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ABSTRACT. - We consider a perturbed Floquet Hamiltonian -iat +
H + in the Hilbert space L~([0, T ] , 7~, dt). Here H is a self-
adjoint operator in ?~C with a discrete spectrum obeying a growing gap
condition, V (t) is a symmetric bounded operator in H depending on t 2n-
periodically, 03C9 = 27r/r is a frequency and a coupling constant. The
spectrum Spec(-iat + H) of the unperturbed part is pure point and dense
in R for almost every 03C9. This fact excludes application of the regular
perturbation theory. Nevertheless we show, for almost all 03C9 and provided
V (t) is sufficiently smooth, that the perturbation theory still makes sense,
however, with two modifications. First, the coupling constant is restricted
to a set I which need not be an interval but 0 is still a point of density of I.
Second, the Rayleigh-Schrodinger series are asymptotic to the perturbed
eigen-value and the perturbed eigen-vector. @ Elsevier, Paris
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242 P. DUCLOS ET AL.

RESUME. - On considere un Hamiltonien de Floquet perturbe +
H + dans un espace de Hilbert L 2 ( [0, T], 7~, dt). Ici H est un
operateur self-adjoint dans ~C avec spectre discret, et dont les lacunes
croissent, est un operateur borne symetrique dans ?-~ dependant de t
203C0-périodiquement, w = 203C0/T est une frequence et 03B2 est une constante
de couplage. Le spectre Spec( -iat + H) de la partie non perturbee est
purement ponctuel et dense dans R pour presque tout c~. Ce fait empeche
1’ application de la theorie standard des perturbations. Nous montrons
neanmoins pour presque tout c~ et pourvu que V (t) soit suffisamment
regulier, que la theorie des perturbations a un sens, mais avec deux
modifications. D’abord, la constante de couplage doit etre restreinte a un
ensemble I qui n’est peut-etre pas un intervalle, mais pour lequel 0 est
toutefois un point de densite. Ensuite, la serie de Rayleigh-Schrodinger
est seulement asymptotique a la valeur propre perturbee et au projecteur
propre perturbe. @ Elsevier, Paris

1. INTRODUCTION

The so called Floquet Hamiltonians were introduced by Howland [ 10]
and Yajima [25] in order to study time-dependent quantum systems
described by an Hamilton operator H(t) acting in a Hilbert space ~ .
Already before this strictly mathematical setting of the problem one
could meet similar ideas in the physical literature [22,21 ] . In our paper
we restrict ourselves to T-periodic time-dependent Hamiltonians. In

this case the Floquet operator is formally written as K = + H(t)
and it acts in the Hilbert space /C = L 2 ( [0, r],7-~~). Usually H(t)
is decomposed into a sum of a time-independent part H and a time-
dependent perturbation where cv = and a parameter
(coupling constant). The primary question to be answered is that of
the character of the spectrum of K [9]. What makes this task difficult
is the fact that, in many interesting situations, the spectrum of the

Floquet Hamiltonian associated to the unperturbed (time-independent)
Hamiltonian H is pure-point and dense in Particularly this excludes
application of the regular perturbation theory due to Rellich [20] and Kato
[ 13 ] . Let us mention a few landmarks (but definitely not all of them) in
the comparatively short history of the problem which have motivated us
to deal with this subject.

Annales de l’Institut Henri Poincaré - Physique theorique



243PERTURBATION OF AN EIGEN-VALUE FOR FLOQUET HAMILTONIANS

In the article [2] Bellissard introduced a technique to study time-
dependent Schrodinger equations which was inspired by the method
of proof of the classical KAM theorem [ 14,1,16] . He considered a
model on the circle (in which ?-~ = and H = - 0 with periodic
boundary conditions) and looked for sufficient conditions to get pure-
point spectrum of the associated Floquet Hamiltonian. The density of
the unperturbed spectrum leads to a small divisors problem which was
mastered in this paper, for appropriate diophantine frequencies 03C9 and V’s
small enough, by a method similar to the original KAM algorithm. We
note that Bellissard considered a perturbation V acting as a multiplication
operator by a function analytic both in the time and in the spatial
variable.

Soon after Combescure addressed in [5] the same question, with H
being the one-dimensional harmonic oscillator and V not necessarily
analytic. To cope with the lack of analyticity she has adapted the Nash-
Moser regularization trick [ 16] . However, she had to face a more severe
problem: the spectrum of H did not satisfy a growing gap condition
(this is an important technical property which was satisfied in the

Bellissard’s model). This is why she had to restrict the class of admissible
perturbations, particularly excluding realistic local potentials. Let us
mention also the work [3] devoted to an interesting model with constant
gaps in the spectrum of H and with an analytic perturbation V.

Later on, the first two authors of the present paper considered in [6] the
same question in a more abstract situation: H is discrete, simple, with a
growing gap condition (see formula (2.1 )), acting in a separable Hilbert
space ~C and with V being not necessarily analytic. More precisely, one
did not require that the matrix entries of V in the eigen-basis of -~ H
were exponentially decaying. The paper was based on a combination of
two methods: the Nash-Moser trick and the adiabatic regularization due
to Howland [ 11 ] . The latter method makes it possible, roughly speaking,
to convert the regularity of V in the time variable into a regularity in
the spatial variable. For further development of this procedure the reader
can consult [ 17,12] . We note that in [ 11 ] Howland proposed another way
to prove the pure-point character of a spectrum which was based on a
"randomization" of the original operator but he did not extend this results
to the case when H was a Schrodinger operator.
Two main characteristics are common to all the above works. First,

the results are global in the sense that they describe the character of the
full spectrum. Second, all these approaches are based on the accelerated
convergence method which is of iterative nature. In fact, this method is an .

Vbl.71,n° 3-1999.



244 P. DUCLOS ET AL.

adaptation of a procedure used in the celebrated KAM result concerning
perturbations of classical integrable systems. The present paper has
another goal and an essentially different method was necessary to reach
it. Here we concentrate on one single eigen-value. More precisely, for
operators of the same type as in [6] we shall answer affirmatively the
question: Is it possible to show that one single unperturbed eigen-value
gives rise to an eigen-value of the perturbed operator? We shall do it
using a direct method, this is to say, by showing directly that the standard
eigen-value equation has a solution at least for appropriate values of the
coupling constant ~6.

In our approach the eigen-vector is written in a form of an infinite
series and to verify its convergence we again have to cope with the
small divisors problem. However, we do not use any kind of iterative
methods and instead we rearrange partially the series and estimate its
summands directly. This compensation method was more explicit in our
previous paper [7] which was inspired by the pioneering work of Eliasson
[8] (see also an earlier paper by Siegel [23]). Its purpose was to check
some basic ideas on an concrete example. Here we treat the general
case but we borrow from [7] some intermediate results, particularly
this concerns Proposition 3.1 below. Apart of the rearrangement of
the series we use another crucial technical trick. This is a sort of a

reduction procedure based on the observation that the eigen-values of the
unperturbed Floquet Hamiltonian which may be suspected to contribute
by small denominators are rather rare (see Sections 5 and 6). We note
that this idea, in a bit heuristic version, already appeared in the physical
literature [ 18] .
The paper is organized as follows. The main result (Theorem 2.1 ) is

formulated in the very beginning, i.e., in Section 2. The proof is split into
several steps which are carried out in the remainder of the paper, i.e., in
Sections 3-8. In fact, already after reading Section 3 one can guess about
the structure of the proof. Its summary is given at the end of Section
8. The paper contains three appendices. In Appendix A we present, for
the sake of completeness, a proof of the fact that the spectrum of the
unperturbed Floquet Hamiltonian is dense in R for almost all frequencies.
In Appendix B we construct an example of a perturbation for which the
formal solution of the equation on eigen-values (so called Rayleigh-
Schrodinger series) does not exist. Appendix C contains a summary of
the results about Lipschitz functions that we need for our approach.

Annales de l’Institut Henri Poincaré - Physique theorique
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2. THE PROBLEM AND THE RESULT

Our goal is to study a perturbed Floquet Hamiltonian K V acting in

where ~-~C is a given separable Hilbert space,

is the unperturbed (time-independent) part and 03B2 is a coupling constant.
We assume that is a given 203C0-periodic sufficiently smooth func-
tion with values in the space of bounded operators ~(7~), and V (t ) is

symmetric for all t . The perturbation V is naturally induced by the T -
periodic function with 03C9 := 27r/r being the frequency, and it is,
of course, bounded and self-adjoint. We assume further that H is a self-
adjoint operator in 7~ its spectrum is discrete,
simple and obeys the gap condition

where CE and a are strictly positive constants.
Here and everywhere in what follows we adopt the convention

according to which N stands for the set of natural numbers starting from 1
whereas Z+ includes also 0.
As usual, we assume the periodic boundary conditions in time. The

operator 1~ is self-adjoint and its spectrum equals

Denote by fn, n e Z x N, the corresponding normalized eigen-vectors
and by Pn the orthogonal projector onto With the help of this
eigen-basis we identify the Hilbert space lC with x N) and all
relevant operators with their matrices. Particularly the perturbation V is
represented by the matrix (Vmn),

where denotes the orthonormal eigen-basis of H .

3-1999.
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Note that the matrix entries of V do not depend on wand so the
frequency occurs only in the eigen-values of K . The problem depends
on two parameters ~8 and also the period T . However, in the very
beginning, we shall fix 03C9 so that a diophantine condition (cf. (3.11 )) is
satisfied. Afterwards we do not move the value 03C9 anymore and study the
dependence only on the coupling constant.
We have just described the general setting. Let us now formulate the

problem. We fix once for all an index ~ e Z x N and write

Similarly, we redenote f and F := Fr; so K f = F f and P f = f ,
Q f = 0, with = 1. We ask whether the operator K + ,8 V possesses
also an eigen-value F(j6) which could be regarded as being inherited
from the eigen-value F of K . The regular perturbation theory due to
Rellich [20] and Kato [ 13] in no way provides an answer to this question
since the set = c~~ + Spec(H) is dense in M for almost all
c~ &#x3E; 0. This property of the spectrum is quite familiar, nonetheless
we present an elementary proof in Appendix A. Recall that the basic
assumption for the regular theory to go through is that the eigen-value
F is isolated. Also because of the density of the spectrum, it makes little
sense trying to relate, for a single value of the parameter ~6, an eigen-
value of K + ~BV to the distinguished eigen-value F of K. But we
shall show that it is reasonable to relate to F a whole function for

/? running over some domain in the vicinity of zero.
In our case, F can be an accumulation point of Spec ( K ) . On the other

hand, F is a simple eigen-value for a generic wand so the operator
K - F is injective on the subspace Ran(Q). In fact, practically all

subsequent manipulations will be concerned with this subspace while
the vector f plays a role of a "source". This is reflected in the notation;
for an operator X in lC we denote by X its block corresponding to the
subspace Ran(Q):

Then ( l~ - is a self-adjoint possibly unbounded operator.
There are more distinctions when comparing with the regular case. We

will discuss this point in a bit more detail in Section 3. Here we recall that,
according to the Rellich-Kato theorem the basic result of the regular
perturbation theory, if the eigen-value F was simple and isolated then

Annales de l’Institut Henri Poincaré - Physique theorique
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F(,B) would be an analytic function on a neighbourhood of the origin.
The same remark applies to the eigen-vector /(j8) provided a convenient
normalizing condition has been imposed making it unambiguous. For
example, a normalization frequent in the physical literature [15] requires
that

is valid for all 03B2 from the corresponding domain. The analytic functions

are known as the Rayleigh-Schrodinger (RS) series, with the coefficients
Àj E M and gj E Ran(Q) expressed explicitly [ 13,19]. More details are
given in Section 4. Here we recall only that

On the contrary, this seems to be an intrinsic feature for the problems
with dense point spectrum that the common domain I for the functions .

and cannot be chosen as an interval. Because of the resonance
effects it possesses numerous "holes". Nevertheless 0 can be a point of
density of I. Furthermore, the relation of the RS series to the functions

and is not straightforward. A priori it is even not clear whether
the coefficients À j and gj are well defined. For example, À2 in (2.5)
does exist under the condition QVf E F ) -1 ) . However, it
is not obvious at all whether this condition is fulfilled. Fortunately it
turns out that the coefficients up to some order do exist provided 
is sufficiently smooth. Then the RS series do not determine and

directly but instead they describe the asymptotic behaviour of these
functions as /? 2014~ 0.

Now we are ready to formulate the result. Here stands for the

Lebesgue measure of a measurable set X.

THEOREM self-adjoint with a
discrete spectrum obeys the gap condition (2.1) symmetric
operator-valued function E Cr in the strong sense, with r  2
and r &#x3E; 16/a. Then there set S2 c ]0, +oo[ of full Lebesgue
measure such that, for E SZ and e Z x N fixed, the 
Schrödinger coefficients 03BBj E 1R and gj E Ran ( Q), 1 C j  l, are well

Vol. 71, n° 3-1999.
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defined, with l being the greatest integer which fulfills

If, moreover, the second coefficient Å2 5~ 0 (as given in (2.5)) then there
exist a real function and a 03BA-valued function f(03B2) defined on a
common domain l and having the properties:

(1) E Dom(K), ( f, f (,B)) = 1, and = 

for all 03B2 ~ I,
(2) lim~o!~n[-~,~]t/26-l,
(3)

From the construction of the set SZ (cf. (3.10) and Proposition 3.1 ) it is
evident that the eigen-value F of K is simple for all úJ E ~2. Furthermore,
let us note that if V (t) E Coo then the coefficients À j and gj exist for all
j E N and the property (3) means that the functions F(/5) and have

asymptotic expansions at /? = 0 coinciding with the RS series.
We conclude this section by a brief comparison of this theorem with

some previous results. This concerns, first of all, the mutual role of the
two parameters wand ~6. A notable approach to the spectral problem of
the operator K + 03B2V goes back to Bellissard [2] (see also [5,6]). Also in
this case, the spectrum of the unperturbed Hamiltonian H was supposed
to obey the same type of gap condition (2.1 ). Under some smoothness

assumptions on V (t), one is able to show that, for each sufficiently small
~6, there exists a set of "non-resonant" frequencies such that the

Lebesgue measure of the complement of is reasonably small and
the operator K + is pure point for each c~ E The dependence
of on /? is to be emphasized. On the contrary, the above theorem
focuses only on one distinguished eigen-value. But in this case one
can choose the set ~2 independently of fJ so that it covers almost all

frequencies 03C9 &#x3E; 0 in the Lebesgue sense. The basic problem now is to
construct a convenient domain I for the coupling constant 03B2, with 03C9 E 03A9

being fixed. Naturally I depends on the choice of the unperturbed eigen-
value.

We split the proof of Theorem 2.1 into several steps, each of them
treated in one of the subsequent sections. A summary of all the steps is

given at the end of Section 8.

Annales de l’Institut Henri Poincaré - Physique theorique
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3. PROJECTION METHOD, COMPARISON WITH THE
REGULAR CASE

We start the proof of Theorem 2.1 from the perturbed equation on
eigen-values,

with À and, according to the normalization (2.4), g E Ran(Q).
Applying to (3.1 ) the complementary projectors P and Q (commuting
with K) we obtain an equivalent set of equations (using the notation (2.3))

For a while we shall consider ~, as another auxiliary parameter and we
will try to solve Eq. (3.3), referred to as the eigen-vector equation from
now on. Its solution is a vector-valued function g = À) depending
on both parameters ~6 and 7~, and taking values in Ran(Q). Plugging

À) into the equality (3.2) we get an implicit equation ~, = À)
from which one should extract a function .1= ~.(~). Then

will be the sought solution to our problem. This projection method was
rediscovered many times in the past and bears various names: Brillouin-
Wigner, Feshbach, Grushin, Schur, ....

Naturally this procedure can be applied to the regular case as well
and one can rederive this way the Rellich-Kato theorem. In order to

emphasize the difference between the regular and non-regular cases we
sketch below the basic steps. But before doing it let us introduce some
more notation used throughout the paper. Set

Thus I’o is a self-adjoint operator acting in Ran(3) provided F is a
simple eigen-value of K. The same holds true for Spec(K - F).
The regular case is characterized by the condition

Vol. 71, n° 3-1999.
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Hence the operator fo is even bounded and = d 1. Moreover, f~
is bounded as well and depends analytically on À in the domain |03BB|  d.

However, K itself need not be bounded and one can even consider a more

general situation with V bein~ relatively bounded with respect to K. This
assumption implies that =  oo and so it ensures that the

operator invertible provided the parameters ~6 and À belong
to the domain

Consequently, there exists a unique solution to (3.3) given by

Obviously, the function À) is analytic in the domain (3.8) and its
values belong to Dom(K - F - X) C Dom(K). The equality (3.2) then
leads to the implicit equation

~, = G(~8, ~,), with

Since G’(j6, À) is analytic and

the implicit mapping theorem tells us that there exists a unique analytic
function ~, = ~(~6) defined on a neighbourhood of the origin and such
that ~.(0) = 0, .l(~) = ~)). In accordance with (3.4) we get both
the perturbed eigen-value and the eigen-vector as uniquely
determined analytic functions.

Let us return to our problem with dense point spectrum and with V
being a bounded perturbation. Violation of the condition (3.7) means
exactly that the operator fo is unbounded. We shall need another but
weaker condition in order to be still able to cope with Eq. (3.3).
Diophantine estimates are the standard tool used widely in this situation.
Let us first introduce the relevant exponents. The integer ~, as specified
in Theorem 2.1 (cf. (2.6)), obeys

Hence one can find reals t &#x3E; 4 and 03C3 &#x3E; 1 such that

Anna es e l’Institut enrl Olncare - Physique ’ theonque ’



251PERTURBATION OF AN EIGEN-VALUE FOR FLOQUET HAMILTONIANS

Next we define the set of non-resonant frequencies,

A simple adaptation of the proof of Lemma 4 in [7] shows that if a~ &#x3E; 1

then Dry C ]0, is of full Lebesgue measure. It is clear that a non-
resonant frequency can be even chosen for all indices r~ simultaneously.

PROPOSITION 3.1. - Suppose that ~ &#x3E; 1. Then almost all cv &#x3E; 0

belong to

We fix, for the rest of the paper, a non-resonant frequency 03C9 E 03A9. Then
eigen-values of K - F fulfill the diophantine estimate

with some constant y &#x3E; 0. In addition, the property (3.11 ) guarantees that
F is a simple eigen-value of K . We shall write

We would like to warn the reader that, in order to avoid introducing
additional symbols, the restrictions (3.9) on T will be applied in the
subsequent procedure only at those places where they have some
consequences, otherwise i can be any real number. Similarly, .~ can be
any non-negative integer if not specified otherwise.

Let us finish shortly the comparison of the regular and non-regular
cases by indicating some forthcoming steps. The discrete function 03C8(k)
given in (3.12) will be used later, in Section 6, in another diophantine
estimate involving the parameters fJ and À and defining a closed set
D C We shall be able to solve the eigen-vector equation (3.3)
provided À) E D getting this way a vector-valued function A).
Consequently the function G’(~6,~) = is defined only
on the set D, too, but fortunately one can show that G belongs to the
Lipschitz class Lip( l + 1,D), with .~ specified in Theorem 2.1. This
enables one to apply the Whitney extension theorem in order to extend
G from D to Making the standard simplifying assumption that
( V f, f ~ = 0 one again arrives at the implicit equation A = À), with

Vol. 71, n° 3-1999.
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the extended right-hand side. The implicit mapping theorem guarantees
the existence of a solution À = A.(j6). However, one has to restrict the
function ~, to the set I determined by the condition (,B, J~(,B)) E D. Thus
the resulting function ~(j6) is not defined on an interval but, on the other
hand, one can verify that its domain 1 is still reasonably dense at the
origin.

4. PERTURBATION SERIES

In this section we summarize a few basic facts about the RS series,
particularly we recall the explicit expressions for coefficients in a form
relying on some combinatorial notions. We impose on an eigen-vector
/(j8) the normalization ( f, /j6)) = 1. One may prefer to treat the

orthogonal projector onto the 1-dimensional subspace C/(j6)
rather than the vector /(j6) itself. Then the corresponding formulae take
a different appearence [13]. But, of course, our choice is only a matter of
taste and convenience as the both approaches are obviously equivalent;
for example,

, ‘ ~I"/J l

On the other hand, the eigen-value is unambiguous and the result
must be the same in any case. This point has been discussed shortly in [7] .
We are forced to use a bit more general setting since the functions 

and f need not be analytic and instead they are characterized by their
asymptotics. However, this does not cause a serious complication.

LEMMA 4.1. - Suppose that 0 is an accumulation point of a closed
set I C and we are given a real function and a JC-valued

function both defined on I and having asymptotics at 03B2 = 0:

Suppose, moreover, that for all 03B2 1 E 1, 1 E Dom(K) and

Then f , ... , g.~ E a~cd

Annales de l’Institut Henri Poincaré - Physique theorique
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Proof. - The function has an asymptotic as well since

Redenote temporarily f as go. Proceeding by induction in j we shall
show that g~ E Dom(K) and = = 0, 1, ... , .~ . This is obvious
for j = 0 as go = /(0) and Kg0 = = uo. Suppose that j  1 and
set temporarily, for 

Then and, by the induction hypothesis, E 

and ~ uj, as 03B2 ~ O. But K is closed and so gj E and
D

From the existence of the asymptotics (4.1), (4.2) and (4.4) follows
immediately that the corresponding coefficients on the both sides of (4.3)
coincide up to the order ~. This leads to the system of equations (go == /)

If obeys the normalization (2.4), and so gj E Ran(Q) for j  1, one
can again separate the parts belonging to Ran ( P ) and Ran(Q) getting this
way

where ÅM = M = 1,...,~ (for M = 1, should
be replaced by QVf). We still assume that (I~ - = ho exists.
Clearly one can calculate, successively and unambiguously, the vectors
g 1, ... , and consequently the numbers ~.1, .. ^ Ål as well provided one
can show that gi,..., and Q V f, V g 1, ... , belong to 
In this case we can rewrite (4.6) in the form

One deduces readily from (4.8) that gM is a linear combination of the
vectors

Vol. 71, n° 3-1999.
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Hence the existence of vectors (4.8), for M = 1,...,~ represents a
sufficient condition for the system (4.6) to have a unique solution.

Before approaching the explicit expressions let us recall a bit of

combinatorics. The set of rooted N-trees C Z~ is characterized
by the condition := ~i + ’’’ + 

Obviously vN = 0, and if A~ 2 then 1. It is also quite easy to verify
a composition rule for two trees, namely

As stated in the following lemma this procedure is invertible. We do not
recall the proof.

LEMMA 4.2. - Suppose that v 2. Then there existsa unique decomposition v = (v’, v") + (l, 0, ... , 0), where v’ E ~(N’),
v" E T (N") and N’ + N" = N.

Now we are ready to describe the solution to the system (4.6).

PROPOSITION 4.3. - Suppose that the vectors

are well defined for all 1 p C l, and all p-tuples (s 1, ... , s p ) E
Np such that ¿ si l. Then there exists a unique l-tuple gl, ... , gl
solving the system of equations (4.6).

Suppose, in addition, that V f, f ) = 0. Then the solution is given by
the formula (1 ~ M  £)

where the range of summation is restricted by the conditions

Annales de l’Institut Henri Poincaré - Physique - theorique
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and

The numbers À 1, ... , 03BBl are given correspondingly by À = Vf, f&#x3E; = 0
and, for 2 ~ M C .~,

where ’ the range of summation is restricted by the conditions

and

Proof. - The first part of the proposition has been discussed above.
Let us show that the vectors gM given in (4.9) obey the relation (4.7).
This is easy to check for M = 1. Then necessarily N = 1 and so, as
7(1) = {CO)}, the formula (4.9) gives the correct answer gl = -foV/.
Suppose that M  2. Observe that the assumption (V f, f ) = 0 implies
that À 1 = 0 and so the summation index on the RHS of (4.7) starts from
the value j = 2. Moreover, V f E Ran(Q). The verification is based on
the following two equalities. First,

where

Vol. 71, n° 3-1999.
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Second, if 1 ~ M’, 2 ~ M" and M = M’ + M" then

where

On the other hand, consider a summand C~ M (N, v, k ( j ) , ~u ( j ) ) . We
distinguish two cases. If /~(l)i = 1 then necessarily ~(1) ~ 2 and there
exists a unique multi index (N’, v’, ~(1)’,..., k (N’)’, ,~,~ ( 1 )’, ... , ~c,c, (N’)’)
determining a summand 1 such that (4.11 ) holds. If ~,c ( 1 ) 1 &#x3E; 2
then necessarily A~ ~ 2 and, in virtue of Lemma 4.2, there exists a
unique decomposition v = (v’, v") + (1,0,.... 0) where v’ E T(A~~),
v" E 2~ ( N") and N’ + ~V" = N. Set

Observe that N" &#x3E; 1 implies M" &#x3E; 2. This way one obtains unambigu-
ously two multiindices (N’, v’, k ( j )’, /~(.//) and (N", v", k ( j )", 
determining, respectively, summands and ,~M~~ such that (4.12)
holds. This completes the verification. D

5. SET OF CRITICAL INDICES, EXISTENCE OF THE
RAYLEIGH-SCHRUDINGER COEFFICIENTS

Let us continue the proof of Theorem 2.1. The arbitrarily small
numbers in F), so called small denominators, represent the
principal difficulty we have encountered in the preceding discussion. This
is why the operator ho = (I~ - is not bounded and thus it is not
a priori clear whether the assumptions of Proposition 4.3 are fulfilled
and whether the RS coefficients exist at all. The second basic ingredient
of our approach, apart of the projection method, is the observation that
the indices suspected of enumerating small denominators are distributed
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rather rarely in the lattice Z x N. We introduce the set S C Z x N B { r~ {
of "critical" indices by imposing the condition

Clearly, to each n2 ~N,~27~ ~ there exists exactly one ~i 1 e Z such
that (n 1, n2) E s and there is no such n for n2 = ~2’ In other words, the
projection $ 2014&#x3E; N B {~2} n2 is one-to-one. Roughly speaking, the
indices from the set S are situated closely to the curve n1 = ~1 + (E~2 -

Now the gap condition (2.1 ) can be employed to get more information
about the set S. It is quite useful to observe that another inequality
follows straightforwardly from (2.1 ), namely

Indeed, if j &#x3E; k then

Using (5.1 ) one derives that, for m, n E S,

A combination of (5.3) and (5.2) yields

Similarly,

The set ? induces a splitting of the subspace Ran( Q) into the "singu-
lar" and "regular" parts. This idea will be exploited more systematically
Vol. 71, n° 3-1999.
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in Section 6. Here we introduce the corresponding projectors,

Note that

Hence the restriction of ho to the subspace Ran(PR) is quite harmless.
Let us switch to the problem of RS coefficients. To show their

existence, and also later in Section 6, we shall need an inequality with
commutators. First we specify the underlying notions. Let A be a closed,
densely defined operator in ~’C and X E ,l3(lC). By saying that adA X is
bounded we mean that: Dom ( A ) C Dom ( A X ) and the operator A X - X A
is bounded on Dom(A), and so it can be unambiguously extended to
an operator from that we call adA X. Particularly, [A, X] = 0 is
equivalent to: Dom(A) C Dom(AX) and AX = X A on Dom(A). One
has the Leibniz rule in the following sense: if Xl, X2 E and both

adA X 1, adA X2 are bounded then so is adA(X1X2) and it holds

More generally, saying that ad~ X is bounded, with r E Z+, means that:
Dom(Ar) is dense in /C, Dom(Aj) c Dom(AjX) for all j , 0  j  ~r,
and the operator

clearly well defined on Dom(Ar), is bounded. We call the closure of (5.7)
ad  X. The Leibniz rule can be generalized as usual.

LEMMA 5.1. - Suppose that we are given p, r E closed, densely
defined operator A and X, B 1, ... , 6 /3(/C) such that the operators
ad~ X are bounded for all j, 1  j  r, and

Then adrA (X B1X ... B p_ 1 X ) is bounded and its norm is estimated from
above by
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Proof. - Let us recall a formula of differentiation of functions,

In our case adA plays the role of differentiation. However, one cannot use
the formula (5.9) directly since generally ad~ X and ad~ X, for i ~ j , do
not commute. Nevertheless we have, according to the generalized Leibniz
rule,

Estimating the norm of each summand in (5.10) by

and grouping together the terms with the same powers ~c 1, ... , ~c p , up
to a permutation, one arrives obviously at the same coefficients as in
(5.9). D

In the subsequent applications we substitute the time derivative for
the operator A. Set D : _ ® 1; this is to say, when identifying

with the natural maximal domain Dom(D) C /C: h E Dom(D) iff D h E
x N). It is clear that D is reducible by the projectors P and

Q. If E Cr then the operator-valued function with
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0 ~ ~ ~ ~ induces naturally the bounded operator adD V E ,l3(lC), and
we have

This is a standard remark that the differentiability or, more generally, the
boundedness of ad~ X induces a decay of matrix entries of an operator
X E More precisely, if X and ad~ X are bounded then

Particularly this applies to V E ,l3 (lC) .
To proceed further we employ the diophantine estimate (3.11 ).

LEMMA 5.2. - Suppose that, in the strong sense, V (t) E Cr, and r &#x3E;
2. Then for any p-tuple (s 1, ... , s p ) E I~p and q E N such that ra

it holds true that _ _

(i) r’o 1’s ( V_ PR V_ ... I-’o p PR V ) Ps l-’o q E 
(ii) ho Ps(V ho 1 PR V ... 0393sp0 PR V ) f is well defined.
Both in (i) and (ii) the value p = 0 is allowed and then the correspond-

ing expressions read I-’o PS V Ps0393-q0 and ho PS V f , respectively.
Proof - First we establish the inequality.

where C v == r ) is a constant. Indeed, according to Lemma 5.1,

is bounded for [ D, 03930PR] = 0 and V are bounded, 1  j  r . When
D

applying the bound (5.8) observe that

Now it suffices to use (5.12).
We shall verify the item (i); the proof of (ii) is quite similar. Set

temporarily
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Suppose that m, n E S. By the inequality (5.13) we have

The diagonal of F is bounded and so it suffices to estimate only the
off-diagonal part. Combining (5.14) with (3.11), (5.6) and (5.4) we get

Since r ~ 2 we deduce that both

are finite and, in accordance with the Schur-Holmgren criterion, the norm
II is estimated from above by the maximal of these two numbers. 0

As a straightforward consequence we get
LEMMA 5.3. - Suppose that E Cr, r  2. Then for any p-tuple

(s 1, ... , sp) E Np it holds true that. 
"

is well defined.

Proof. - Write, for each j ,

and expand the resulting expression getting this way 2p summands.
Lemma 5.2 ad(i) can be used to move, in each summand, those powers

which are accompanied by the projector PS from the left to the right.
Thus the problem reduces finally to the existence of the vector 

"

where 1  k  p + 1 (by definition, the expression reads 0393q0PsVf for
k = p ~ -~ 1) and q By assumption, ~ ~ ra/or and thus Lemma

. 5.2 ad(ii) proves the result. 0
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Combining Proposition 4.3 with Lemma 5.3 we get

PROPOSITION 5.4. - Suppose that E Cr, with r ~ 2, E N

obeys ra. Then the Rayleigh-Schrödinger coeffccients A.i,..., 03BBl E
R and gl , ... , g~ E Ran ( Q) exist and represent the unique solution to the
system of equations (4.5) (or, equivalently, (4.6)).

Remarks. - ( 1 ) The existence of the RS coefficients is guaranteed
by the differentiability of the strong continuity is generally not
sufficient. One can construct, for almost all c~ &#x3E; 0, an operator-valued
function V (t) which is strongly continuous and such that already the
coefficient À2 does not exist. This is the subject of Appendix B.

(2) For the choice of cr and i specified in (3.9) it holds clearly true that
 + 2) and hence the assumptions of Proposition 5.4 are fulfilled.

So the first part of Theorem 2.1 has been proven. On the other hand, this
comparison suggests that the assumption r &#x3E; 16/of of Theorem 2.1 is

very probably not optimal and could be improved.

6. SOLUTION OF THE EIGEN-VECTOR EQUATION

In the sequel we adopt a standard simplification which does not imply
any loss of generality. Namely, replacing V by V - V,~~ means just the
shift of spectrum,

while all eigen-vectors stay untouched. Also the assumptions of Theo-
rem 2.1 are not influenced by this replacement; particularly the coeffi-
cient Å2 given in (2.5) suffers no change (as Q f = 0). So from now on
we assume that

This implies also that the RS coefficients are expressed explicitly by the
formulas (4.9) and (4.10). We rewrite the equalities (3.2) and (3.3) as

Our task in this section is to solve ’ Eq. (6.3), at least for particular
values of f3 and ’ ~,. The first observation is that (6.3) can be reduced to the
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subspace Ran(PS). We define

Using (3.6) and (5.6) we get an estimate valid for  

Hence W(j6,~) is a well defined bounded operator and even analytically
depending on (,B, À) in the domain

and having the bound there

To simplify the notation we set

LEMMA 6.1. - E n solves the equation

with ~ and À being £ restricted by (6.5), then

belongs to , Dom(K) and solves Eq. (6. 3 ).

Proof. - Obviously g E Dom(K) since = Further-

more,

Hence
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We are about to solve the reduced Eq. (6.7). Let us write, for the
moment very formally,

where

Here we have used the obyious notation: X - Xdiag and Xdiag
is the diagonal part of an operator X E The next step is to
justify the equality (6.8) in which the diagonal and off-diagonal parts
of À) have been separated. In order to treat the diagonal part we
introduce another diophantine-like condition, this time in the parameters
fJ and ~,,

with 1/1 having been defined in (3.12). If t &#x3E; or &#x3E; 1 then, in virtue of
(3.11 ), the point À) = (0,0) obeys the condition (6.9). Let us rewrite
(6.9) in an operator form. For this sake we define, parallelly to the
definition of D in (5.11), a self-adjoint unbounded operator L acting in

with the natural maximal domain Dom(L) C E Dom(L) iff Lh E
x N). The condition (6.9) is equivalent to

Let us now focus on the off-diagonal part of À). First we prove
an auxiliary estimate.

LEMMA 6.2. - Suppose that A is a closed, densely defined operator in
IC, and B, X E ,l3(J’C) are such that [A, B] = 0, the operators adj X are
bounded for 1  j   l, and
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Then

Proof. - The case p = 0 is evident. Suppose that p ~ 1 and set

temporarily

In virtue of Lemma 5.1 we have

Here we have used that, for x ~  1 and j E Z+,

To finish the proof we estimate
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Lemma 6.2 applied to W(,8, À) yields

where the couple (,8, À) obeys (6.5).
In accordance with (5.12), the existence of ad~ X implies a decay of

the matrix entries of X. Below we derive some consequences of this
fact. We consider also the situation when X(z) is an analytic family of
bounded operators.

LEMMA 6.3. - Suppose that closed, densely defined operator
in J’C, M C CN is open and X (z), z E an analytic family of bounded
operators such that Ran(X (z)) C Dom(A) for all z E ~l. If the family
AX (z) is locally uniformly bounded then it is analytic.

Proof. - It is known (see VIII.1 in [13]) that a family of bounded
operators Y (z) is analytic if and only if it is locally uniformly bounded
and there exist two fundamental subsets x2 C JC such that the

functions (~2. are analytic for all /xi 1 E xl and h2 E ~2. We apply
this criterion to Y(z) = AX(z), J’C and x2 = Dom ( A * ) . Then the
functions

are manifestly analytic. 0

The below stands for the Riemann zeta function,

LEMMA 6.4. - Suppose that X E bounded for some
r E N and a number t E 1R satisfies t C ra. It holds true that

(i) 
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(ii) 2 then C 0 o and

Suppose, in addition, that X (z) is an analytic family on an open set
T.l C CCN and ad~ X (z) is locally uniformly bounded. Then, otherwise un-
der the same assumptions, the families L t PS X (z ) , f ’ and L ~ 
are analytic.

Proof. - The inequalities (6.13) and (6.14) follow readily from (5.12)
in combination with (5.5) or (5.4), respectively. For example, if m, n E S,
m ~ n , then

Since 1 and

the Schur-Holmgren criterion leads to (6.14). The verification of (6.13)
is similar; instead of the Schur-Holmgren criterion one uses the equality

Concerning the second part of the lemma, the inequalities (6.13) and
(6.14) imply, respectively, that the families and

are locally uniformly bounded on u and so, in virtue of
Lemma 6.3, they are analytic. D

Now we can formulate an existence result.

PROPOSITION 6.5. - Suppose that E Cr, with r  2, and a

couple À) E R2 obeys the diophantine estimate (6.9), i.e.,

with some ’ t, 0  t  ra, and, in addition, it fulfills the inequalities
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where

Then the vector

is well defined and the vector

solves Eq. (6.3), i.e.,

Proof - Recall the estimates (6.6) and (6.12), and note that (6.11 )
implies

According to Lemma 6.4 we have

and it holds

This shows that À) is well defined.
Next we show that g~(j6,~) solves (6.7). It suffices to observe that

À)) C Dom(K) and
Poincaré - Physique theorique
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Hence

The equality (6.18) is then a consequence of Lemma 6.1. D

7. MORE ABOUT THE DIOPHANTINE CONDITION ON ~6
ANDÀ

The diophantine condition (6.9) involves the diagonal of the operator
À) whose definition (6.4) represents in fact the geometric series

V - + -". We start by checking more closely the term
Here is some additional notation. As one observes from (2.2),

a matrix entry depends on m 1 and n 1 only through the difference
n 1 - m 1; we write

Clearly,

Set, for n E S,

In virtue of the condition (5.1 ), v~ (~,) is well defined and even analytic
for ~ ~ with the uniform bound

It is also clear that on this domain all derivatives of vn (À) are bounded
uniformly and independently of n E S.
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LEMMA 7.1. - Suppose that E C . Then there exists a , constant
~’ ~ ~ 0 .such , that the 

holds true for E S and all 03BB e co/3.

Proof. - It suffices to verify (7.2) for the indices n E ~S with sufficiently
large components n2 E N. So we assume that

Write temporarily S* : :== S U {~}. We express the diagonal element

Observe that the partial sum, with the summation index satisfying m  S
and m 2 = n 2 , yields

We split the rest (with the summation index m ~ S*, m 2 ~ n 2 ) into two
parts according to whether m 1 - cn2 or  cn2. In the
first case we use the differentiability of V (t), particularly the property

and the fact that

holds true for m ~ 1 S* to estimate "
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In the second case we derive, using successively (5.1 ), (5.2) and (7.3),

Hence

This completes the proof. D

Let us now define, for n E S,

The diophantine estimate (6.9) can be rewritten as

However, in the sequel we will replace (7.6) by a stronger condition,
namely

Actually, (7.7) implies (7.6) since from the expression (7.1 ) one finds
readily that vn (~,) &#x3E; 0 for all n E S and all À E R, ~ ~ 
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LEMMA 7.2. - The ’ functions E S, are analytic in a
neighbourhood of the ’ closed set

and on this set all their derivatives have bounds independent ofn E s.
Suppose, moreover, that V (t) ~ C1. Then for each ~ &#x3E; 0 there exist
N and 8* &#x3E; 0 such that

Proof. - Concerning the uniform boundedness, one deduces from the
formulas (7.4), (7.5) and from the properties of the functions ~(~.), as
discussed above (see the definition (7.1 )), that the problem reduces to
an analogous assertion about the functions E S. But the
latter case is quite obvious as the operator-valued function À) is

analytic in the indicated domain (see the definition (6.4) and the related
discussion).
Again from the definition (6.4) one finds that

It follows readily that

where ~.), n E S, are analytic functions on the same domain and

with all derivatives bounded there independently of n . Lemma 7.1 then
implies the result. D

Denote by D the closed set determined by the countable family of
diophantine inequalities,

In this definition the exponent i (cf. (3.12)) can be, in principle, any real
number but D ~ 0 is possible only for i &#x3E; 0. Similarly, D is defined
in the same manner but with the condition (6.9) (or, equivalently (7.6))
being replaced by the stronger condition (7.7). We know that if r ~ ~ &#x3E; 1
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then (0,0) E D C D. Next we are going to show that D contains, and so
does D, much more points than just the origin. But first we give two
elementary lemmas (though at least the first one is a well known fact).
LEMMA 7.3. - Suppose that h E and h" (x) &#x3E; a &#x3E; 0 for all

x E Then, for all e &#x3E; 0,

Proof. - The function h has exactly one local extreme, namely a
minimal value hmin = and, according to whether or

-8  hmin  8 or 20146’, the set h-1 (] - ~, ~[) is either empty or an
open bounded interval or a union of two open bounded intervals. Even in
the case when h -1 (] - 8, 8 [) is an open interval we split it by the extremal
point xmin into two intervals. So it suffices to estimate the measure of
an interval [~1,~2] such that ~([~1,~2]) C [-8, 8] and h is monotone
on [xl , x2]. For definiteness consider the case with h increasing. Then
h’ (x 1 ) &#x3E; 0, -8 ~ h (x 1 )  ~(~2) ~ ~. and we have

Hence 2~/~. 0

LEMMA 7.4. - Suppose that h E and there ’ are positive ’ con-
stants a, b, c such that

Thenfor &#x3E; 0, ~ c/2}, and all 8 o &#x3E; 0 it holds true that

Proof. - Let us assume for definiteness that /~(jc) ~ ~ for all x E M.
We distinguish two cases. First, assume that A(0) ~ c (and c ~ 2~). We
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apply Lemma 7.3 and the following observation. Consider the tangent
line y = /x(0) + ~’(0) x to the curve y = and its intersection (xo, s)
with the line y = £. If

then, owing to the convexity,

This way we get

Second, assume that ~(0) ~ -c. Then the set h -1 (] - a,~[) is a union
of two open bounded intervals. Consider, for example, that one on which
h is increasing and denote it by ]x 1, ~2[. If

then 0  and, of course, h (x 1 ) = -8, h (x2 ) = 8. By convexity we
have

and so ~x2 - 48s/c. But the restriction 8 ~ b2 / a implies

The following proposition gives a characterization of the set D which
is determined, according to (7.10), by the diophantine-like condition
(6.9).

PROPOSITION 7.5. - Suppose that V(t) E C1 and the exponents t and
a~ in (3.12) satisfy cr &#x3E; 1 and t &#x3E; 2cr -E- 2. Furthermore, suppose that

_. ~p’ (0) = 0 and ~p" (0) ~ 0. ~Set
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Then 0 is a point of densaty of the set 1 (~p), i.e.,

Proof. - Set (in this proof)

For 03B4 &#x3E; 0 sufficiently small we have, as D c D,

where

One finds that (cf. (7.9))

From Lemma 7.2 and from the fact that ~p’ (o) = 0 we conclude that there
exist k* ~ N and 03B4* &#x3E; 0 such that

where

Naturally we choose 8* &#x3E; 0 sufficiently small so that the inequalities
and are fulfilled for ~ 8*.

Furthermore, &#x3E; 1/n (k), ‘dk E N, there exists a sequence of
positive numbers, {03B2n}n~S, such that 0  03B2n  03B4* and

In other words, 03A6n(03B4) = Ø for 03B4  03B2n. If necessary we increase the value

k* E N so that

Now we can apply Lemma 7.4, with c = ~(~2)? ~ given in
(7.12) and ~ = ~(~2). to the set If n 2 &#x3E; k* then the assumption
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E  is satisfied o owing j to (7.13) and to the fact that 1

v/r (k) ~ 2 ~), ’ E N. Hence "

Summing up, provided

(which imnlies that ~~ 8 = 0 for n ~  we have the estimate

Recall that the projection S -+ N B f ~2} is one-to-one. Hence the sum

03A3n~S n-1 203C4+03C32 converges. Since

we get

8. IMPLICIT EQUATION, COMPLETION OF THE PROOF

Let us return to Proposition 6.5. Suppose that V (t) E Cr, with r ~ 2,
and that t  ra, and denote by D(r) the intersection of the set D defined
in (7.10) with the closed unit ball in R2 and with the closed set determined

by the inequalities (6.15). In fact, D(r), as well as D, depends also
on the exponent r, t &#x3E; 0, (cf. ( 3 .12) ) . Then for all (,8 , ~, ) e D(r) the
vector À) defined in (6.16) and (6.17) solves Eq. (6.3). Recall that
V = Q V Q ; consequently
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Altogether this means that

Since Kf = Ff we arrive at the equality

where

Thus our final task, in order to get an eigen-value and an eigen-vector, is
to solve the implicit equation

which is nothing but Eq. (6.2).
We will solve (8.3) in a Lipschitz class. The notion of Lipschitz

functions as well as their properties needed for our purposes are recalled
in Appendix C. This also concerns the celebrated Whitney extension
theorem [24]. We remind the reader that the target space is generally
allowed to be a Banach space or, more particularly, a Banach algebra.
When indicating that a function belongs to a Lipschitz class supported on
a closed set we always assume tacitly that this concerns the corresponding
restriction. We have to decide about the Lipschitz property of the vector-
valued function À) defined on D(r) . Looking at the formulas (6.16)
and (6.17) one finds immediately that f(~~) is the only operator- ,

valued function occurring in the expressions which is not analytic (and
so automatically Lipschitz).
LEMMA 8.1. - For E Z+, the function 0393(03B2, 03BB)L-03C4(l+2)Ps be-

longs to the Lipschitz class Lip(l + 1, D D B1), where j8i C R2 is the
~closed unit ball.

Proof. - Set temporarily

hence = ~) ~ ~~. Owing to (5.6), the operator-valued
function
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is bounded and analytic on a neighbourhood of the closed set determined
by (7 . 8 ), and so it belongs to Lip( + 1, D n B 1 ) ; denote by M,~ its

Lipschitz norm. This implies that (M(’) stands for the Lipschitz norm)

Since (y/2)~~’’ (cf. (6.9)) one can apply Proposition C.5,
with the constant CL (2, .~) redenoted as C(~), to conclude that

This completes the proof for

LEMMA 8.2. - Suppose that V (t) E Cr, with r ~ 2 r(~+2) ~
ra, E Z+. Then the vector-valuedfunction À) defined in (6.17)
belongs to the class Lip( + 1, VCr)).

Proof - The function À) is analytic in a neighbourhood of
D(r) and so it belongs to the Lipschitz class of any order. Hence, in
virtue of the relation (6.17) and Proposition C.4, it suffices to verify the
assertion for the function À) instead of ~). Here the Banach

algebra in question is The fact that the expressions involve also
K-valued functions does not mean a serious complication: either one
can modify, in an obvious way, Proposition C.4 or one can replace
everywhere vectors h E IC by the rank-one operators h E hx :=
(/, x)h (e.g., f would be replaced by P). Furthermore, from Lemma 6.4
we deduce that the functions

are analytic as well. Now it suffices to examine the formula (6.16) for
A). One concludes readily from Lemma 8.1, Proposition C.4 and

Proposition C.5 that À) belongs indeed to the indicated Lipschitz
class. D

Let us add a remark to Lemma 8.2. From the proof and from the
formulae (6.16), (6.17) it is quite obvious that the functions À)
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and À) belong to Lip( + 1, ’P(r)). If t &#x3E; o- then (0,0) E D(r)
and we have

The set V(r) is closed and so we can apply the Whitney extension
theorem to the function /~g(j6~). As a consequence we get an
extension À) E Lip( + 1, of the function À) itself. Then,
according to the formula (8.2), the function À) E Lip( + 1, VCr))
as well and

is an extension of it. Moreover, the previous remark implies that
the function ~G(j6~) belongs to the class Lip( + 1,R~), too.

Consequently, (if 

and, if ~~2,

Suppose that .~ &#x3E; 1. Instead of (8.3) we shall consider the implicit
equation in this is to say with the extended function G E 

Since

the implicit mapping theorem guarantees the existence of fJ* &#x3E; 0 and of
a unique function A. E ~]) such that "..

Let us calculate the lowest order derivatives of L -
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and so ~/(0) = O. If ~ 2 then

PROPOSITION 8.3. - Suppose that V (t) E Cr, with r &#x3E; 2 and ’ -~-

2) ~ ra, and Then there exist fJ* &#x3E; 0 and a solution

of the implicit equation (8.5), i. e., the equalities (8.6) hold true. Further-
more, the Ran(Q)-valuedfunction À(fJ)), too, belongs to the class

+ 1, [ - ~8* , ~B* ] ) .
If, for some ~8 E [-~8*, ,8*], À(fJ)) E D then F + À(fJ) is an eigen-

value of I~ + ~8V with the corresponding eigen-vector f + ~,(,8)).
Proof. - We already know that À E ~B* ] ) .
To complete the proof we have to show that À even belongs to

Lip (.e + 1, [ - ~8*, ~8* ] ) or equivalently, À(l) E Lip(l, [ - ~8* , ~B* ] ) . Let us first
specify more precisely the choice of ,8* &#x3E; 0. We can assume, because of

(8.4), that 
"

Furthermore, since X(0) = 0, we require the points (~,~(~6)), with
fJ E [-03B2*, 03B2*], to satisfy the_inequalities (6.15) and, at the same time,
to belong to the unit ball B 1. In other words, if ~8 E [-~/~] and

À(fJ)) E D then ~(~6)) E D(r) .
In virtue of (8.7) we have

Deduce from Proposition C.6 and from the fact that À E Lip(l, [2014~, 
that

One can express ~,~~~ from the identity (8.9); according to our choice
of 11 - À(fJ))1 ~ 1 /2. Now the usual rules of differentiation
jointly with Proposition C.5 and Proposition C.4 imply that ~,~~~ E

L-~*~ ~*l).
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This is also because of Proposition C.6 that we can claim that the
composed function belongs to Lip( + The
final part of the assertion follows immediately from the equality (8.1 )
for it holds, by our choice of ~8* specified above: if fJ E [2014~, and

À(fJ)) E D then

Proof of Theorem 2.7. - The first part of the theorem has been already
proven in Section 5 see Remark (2) at the end of the section. All the
steps needed to show the second part, too, have been already stated and
so we have just to summarize them. We make the choice of (J’ and t as
specified in (3.9). Proposition 6.5 guarantees the existence of a solution

À) of the eigen-vector equation (6.3) provided À) belongs to
D(r), a closed set introduced in the beginning of this section. Consider
now the function ~, E Lip( + 1, [2014~,~]), as described in Proposi-
tion 8.3. Set

with having been defined in (7.11). Denote by F(,B) the restriction
of the function F + ~(j6) to the set 1 and by the restriction of

f + ~(~8)) to the same set. According to Proposition 8.3,

Since .~, as specified in Theorem 2.1, fulfills ~ ~ 2, and since

(cf. (8.7) and (8.8)), Proposition 7.5 tells us that 0 is a point of density
of I . Finally, we know, again from Proposition 8.3, that both 
and belong to the Lipschitz class Lip( + 1, I ) . According to
Lemma 4.1, the same is true for ( K + Moreover, since

~(~) E Ran(Q) we have = 1 for all fJ E I. Then, as

explained in Section 4, the coefficients from the asymptotic expansion of
the functions and at fJ = 0 obey Eqs. (4.5) (or, equivalently
(4.6)). To complete the proof we note that Proposition 5.4 ensures the
existence and uniqueness of the solution to this system of equations
and Proposition 4.3 gives its explicit form coinciding with the standard
formulas known for RS series. 0
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APPENDIX A. DENSITY OF THE SPECTRUM FOR ALMOST
ALL FREQUENCIES _

PROPOSITION A. l. - Suppose that a set ~ C JR fulfills sup ~ = +00.

Then the set 03C9Z + £ is dense in R for almost all 03C9 E JR (in the Lebesgue
sense ).

As -7~ _ Z we can consider only positive values of c~. Furthermore,
we make use of the facts. that the positive half-line can be covered by a
countable union of open bounded intervals and that the countable system
of open intervals with rational endpoints forms a basis of the topology
in We conclude from this that the following proposition, seemingly
weaker, is in fact equivalent to Proposition A.l.

PROPOSITION A.2. - Suppose that we are given an open interval
]a, b[, 0  a  b  oo, and a compact interval [u, v]. Then, under the
same assumptions about the set ~ as in Proposition A.l, it holds

LEMMA A.3. - Suppose that ~ is the same as in Proposition A.l,
[u , v ] is a compact interval, Ll C ] v - u , +oo[ is an open set and 
oo. Then there exists x* E IR such that for all x &#x3E; x* one can find a closed
set M(x) C u with the properties:

(1) (x + n [u, v] ~ ø for all w ~
(2) 4 (v - u) u1 s ds.

Proof. - ~l , as an open set, is at most countable disjoint union of open
intervals. Since

Annales de l’Institut Henri Poincaré - Physique theorique .



283PERTURBATION OF AN EIGEN-VALUE FOR FLOQUET HAMILTONIANS

there exists a finite subunion u’ = ~ui C formed necessarily by
bounded intervals, such that

We will seek a family of closed subsets C Lli so that, for each

i , the properties ( 1 ) and (2) are valid for and ui in the place of
.J1 iI (x ) and M, respectively, with the only difference: we replace the factor
1/4 in (2) by 1/2. Suppose that we are successful. Then the disjoint union
.Ilil (x ) : := Ui has all the required properties.

Fix an index i and write ui = ] a , b [ where 0  v - u  a  b  ~.
Assume that

Then

and the union

is disjoint. Consequently,

for sufficiently large x. Moreover, if 03C9 E then there exists k ~ N

such that x - 03C9k E [u , v ] . 0

Proof of Proposition A.2. - Clearly, (x + n [u, v] ~ 0 for all ~, -

0 ~ ~ ~ 2014 u, and all x E Consequently we can assume, without loss
- of generality, that v - u  a . Using Lemma A.3 we construct successively
a sequence ~(~2),... formed by disjoint closed subsets of the
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interval ]a, b[, with the points xk E ~, so that is related to the open
set blk = ] a , b [ where

Set

The property ( 1 ) implies

Furthermore, INI = lim and, owing to the property (2), we have

Passing in (A.1 ) to the limit k 2014~ oo we get

and so D

APPENDIX B. A PERTURBATION WITHOUT
RAYLEIGH-SCHRÖDINGER SERIES

In this appendix we exhibit an example of a perturbation for which
À2 given in (2.5) does not exist. The symbols H, K, Ek, Fn, ek, fn and V
retain their meaning from Section 2. However, we do not require anymore
that the eigen-values Ek of the Hamiltonian H obey the gap condition
(2.1 ). Instead we impose another restriction which has this time a

multiplicative form. More precisely, we assume that there exist constants
&#x3E; 0 and ~,c &#x3E; 0 such that

Generally speaking, the conditions (2.1 ) and ’ 1 are independent.
However in some cases, for example, when the eigen-values Ek grow
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polynomially, Ek = const the condition (B. .1 ) appears to be milder
than (2.1 ). Actually, the condition (2.1 ) is satisfied provided i,c &#x3E; 1 while

(B. .1 ) holds obviously for any ~c positive.

PROPOSITION B.l. - Suppose that the spectrum Spec(H) satisfies the
condition (B.1). Then, for almost all cv &#x3E; 0, there exists a bounded self-
adjoint perturbation V (t) (depending on c~) which is a 2n-periodic and
strongly continuous function of t and such that the Rayleigh-Schrödinger
coefficient À2 given in (2.5) does not exist, i. e., the series

diverges, and this holds true for all r~ E Z x N.

Let us introduce yet another condition. Namely, one requires that there
exist constants 0 and ~c &#x3E; 0 such that

Since, for 1 ~ j ~ k, it is true that k - j &#x3E; log k - log j, (B.3) implies
(B. 1). However we shall show that, in the text of Proposition B.l, one
can replace harmlessly, without doing any other change, "the . condition
(B.1)" by "the condition (B.3)". The new proposition will be called
Proposition B.l (modifzed).

LEMMA B.2. - Suppose that the spectrum of a Hamiltonian H satis-
fies the condition (B. 1). Then H can be decomposed into a direct sum,
H = Ha, so that the spectrum of each summand satisfies the con-
dition (B.3), of course, with modified constants CM &#x3E; 0 and &#x3E; 0.

Proof. - Each j E N can be written in a unique way -as j = a -I- 2k,
with a, k E Z+ and a  2k - 1. For a given a E Z+, denote by K(a) the
smallest non-negative integer such that a  2" ~a ~ - 1, and set

According to what we have said,
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is a disjoint union. It induces a decomposition of = so

that Spec(Ha) = E ~V(~)}. Furthermore, and j  k then

We conclude that if Spec(H) satisfies (B.1) then Spec(Ha) satisfies

(B.3). 0

COROLLARY B.3. - Proposition B.l implies Proposition B.l.

Proof. - Suppose that Spec(H) satisfies (B. 1). Decompose, in ac-

cordance with Lemma B.2, H = Ha, and apply to each sum-
mand Proposition B .1 (modified) getting this way a family of pertur-
bations Va(t), a E Z+ (acting in mutually orthogonal subspaces). Then
the perturbation := Va(t) obeys the conclusions of Proposi-
tion B .1. 0

Construction of the perturbation. Set

where

Here [x] denotes the integer part of x E In other words, the definition
of V (t) means that

Furthermore, from the prescription (2.2) one finds that Vmn does not
vanish if and only if m 1 - ~i = ±[~"~E~ 2014 En2 ~ ] . Provided this is the
case then Vmn equals either 2~/~~ or ~m2 ~n2 depending on whether
Im1 - = 0 or ~ml - 0.

Before proving that V (t) actually fulfills the conclusions of Proposi-
tion B.l (modified) we shall derive some auxiliary results. Nevertheless
one can make already now some straightforward observations. First, 

Annales de l’Institut Henri Poincaré - Physique theorique



287PERTURBATION OF AN EIGEN-VALUE FOR FLOQUET HAMILTONIANS

is 203C0-periodic and the matrix (ej, V(t)ek&#x3E;H) is real and symmetric. Sec-
ond,

and so V (t) is Hilbert-Schmidt, for each t, and strongly continuous in t.
Third, assuming that an index ~ E Z x N has been chosen, we find that if

Vn~ ~ 0 and n2 ~ 172 then (again F = 

and

Here {x} := x - [x] E [ 0, 1 [ is the fractional part of x ~ R (in the text
one has to distinguish between the fractional part {x } and the sequence

Hence

Let us add an obvious remark that the sub-sum of (B.2), with the
summation index being restricted by n2  ~2, has only finitely many non-
zero summands.

In the remainder of this appendix we adopt the point of view of the
theory of probability. More precisely, the Lebesgue measure on [0,1] will
be interpreted as a probability measure. This is reflected in the notation,
too. We write, for a measurable set A C [0,1], instead of 
and consider the measurable functions on the interval [0,1] as random
variables; here we denote them by the capital letters X, Y, Z,.... As
usual, E(X) means the mathematical expectation (mean value).

Denote by xN, with N E [ 1, +oo[, the characteristic function of the
interval ] N -1, 1 [ .
LEMMA B.4. - Suppose that M, N E [ 1, +00[ and p, q E R, 1 ~ p 

q. Set, for  
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Then it holds, for the restrictions of Y and Z to the interval [0, 1 ], that

Proof. - The verification of (B.6) is based on explicit calculations and
rather lengthy but elementary estimates. We only sketch the proof while
indicating some intermediate steps.

Observe that the function Y is p-1-periodic and, for each k E Z, it
vanishes on the interval [ p-1 k, p-1 (k + M-1 ) ] and is decreasing on
] p -1 (k + M -1 ) , p -1 (k + 1 ) [ from the limit value M to the limit value
1. The integral of Y over the period is p-1 log M and so it is clear that
the mathematical expectation E(F) is close to log M provided p is large.
More precisely,

Let us consider a bit more general situation and compose Z with a
translation,

This time it holds

As a next step we treat the particular case with p = 1. We claim that

Indeed, now we have the precise equality E(F) = log M and so (note that
log x  x/e for 1)
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Furthermore, it holds

where :== + a]. It follows that

and

Proceeding this way one derives rather straightforwardly that

The inequalities (B .10) and (B.ll) imply (B.9).
The just discussed particular case (B.9) will be useful when verifying

the general case. Set

We put also J([p]) equal to [p-1 ([p] + M-1), 1] if M-1  {p} and to 0
otherwise. Thus we get
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According to (B.7), the last term in (B .12) can be estimated from above
by

On the other hand, for 0  k  [ p],

where we have set Z(~) := Z(p-1~’ + p-~k) and then we have applied
(B.9) and (B.8) with q = and a = Quite similarly one
estimates

Combining (B.12), (B .13 ), (B.14) and (B .15 ) we get

as required. D

Next we will treat a sequence of random variables of the same type
as Y but with a particular choice of the parameters M and p. Fix (),
0  ()  Ij2, and set

where ’ is a sequence 
’ of positive ’ numbers. We assume ’ that 1,

Vk, and ’ that the sequence ’ obeys the same ’ type of condition as given in
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(B.3) ; this is to say that there exist constants &#x3E; 0 and ~,c &#x3E; 0 such that

Let us specialize some estimates to the random variable Yk. According
to (B.7) we have

Quite similarly, it holds true that

As a consequence of (B .19) we get

Finally, Lemma B.4 jointly with (B.17) tells us that

LEMMA B.S. - Suppose that a sequence satisfies 1, ‘dk,
and the ’ condition 1 Set

where ’ Yk has been defined in (B.16). Then

almost everywhere on [0, 1 ].

Proof. - This would be a classical text-book result if the random vari-
ables Yk were independent (see §5.1 in [4]). The estimate (B.21) guar-
antees that, in our case, the random variables are correlated sufficiently
weakly. We only sketch the proof. Set
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Fix ()’ such that 9  9’  Ij2. Using (B . 20) and (B .21 ) we estimate

where CI &#x3E; 0 is a constant. According to the Chebyshev’s inequality we
have, for £ &#x3E; 0,

and so

By the Borel-Cantelli lemma, holds true for all

£ &#x3E; 0 and for almost all ç E [0,1]. One deduces from this, by a standard
argument, that

almost everywhere on [0,1]. To pass from (B.24) to (B . 23) we introduce
the random variables

Using basically the same estimates as before one shows that

and so lim N-2 D N = 0 almost everywhere on [0,1]. To complete the
proof it suffices to observe that, for N2  M  (N + 1)2,
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LEMMA B.6. - Suppose that a sequence ofpositive ’ numbers,
satisfies the ’ condition (B .17), are the same as in (B.4). Then

for almost &#x3E; 0.

Proof. - Clearly it suffices to show that (B.25) is valid for almost all {
from an arbitrary bounded interval [0, z], z &#x3E; 0. Having observed that
the condition (B.17) is invariant with respect to the scaling of hk we
can restrict ourselves to { E [0, 1]. Furthermore, the conclusion of the
lemma is not influenced by omitting several first numbers of the sequence

This is why we can assume that the assumptions of Lemma B.5 are
satisfied.

Set

Note that Yk (cf. (B .16)) is nothing but the cutoff of the function X k
obtained by annulling the values which exceed the level hence Xk &#x3E;
Yk. The symbol SN retains its meaning from (B.22). We have

It is elementary to derive the estimate

Hence ~~(~ 2014 ~+1)  oo. Since, by Lemma B.5, the sequence
is bounded almost everywhere we find that the sum

converges for almost all ~ . To finish the proof we need to estimate 
The inequality (B.18) and the fact that limhk = imply that there
exists k* E N such that

3-1999.
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Consequently, k*, then

where CIII &#x3E; 0 is a constant. Hence

This completes the proof. D

Proof of Proposition B.l (modified). - In virtue of the inequality (B.5)
and the remark following it, it is sufficient to apply Lemma B.6 to the
sequence defined by .

(in fact, we treat a countable family of such sequences labeled by 
Observe that if r~2  j  k then and so (B . 3 ) implies
(B.17). Hence the assumption of Lemma B.6 is indeed satisfied. D

APPENDIX C. LIPSCHITZ FUNCTIONS

Here we present some auxiliary results concerning Lipschitz functions
which are quite straightforward to verify but are not mentioned in [24],
our main source on this subject. Moreover, in view of applications we are
interested in, we allow the target space to be generally a Banach algebra
(sometimes only a Banach space) rather than C. In fact, this does not
cause any essential complication one has just to be careful about the
order of multipliers in all expressions. The notation in this appendix is
autonomous, particularly the symbols f , g, P etc. have different meaning
in the main text of the paper.

DEFINITION C.l. - Suppose that II c Rn is a closed set and 
Banach algebra (or Banach space). A function f defined on 77
and with values in belongs to the Lipschitz class Lip(l + 8, 77), with
.~ E Z+ and 0  8 ~ 1, if and only if there family of functions
{ f ~"~ ; v E 7~+, ~ Ivl ~ ~}, with = f , and a constant M &#x3E; 0 such that,
for E Z~_J~! ~ holds true that .
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where ’

The smallest constant M with this property is called the Lipschitz norm

As one can guess, we have denoted the norm in . I. If not

specified otherwise, the multiindices ~c, v, ... are assumed to belong to
7~+. We use the partial ordering on Z~_: ~,c  v means that for

If necessary, the dependence of P(x, y) or R(x, y) on f will be

distinguished by a superscript. A detailed proof of the following basic
theorem is given in [24].

THEOREM C.2 (Whitney extension theorem). - There exists a
uous mapping

such that an extension all f E Lip( + 6’, II). The norm
bound independent of 03A0.

We shall use frequently the observation that f E Lip( + e, if and

only if f E all derivatives of f up to the order .~ are uniformly
bounded on and E for all p, H = .~ . This claim
still holds true when replacing Rn by a closed convex subset 11 of
dimension n . Clearly,

The family of functions corresponding to is The

extension operator has this property: = ax E ( f ) (x ) holds true for
all x E II and all v E Z~., Ivl ~ .~. The following proposition is quite easy
to verify.
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PROPOSITION C.3. - Suppose that .~ &#x3E; 1 and IT is bounded. I, f’ f E
-f - 8, 03A0) then f E + e’, 03A0) for 0  l’  l, and any e’,

0  s’ ~ 1. The embedding mapping

sending the family to is bounded.

In the following two propositions we shall need the structure of algebra
onA.

PROPOSITION C.4. - Suppose that II is bounded and both f and g
belong to + E, II ) . Then f g E + ~, II ) .

PYOOf. - Set h = f g and, more generally,

Then

where

It follows that

Weconcludethat = 0(1) and y)~ o

PROPOSITION C.5. - Suppose that II is bounded, f E Lip(2 + s,11),
f (x)-1 exists in A for all x E 11, and |f(x)-1| is uniformly bounded
on 11. Then g E Lip(l + £, 11) where g(x) = 

If, in addition, the diameter diam 03A0  1 and |f (x)-1|  K for all
x E 11 then

where ’ CL = ~ constant.
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Proof. - We can assume from the beginning that diam 03A0  1 and,
by rescaling f , that 1 on 03A0, i. e., K = 1 (the norm M(.) is
homogeneous). Then we have

1.
We define successively, for 1 ~ 

This means that the identity

is valid for all v E 7~+, ~ and all x E II.

Clearly, all are bounded. By the assumption we know that 
1, and we claim that

To see (C.5) we proceed by induction in v using the formula (C.3),

With the aid of (C.4) one finds readily that

where ~ is the same as in (C.2). Differentiating (C.6) and subtracting
(C.4) from the result one arrives at (0 ~ Ivl  .~)
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More conveniently, let us rewrite (C.7) as a recurrence formula,

Using (C.5) one finds easily the required bounds for a part of the RHS
of (C.8). Namely,

and so (~ 2014y~l)

Furthermore,

So it remains to estimate, in the same manner, the first sum on the RHS of

(C.8). The three estimates ((C.9), (C.10) and the one still lacking) should
amount in the existence of constants c" &#x3E; 0 (depending also on n and .~,
0~ H ~) such that

To prove the proposition we shall proceed by induction in f. The case
f = 0 is obvious for Ig(x)1 ~ 1 ~ M(f) and
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hence M(g) ~ M( f ). Suppose now that .~ &#x3E; 1 and the proposition is
valid for all 0  l’  l. Write, for   v,

where .~’ _ .~ - ~ v - and R~ is the rest function related to E

Lip(’ + 1, 77). Note that ~u ~  .~’  .~ . By the induction hypothesis and
by Proposition C.3, we have (.~’ + 1 - ~,c,c ~ &#x3E; .~ -~- ~ - ~ 

In addition, for cr ’ | | and |  + or |  l,

We conclude that

The formula (C.8) and the bounds (C.9), (C.I0) and (C.12) prove the
validity of (C.11 ). 0

The last auxiliary result concerns the composition of functions. This
time ,,4 is a Banach space.

PROPOSITION C.6. - Suppose that g : -+ ,~L belongs to Lip( +

(i) = 0 and f : II -+ belongs to Lip(l, 03A0) then g o f E
77).

(ii) 1 and f : Rm -+ belongs to Lip(l + 6. then g o f E
Lip( l + E, 03A0) for any compact set II c 

Proof. - (i) This is obvious from the estimates |g o f(x)|  M(g) and

(ii) We can restrict ourselves to the case when II where u C Rm
is an open, convex and bounded set. Write f as an n-tuple of functions:
f = (/1,... fn), f J : Rm ---* Clearly g o f E II is compact,
Vol. 71, n° 3-1999.
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and thus we have to show only that ax g o f E 03A0) for all v,
== .~ . However, o f is a polynomial in 1 

and in o f , ~ .~ . This means that, when applying
an obvious modification of Proposition C.4 (here we multiply scalar
functions by vector-valued functions), it suffices to verify that all the
multipliers belong to 77). By Proposition C.3, ai f~ E 77)
and f E Lip(l, 77). Furthermore, from the already proven part (i) we
conclude that (ay g) o f E Lip(E, 77). This completes the proof. 0
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