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ABSTRACT. - We consider quantum evolution generated by a hamil-

tonian -h2 20394 + V, where V is a Coulomb potential. For a certain class
of wavefunctions with a Gaussian probability density we construct an ap-
proximate semiclassical time evolution. We show that the modified wave

operators can be approximated in the leading order in fii using the corre-
sponding classical Miller transformations. @ Elsevier, Paris

RESUME. - Nous examinerons 1’evolution quantique generee par

l’hamiltonien -h2 20394 + V, ou Vest un potentiel de Coulomb. Pour une
certaine classe de fonctions d’ ondes avec une densite de probabilité
gaussienne, nous construirons une solution approximative semi-classique
dependante du temps. Nous montrerons ainsi que les operateurs d’ ondes
modifes peuvent etre approches a 1’ ordre dominant en h grace a

l’utilisation des transformations classiques de Miller correspondantes.
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1. INTRODUCTION

In quantum mechanical scattering theory one distinguishes two classes
of potentials: short and long range. While for short range potentials the
theory is fairly straightforward, in the long range case it can sometimes
cause considerable difficulties. It has been long known that in this case
the standard wave operators do not exist and the definitions need to
be modified. The first such construction was given by Dollard [4] for
the Coulomb potential. Since then several other approaches have been
developed [2,17,11 ] .

Classical scattering has been, rather surprisingly, a subject to much
fewer papers than its quantum counterpart. One might mention here [ 16]
for short and [9] for long rang problems, or a review of current results by
Derezinski and Gerard [3]. In the classical case we see similar problems
with the long range potentials and a suitably chosen free dynamics needs
to be used.

In the present paper we consider the semiclassical approximation to
the quantum scattering of a particle by the Coulomb potential. The
idea is a generalization of the technique developed in [6,15] for the
short range potentials. This approach is based on a certain Gaussian
wavefunctions [6] called the semiclassical wavepackets. The quan-
tum evolution of such wavepackets can be approximated in the lead-
ing order in h by a similar Gaussian "following" the classical tra-

jectory of a particle with an appropriate phase change and spread-
ing. It is interesting to note that such approximation to the free quan-
tum evolution is in fact exact [6]. The result can be extended to

an arbitrary order in h if the approximating state is taken as a su-

perposition of products of Gaussians with certain generalizations of
Hermite polynomials [8]. Also more general states can be consid-
ered [ 15 ] .

For systems with Coulomb, or in general, long range interaction
this technique encounters several difficulties. As already mentioned,
in order to ensure the existence of the wave operators in both the

quantum and classical case one needs to modify the free dynamics.
This affects the semiclassical limit and a suitable modification is de-
fined in this work. Even more important, it seems that under the long-
range forces the propagation of a Gaussian state cannot be well ap-
proximated by merely scaling and translating it. Nevertheless we show

that the error (albeit growing in time) is of the order O(h1 2). Con-
Annales de l’ Institut Poincaré - Physique theorique
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sequently we construct an approximation to the Dollard wave opera-
tor.

The semiclassical approximation is a problem of its own, but our
interest in it stems from the fact that it is a part of a rigorous treatment
of the Born-Oppenheimer approximation [7 ] . The Born-Oppenheimer
scattering for short range potentials is analyzed in [ 12,13], while the long
range scattering is still an open problem.
The semiclassical scattering has been also studied by Yajima in the

short [ 18] and long range case [ 19] . Yajima’s approach is based on

integral operator techniques developed by Hormander [ 10] and Asada
and Fujiwara [1,5]. The results are stronger than ours since he constructs
an approximation to the wave operators and the scattering operator of
order 0(/x). Yajima’s technique is, however, restricted to the momentum
representation, while our paper presents an approximation of order
o( 1) to the wave operators in the position representation. We use only
basic functional analysis tools and a quadratic approximation to the
potential. Therefore we find our method not only much simpler, but
also more intuitive, with the role of the classical trajectories much more
apparent.
The rest of this paper is organized as follows. In Section 2 we explain

the notation and state our main result, while the details of the proofs are
given in Section 3.

2. NOTATION AND RESULTS

We consider the quantum dynamics generated by the hamiltonian of
the form:

on ~-),~ ~ 3. Here V(x) = 2014 is the Coulomb potential. We also
denote the free hamiltonian by:

In particular we are concerned with the time-evolution generated by the
hamiltonian ( 1 ) of so-called semiclassical wavepackets introduced by
Hagedorn [6]. The definition is the following:

Vol. 71, n° 3-1999.
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DEFINITION 1. - Let A and B be complex n x n matrices satisfying:

a) A and B are invertible,

b) BA-1 is symmetric,
(3)

c) Re BA-1 = 2 [BA-1 + (BA-1)*] is strictly positive definite,
d) (Re BA-1 )-1 = AA*.

Also let a E 17 E 17 ~ 0, h &#x3E; 0. We define the semiclassical
wavepacket as:

Remark 2. - Let ~/,/ (or / ) denote the scaled Fourier transform of
f , i.e.:

Then [6]

Remark 3. - From (6) one can see that ~ is concentrated near position
a and momentum with widths determined by matrices A and B,
respectively.
The quantum propagator associated with the hamiltonian ( 1 ) is:

As we mentioned the wave operators exist if we replace the free

propagator (generated by the free hamiltonian (2)) by a suitably defined
modified free evolution. For a state f with f ~ E B {0}) we define
it as follows:
there is to &#x3E; 0 such that for t ~ &#x3E; to:

Annales de l’Institut Henri Poincare - Physique * theorique *
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Here

is called a modifier. In fact what matters is the value of the modifier on

supp /B Assuming supp h E ann (o, c1, c2) and denoting by x (cl , c2, 03BE)
the characteristic function of the annulus cl, c2), we can replace
(8) by:

Eq. ( 10) can be used to define the modified free evolution for an arbitrary
state, not necessarily compactly supported. In particular this applies to
the semiclassical wave packets. It is easy to see that:

as Cl ~ 0, uniformly in t. Similarly:

as C2 2014~ oo, uniformly in t. It follows that:

exists uniformly in t . We denote the limit by

always remembering that a limiting procedure of the above kind is

understood.

Vol. 71, n° 3-1999.
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The modified (Dollard) wave operators are defined as:

The existence is a standard result [ 14] .
Now we proceed to define the semiclassical dynamics. Let A_, B_ be

n x n complex matrices satisfying (3) and a_, r~_ E such that r~_ ; 0.
Let a(t), r~(t), A(t), B(t), be a solution to the system of coupled
ODE’s :

(where denotes the gradient of V and V~2~ is the Hessian matrix)
satisfying asymptotic conditions:

where

Annales de l’ Institut Henri Poincaré - Physique theorique
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Remark 4. - The first two equations ( 13) are the Hamilton’s equations
for a classical particle with position a(t) and momentum yy(~). It is well
known that such a particle moving in a Coulomb force field reaches
an asymptotic momentum, but the asymptotic time parametrization of
its orbit differs from the free motion with constant momentum by a
logarithmic factor (cf. ( 14)).
Remark 5. - S(t) is the action along the classical trajectory.
The semiclassical interacting time evolution of the wavepackets (4) is

then given by:

The corresponding semiclassical modified free dynamics is:

for ~t~ &#x3E; 1/4~.
Remark 6. -For ~t~  1/4~~ or if one is interested in the approxima-

tion to quantum dynamics on a finite time interval only, the logarithmic
terms in (17) should be dropped.
Now we can state our main result, which we prove in the following

section.

THEOREM 7. - Let quantum wave operator defined in (12).
Given ~ &#x3E; 0

for h small enough.
Remark 8. - The statement of the theorem and estimates in the

following section are concerned with the t 2014~ -00 limit. The proofs for
large positive times are analogous.
Remark 9. - Theorem 7 simply says that the action of the quantum

wave operator on Gaussian states (4) can be approximated by a corre-

Vol. 71, n° 3-1999.
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sponding classical Møller transformation (a_ , 1]-) ~ (a (o) , 1](0)). For

short-range potentials the error in (18) is of order O(fii 2 ) [6]. Moreover in
this case the estimate is uniform in time in a sense that:

For the Coulomb potential the norm in (19) apparently diverges as log ~.

3. TECHNICALITIES

We split the proof into several lemmas. The basic idea is very straight-
forward: we replace [2+ by its finite time analog 03A9t = and

approximate the quantum interacting and free propagators by the corre-
sponding semiclassical ones.

LEMMA 10. - Given A-, B-, a_, 1]- as described above, there is a

solution to the of ODE’s (13) satisfying (14). 

Proof. - We denote:

Consider a Banach space CT of bounded, continuous functions y such
that:

Annales de l’Institut Henri Poincare - Physique theorique
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where ~ ~ ~ means a supremum over the interval (201400, T). Let

then

If ~y~CT  oo, then

i.e., 03C6 maps CT onto itself. Similarly for y1, y2 E CT :

Hence

Vol. 71, n° 3-1999.
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is a strict contraction for T sufficiently negative. By the contraction
mapping principle the equation:

has a unique solution, which we denote by u (t) . One can immediately
see that a(t) = a_ (t) + u(t) solves the equation

and

as t 2014~ 2014oo. Moreover:

Next we want to show:

Let YT be a space of matrix valued functions Z such that:

where is the Euclidean norm of matrix M. We consider the

mapping:

where

Annales de l’Institut Henri Poincaré - Physique theorique
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Using assumptions on the potential and asymptotics of a(t) that we just
proved, we show:

and

The integrand satisfies

where W denotes a matrix with entries:

Then

This shows that ~ maps YT onto itself. Similar estimates show that:

for any 0  a  1. Therefore for T sufficiently negative ~ is a strict
contraction. As before, by the contraction mapping theorem the equation
Z = ~Z has a unique solution U (t) . One can easily verify that

satisfies

Vol. 71, n° 3-1999.
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and

Finally we consider the phase. Let:

By the energy conservation 2 - ~ 2 + V(a(t)) for any t, so that:

Then S_ (t) ~ = ~ 0 as t ~ -co. a

LEMMA 11. -

Proof. - By explicit calculations using (6) and (17). D

We use Lemma 11 to prove:

LEMMA 12. -

for any À E (o, 1 /2) and t sufficiently negative.

Proof. - Clearly it is enough to show:

Annales de l’Institut Henri Poincare - Physique theorique
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with the constant C independent of Cl and c2. The left hand side of (26)
equals:

denotes the second order Taylor expansion of 
around ~ = By standard estimates:

for some constants K2. Here [~-] is the line segment connecting ~
and 

Let

Vol. 71, n° 3-1999.
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and let X 1, ~2. X3 be the corresponding characteristic functions. Then
1 = Xi + X2 + X3 and we split (27) into a sum of three terms of the form

Each term is estimated separately. On B1 we use (28). By the triangle
inequality

Also

for t  min( -1, inf03BE~B1(-1/403BE2)). Hence:

with a constant depending only on 17-. Here and in the rest of this work
C denotes a generic constant.
An estimate for /2 uses explicit forms of X~ and Then

On the first term in (32) we use the Holder’s inequality:

Annales de l’ Institut Henri Poincaré - Physique theorique
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The first factor in (33) can be computed explicitly:

for some constant C = and t ~ I big enough I &#x3E; max(l,
(4~~)’’)). Also from (4)

. 
for constants C, C’ depending on B-II and The estimate for the

second term in (32) is now straightforward:

for C = ~t~ I &#x3E; max(l, (4~)"’). Combining (34), (35) and (37)
we get:

for ~ t ~ large enough, m arbitrary.
The remaining term 13 can be written in a form analogous to (32). For

the part involving Xli, for instance, we have:

Vol. 71, n° 3-1999.
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By assumption &#x3E; 1, so there is T depending on and 117-1 such
that 4~21tl &#x3E; 1 for ~t~ &#x3E; T and ~ E B3. Then (38) is bounded by:

where £ = 1 - 2a &#x3E; 0. We note that C again depends only on 117-1. The
estimate for the rest of /3 is analogous. D

LEMMA 13. -

for any 0  À  ~, where ’

Proof. -

The last equality follows from

Annales de l’Institut Henri Poincaré - Physique theorique
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where is the second order Taylor expansion of the potential around
a(s). From (41) we see that if:

for f such that g(t) = fo f(s) ds satisfies (40), then (39) follows. The
proof of (42) is a slight modification of a proof of analogous result for
short range potentials [6]. 0

LEMMA 14. - Given ~ &#x3E; 0:

for I t sufficiently large and Ii sufficiently small.

Proof. - After a change of variables from x to x - the left hand

side of (43) it becomes: 
0 .. é ~ 0 0 ’ 

~ ~ 

. 0

where u(t) = a (t) - a_ (t) (cf. Proof of Lemma 10).
Now we choose T « 0 and consider sets:

for some constant c (t  T). Let Xl and X2 denote the corresponding
characteristic functions. Denoting:

we have:

First term can be estimated as follows: expand f(x, t) in Taylor series
in parameters a, ~, A, and B . It is easy to see (from Lemma 10) that

f (x , t ) --* 0 as t ~ -00 pointwise in x . By the dominated convergence
theorem Ilxl 2014~ 0 as t ~ -00 and the convergence is uniform

in ~. It remains to estimate /2. We note that it is an integral over the "tails"

Vbl.71,n° 3-1999.
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of the Gaussian wavepacket. Using the Holder inequality in a manner
similar to (38) we show:

Proof of Theorem 7. - Denote:

Then:

where I can be further decomposed into:

A standard existence proof for S2+ (see, e.g., [14]) Theorem IX.9 where
we merely inserted ~ in appropriate places) shows that there is T &#x3E; 0

such that for t  - T Il  ~ /4 uniformly in From Lemma 14 I3  ~ .
We choose t  for some y &#x3E; 1. Then by Lemmas 12 and 13 :

Choosing ? sufficiently small we prove ( 18). D
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