a - +

27r) + (- a + ~6) ~ (of + 27r), yields the following expression

Eliminating between (47) and (48), and solving for D/~, we get

where we have assumed that the denominator of the expression above,
given by

is non-zero. The case dl = 0 will be considered later.

Substituting expression (49) for into (47) we obtain

One side relation can now be obtained by subtracting the complex
conjugate of (49) from (51 ). We obtain:

Vol. 71, n° 6-1999.
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We notice that (49) and (51 ) have the same denominator. Thus, if we
keep these expressions for D/~ and D/Z, the Pfaffians ~,8 , ~a, ~~c,
given by (42), (38) and (41 ), respectively, and their complex conjugates,
also have the same denominator. This procedure is crucial to keep the
expressions to be obtained from the integrability conditions within a
reasonable size. Except for 03B403B1, all Pfaffians involving 8, 8, applied to
a, ,8, ~c are explicitly determined.
The following expression for can be obtained from the NP

commutator [Y, ~] ~ = (/7 - /~)D ~ + (a - ~)~ + (~6 - a) ~6 :

By substituting (49) and (51 ) into this equation we get:

where, for now, we assume that the denominator in the expression above:

is non-zero.

Contracting condition (VII) with ABCDEOF-BCDOAEF yields

Annales de l’Institut Henri Poincare - Physique theorique
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The second-order terms D( ~ y ), D( ~ y), D( ~ ,~c ), D(0_,8 ), D(A(Y),
D(A7r), can be expressed in terms of known Pfaffians and 03B4 a, by using
the NP commutation relations involving each pair of operators. After the
substitutions we obtain

Solving £ this equation for 03B403B1 we get
Annales de Henri Poincare - Physique ~ theorique 
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where the denominator of (58),

is assumed to be non-zero for now.

Vol. 71, n ° 6-1999.



608 S.R. CZAPOR ET AL.

Subtracting (54) from (58) and taking the numerator,

Annales de Henri Poincaré - Physique theorique
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3. THE CASE (/)11 == 0

Carminati and McLenaghan [7] used the conditions (III) and (V) given
in Section 2 to prove that Huygens’ principle is not satisfied if any of
the spin coefficients a, ,8 or yr vanish. We now extend the proof for the
case in which 0 and (/)11 = 0; i.e., we shall prove the following
theorem:

THEOREM 6. - Let V4 be any space-time which admits a spinor dyad
with the properties

where I BE is a 2-spinor, and

Then the validity of Huygens’ principle for the conformally invariant
equation (1) implies that

Proof. - When 03A611 = 0 the quantity given by (60), factors in the
following form:

where

Let us consider first the case in which p2 = 0. Applying 8 to (67) and
solving for 03B403B1, we obtain:

Vol. 71, n° 6-1999.
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where the denominator of the expression above, given by

is assumed to be non-zero, for now.

Here and all equations obtained by comparing different expres-
sions for 03B4 a , are polynomials in three complex variables a, 03B2 and 7r.
One complex variable can be eliminated by introducing the following
new variables:

In what follows we first prove that the necessary conditions imply that
both Xl and x2 are constants. Then, later, we shall prove that this leads to
a contradiction.

In the new variables defined by (70), the expression (67) assumes the
form

Annales de l’Institut Henri Poincaré - Physique theorique 
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Subtracting (68) from (58) (with = 0), and taking the numerator,
gives

Vol. 71, n° 6-1999.
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We now wish to determine the solutions of the system of algebraic
equations { p2 == 0, N2 = 0}. This may be accomplished in principle
using the Grobner basis method of Buchberger [ 13] as follows. First, we
treat the quantities x1, x2, x2 as independent variables, and view
the quantities p2, N2 as polynomials in these indeterminates over the
field of rational numbers. (In the subsequent analysis we may use the
fact that some variables are complex conjugates of each other, but this
will not be necessary for our immediate purpose.) Then, by computing
a Grobner basis for the set { p2, N2} (actually, the ideal (~2~2)) with
respect to a purely lexicographic ordering of terms (see [ 13]) we obtain a
new set of polynomials with the same solutions but in which the variables
have been successively eliminated as far as possible. In order to speed
the computations, we use a special variant of the algorithm [9] which
combines the nonlinear elimination with factorization of intermediate

results. (This algorithm is available in the Maple system as the function
gsolve.) For the polynomials {~2. ~2}. the algorithm produces the
following components, which collectively contain all solutions:

Annales de Poincaré - Physique theorique
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Using the fact that the pair (jci, ~2) and (~1,~2) are complex conjugates
of each other, we conclude that the sets Gi to Gs provide solutions which
are either impossible or in which xl and x2 are constant. In the case of G6,
this is not immediately obvious. Its smallest term is:

Subtracting (79) from its complex conjugate we obtain the conclusion
that xl is real, which implies that it must be constant. It follows that x2
must be constant as well.

Let us consider now the case

We then use the side relation Sl given by (52), whose numerator takes the
form:

Vol. 71,~6-1999.
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Applying our nonlinear elimination algorithm as before to pi, p3 we
obtain the following equivalent system of equations:

Subtracting (82) from its complex conjugate yields xl == Subtracting
(84) from its complex conjugate now gives x2 == x2 = 12x1 + 22.
Substituting these relations back in (82) and (83) results in a system with
no solution.

It thus follows that in either of the cases which arise from Eq. (65), xl
and x2 must necessarily be constant. However, it may be shown (though
we postpone the details until the following section) that this too leads to
a contradiction.

We must finally consider the case in which the denominator of 
given by (49), is zero. Here we shall suppose that (/)11 is not necessarily
zero, so that the side relations derived in Section 2 will remain valid in
the following section as well. According to (50) and (70),

From (49) we obtain

where is defined as follows:

Applying 03B4 to /i, using (30), (38) and (36), and solving for 03B4 03B1, we get

Annales de l’ Institut Henri Poincare - Physique ~ theorique "
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By applying 8 to dl, now using (40)-(42) and (47) and solving for 
we get

Subtracting D given by (47), from the complex conjugate of (89),
gives

Applying 5 to (90) gives

Applying nonlinear elimination to Ji, f 1, E1, E2 and E3 , we find
that this system has no solution.
The cases where each of the denominators d2, d3 and d4, that appeared

in the preceeding equations are zero lead to contradictions, according
to [24]. The demonstration of this fact follows the steps described above
and will not be presented here for brevity.

Thus, for Huygens’ principle to be satisfied on Petrov type III space-
times we must have ~ 11 ~ 0, and Theorem 6, which states this result in a
conformally invariant way, is proved.

4. THE CASE ~ 11 ~ 0

We shall now examine the sole case which remains after the analysis of
the previous section, namely that in which 0 and ~11 ~ 0. This, in
view of Theorem 6, will complete the proof of Theorem 1. Our approach
is related to that of the previous section, in that we reduce the problem to
an issue of solvability of a purely algebraic system of equations.
We first observe that, in addition to the algebraic equations given by

(52) and (60), an extra independent equation may be obtained by applying
the NP operator 8 to (52). All of the Pfaffians which result are known
explicitly, and may be replaced using the expressions found in Section 2
to obtain a (very large) expression in the complex variables a, fJ, and yr

Vol. 71, n° 6-1999.
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and the real quantity (/)11. Upon transforming variables according to (70)
and (87), we obtain a complex quantity in the new variables xl ,
.~2 , and ~l 1. (This polynomial contains 408 terms of maximum total
degree 9.) Together with the equations which similarly follow from (52)
and (60), we have in effect a system of five equations in five real variables.
Let us denote the set of polynomials which arise in this system (i.e., when
the equations are written with a right hand side of 0) by F.

It must be mentioned that the approach of the previous section, namely
computing the solutions by explicit elimination, is impossible in the
present case due to the intrinsic computational complexity of nonlinear
elimination and the high degree of our polynomials. It is possible and will
suffice, however, to bound the number of solutions using the following
result due to Buchberger [ 13] :

THEOREM 7. - Let G be a Grobner basis for (F) (the polynomial
ideal generated by F) with respect to a given ordering terms, and let
H denote the set of leading terms of the elements of G with respect to the
chosen term ordering. Then the system of equations corresponding to F
has finitely many solutions if and only if for every indeterminate x in F
there is a natural number m such that xm E H.

The key to using this result is that we may use an ordering of terms
based on total degree (i.e., a non-elimination ordering) for which the
computational complexity of Buchberger’s algorithm for Grobner bases
is much lower. Unfortunately, even in this setting a Grobner basis for F
cannot easily be computed due to the extreme size of intermediate results
produced by the algorithm.

It would be highly desirable to apply modular homomorphisms in
the manner used in algorithms for factorization (i.e., so-called Chinese
remainder, or Hensel algorithms [13]) in the present situation. This is
not currently possible due to a number of unresolved problems with the
approach. Nonetheless, it provides a useful probabilistic experimental
approach: treat the elements of F as polynomials over a prime field Zp
(rather than the rationals), where p is of modest size, and compute the
Grobner basis of F modulo p over Z p’ For a single prime, it is possible
that the result so obtained may have no useful relationship with the
Grobner basis of F over the rationals. However, if the basis polynomials
computed using a large number of different primes all exhibit identical
monomial structures, it is extremely likely that they each represent a
distinct homomorphic image of the true Grobner basis of F. The question
of accurately computing the probability of success for a specific series of

Annales de l’ Institut Poincaré - Physique theorique
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primes remains an open problem. However, the individual prime field
computations are comparatively easy since (unlike the rational case) no

single coefficient may be larger than the chosen prime. This provides
an experimental "sampling" method which gives clues on how best to
compute the true result, and what that result will likely be.
We must also consider that if we were able to compute a Grobner basis

for F over the rationals, we would derive information on all solutions of
the corresponding system including those which were examined in the

previous section (i.e., for which (/)11 = 0). It is possible to exclude those
solutions entirely by adding an additional constraint and variable,

to our equations to produce the augmented system F. Still, only an actual
computation reveals whether this improves or worsens the tractability of
the problem. In our case, a large number (a few thousand) prime field

"sample" computations (done using the GB package of Faugere [ 12],
which is far more efficient than the general-purpose Maple system) all

suggested that the addition of Eq. (92) made the Grobner basis calculation
much more efficient. More importantly, once the solutions examined
in the previous section were in effect discarded, only a finite number
remained when Theorem 7 is taken into account. With this in mind, it
was possible (and worthwhile) to compute the true Grobner basis of F
over the rationals in the indeterminates xl, x2, using a
total degree ordering of terms. Since this basis contains polynomials with

leading terms

we may conclude that there are only finitely many solutions for which

Y~11 ~ and hence ~1 ~ as well, is nonzero. (For this last computation the
latest and most efficient version of Faugere’s GB package, known as
FGB, was required.) It follows that x2, ~2 1 must be constants;

it remains only to show that this yields a contradiction.
Since must be constant (including the case in which ~11 = 0)

it follows from (70), (87) that the quantities 03C003C0, 03B203B2 and are

all constant as well. From the equation 03B4(03B203B2) = 0 we obtain, in the
variables xl, x2, given by (70), (87), the side relation

Vol. 71, n° 6-1999.
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Next, from ~(~2) = 0 we obtain the Pfaffian

Using this, along with the previously determined Pfaffians, we then
obtain another side relation; on subtracting this result
from (94) (and ignoring the possibility that 0, which has already
been considered) we obtain

Finally, from 03B4(03B1/03B2) == 0 we obtain

The collection of polynomials given by (94), (96), (97), (52) and their
complex conjugates has a Grobner basis (computed easily using Maple)
containing only the polynomial 1. This is equivalent to showing that there
exists a combination of these polynomials which equals 1, and hence that
they cannot vanish simultaneously (see [ 13]); i.e., the associated system
of equations has no solutions. This completes the proof.

5. CONCLUSION

In completing the proof of Theorem 1, we have fully solved Hada-
mard’s problem for the scalar wave equation in the case of Petrov type III
space-times. Essential to our proof were use of the six-index necessary
condition obtained by Rinke and Wunsch [23], and separate analyses
(and different ideal-theoretic tools) for the cases (/)11 = 0 and ~11 ~ 0.
To complete the proof of the conjecture stated in the Introduction it

remains to consider the space-times of Petrov types I and II. A partial
result for type II has been obtained by Carminati, Czapor, McLenaghan
and Williams [8]. However, it is not yet clear whether the complicated
equations which arise from conditions (III), (V), and (VII) can be solved
by the method used in the present paper.
The authors would like to thank J.C. Faugere for his assistance with the

FGB package. This work was supported in part by the Natural Sciences
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