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ABSTRACT. - New representations of the Poincare group are given,
which describe two bosons with interaction in four space-time dimen-
sions. The quantum frame is the Schrodinger picture in momentum space.
More precisely we start from the relativistic free model with Hilbert space

X where c~2 is the Lorentz invariant measure. We add to the

free Hamiltonian and the free Lorentz generators new interaction terms,
without changing the Poincare algebra commutation rules, and such that
the algebra representation can be integrated to give a unitary represen-
tation of the group on L2(II~6, cr2). The physics of these models can be
investigated through the bound state equation (a relativistic Schrödinger
equation) and through the scattering matrix, which is shown to be uni-
tary. Finally we give an example for which a bound state exists and for
which the scattering matrix can be written down explicitely. This exam-
ple assures that interaction can effectively occur between the particles.
@ Elsevier, Paris

RESUME. - Nous etablissons de nouvelles representations du groupe
de Poincare decrivant deux bosons en interaction dans un espace-temps
a quatre dimensions. Le cadre quantique est celui de la representation
de Schrodinger dans l’espace des moments. Plus precisement, nous
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218 E. FROCHAUX

partons de la representation decrivant deux bosons libres, dont 1’ espace
de Hilbert des etats est X c~2), ou cr2 est la mesure invariante de
Lorentz. Nous ajoutons a l’Hamiltonien et aux generateurs de Lorentz de
nouveaux termes, dits d’interaction, sans briser les regles de commutation
de l’algèbre de Poincare, et de sorte que la representation de Falgebre
puisse s’integrer et donner une representation unitaire du groupe, toujours
dans L2 (II~6, c~2) . La physique de ces modeles est accessible grace a une
equation aux valeurs propres pour les etats lies (une sorte d’équation de
Schrödinger relativiste) et grace a 1’ existence de la matrice de diffusion,
qui s’ avere etre unitaire. Finalement nous donnons un exemple pour
lequel un etat lie existe et pour lequel la matrice de diffusion peut etre
ecrite explicitement. Cet exemple nous assure qu’une interaction entre
particules peut effectivement avoir lieu dans ces modeles. (c) Elsevier,
Paris

1. INTRODUCTION

A new family of unitary representations of the Poincare group in four
space-time dimensions is given, which describe two boson systems with
interaction. The quantum frame is the Schrodinger picture of Quantum
Mechanics in momentum space. The physics of these models can be
obtained from the scattering operator and the bound state equation,
an eigenvalue equation of the kind of the Schrodinger equation. The
existence of a bound state and the non-triviality of the scattering matrix
confirm that the interaction is effective. To our knowledge, this is the
first example of relativistic quantum models for a finite number of
interacting particles. Moreover they admit a rather simple mathematical
construction.

The quantum frame of the Schrodinger picture means that the Hilbert
state space is simply made of functions of the momenta. In particular the
time variable does not appear explicitly. However, these models satisfy
the relativistic principles, because they consist of unitary representations
of the Poincare group. An elementary example of such a model is given
by the free model for two bosons (’free’ means without interaction).
Our models are obtained by perturbations of the Hamiltonian and the
Lorentz generators of the free model, in such a way that the commutation
rules of the Poincare algebra remain satisfied. The existence of solutions

Annales de l’Institut Poincaré - Physique theorique



219NEW REPRESENTATIONS OF THE POINCARE GROUP

to this problem is rather surprising. Indeed, such a perturbation of the
Hamiltonian and the Lorentz generators has already been proposed by
Dirac in the late 40’s [ 1 ], in the framework of classical mechanics. Dirac

thought that the classical theory should be established first, and that the
quantum version would be obtained afterwards by applying the canonical
quantization. Therefore his paper concerns only classical physics, and it
does not really obtain an interesting conclusion. In the early 60’s, Currie
continued this approach, still in the classical frame. He obtained in [2]
that, under additional natural assumptions, such modifications cannot
generate an interaction (this is known as the ’non-interaction theorem’).
The present paper shows that by going directly to the quantum frame, this
difficulty can be overcome.
The result given here is the generalization of similar results in 2-d

(two space-time dimensions) [3] and in 3-d [4]. Although the family
of models in [3] is very general (the kernel of the interaction part of
the Hamiltonian can be chosen almost arbitrarily in the centre-of-mass
frame), in 3-d and 4-d we have only managed to construct models with
special interaction terms (excuding local interactions by a potential).
Moreover, the generalization to more than two particles [5] and to bosons
with different masses [6], which is easy in 2-d, seems difficult in higher
space-time dimensions.

Originally, the result in 2-d was suggested by a new approch of the
bound state problem in 2-d Quantum Field Theory, see [4].
The paper is organized as follows. Section 2 presents a family of

operators which formally satisfy the commutation rules of the Poincare
algebra, provided the ’interaction kernel’ h (the kernel of the interaction
term of the Hamiltonian) satisfies a ’fundamental equation’. In Section 3
the complete set of solutions to this equation is given, in the weak
coupling regime. Then we focus on a subset of solutions which satisfy
all the properties we need for the following proofs. Section 4 shows
that the formal representations of the Poincare algebra of Section 2
can be integrated to give unitary representations of the Poincare group.
Section 5 presents the eigenvalue equation for the bound states (the
’relativistic Schrodinger equation’). Section 6 establishes the existence
of two-particle asymptotic states and of the scattering operator, which
appears to be unitary. Section 7 gives a simple example (one-dimensional
perturbation) for which the bound state equation admits a solution and
for which the scattering matrix can be written down explicitly and
is non-trivial. Finally, Section 8 collects the physical results of the

paper.
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220 E. FROCHAUX

This paper follows closely [4]. For a complete, detailed, and self-
contained version see the preprint, available at mp-arc 98-305.

2. THE MODELS

The Poincare group ~+ is generated by the ten operators H (Hamil-
tonian), P = (Pi, P2 , P3 ) (momentum), J = (7i, ,12, J3 ) (angular mo-
mentum) and L = (Li, L 2, L 3 ) (generators of the Lorentz transforma-
tions), satisfying the standard commutation rules of the Lie algebra ~
of 7~. This algebra admits two Casimir operators, the mass operator M
and the Pauli-Lubanski operator W, the squares of which are given
by

where the dot "’" and the wedge "n" denote the ordinary scalar and vec-
tor products, respectively.
We start from the representation describing two free, identical, and

spinless particles of mass m &#x3E; 0, in the Schrodinger picture. If pl,
p2 E R3 are the momenta of the two particles, the total and relative
momenta P , Q are defined by

where c~ ( pi ) := p2 + m2, i E { 1, 2} and

(The variable Q is defined as the momentum in the centre-of-mass

frame.) In these variables, the operators of the free representation are the
following

for almost all ( P , Q ) E R6 and suitable functions 03C6, where we have put
l’Institut Henri Poincaré - Physique theorique



221NEW REPRESENTATIONS OF THE POINCARE GROUP

These operators define a representation of the algebra ~ which can be
integrated to give a unitary and continuous representation of the group
7~, in the Hilbert space

made of even functions with respect to Q (Le., ~(P, Q ) _ ~ ( P , - Q ) ),
where = 

In the non-relativistic case, it is possible to find relative variables which
are invariant under the proper Galilean transformations. Such variables

cannot be found in the relativistic case. In (3) the Lorentz generators
contain a term involving 7~, i.e., acting on 6. Note that only the angular 

.

variables of Q are concerned, because

is Lorentz invariant. This can also be seen from the Casimir operators,
which are only functions of Q 2 and (JQ)2

To introduce an interaction we take a symmetric operator (9, the

interaction operator, on which we impose only, for the moment, the
formal commutation properties

The interaction representation is defined as follows

where we have used the notation {A, B} = A B + BA. The commutation
rules of the Poincare algebra formally hold if 0 satisfies the following
conditions

Bbl.71,n° 2-1999.



222 E. FROCHAUX

for all j ~ k E {1, 2, 3}. Thus we have to find non-trivial solutions C~ ~ 0
to this system.

Let us write 0 as a kernel operator which commutes with P

where h(P, Q, Q’) is an arbitrary kernel (for the moment) which satisfies

and the symmetry condition

where the star ~ means complex conjugation, all these conditions being
necessary for 0 to be a symmetric operator. The last condition of (7)
imposes (formally)

The substitution of ( 10) in (9) leads to six non-linear, integro-
differential equations for h . To solve this system we restrict ourselves
to solutions satisfying the following condition

which leads to J P h = = 0 because of (11) and ( 12). Thus ( 13) is
equivalent to the requirement that h ( P , 6, Q’) is function of the norms
II only. With this condition, the six equations (9) coincide.
Introducing the differential operator D

the conditions (9) and ( 13) lead to the single equation

l’Institut Henri Poincaré - Physique theorique



223NEW REPRESENTATIONS OF THE POINCARE GROUP

This is the fundamental equation which guarantees the relativistic

structure of the theory. Let us sum up what we have found.

PROPOSITION 1. - Leth(P, Q, Q’) be a function of ~P~,
only which satisfies ( 11 ) and ( 15). Then the operators (8), with 0 given
by ( 10), are symmetric and satisfy formally the commutation rules of the
algebra ~. The total Hamiltonian and Lorentz generators Hand L are

represented in terms o, f ’ h by the following integral operators:

3. EXISTENCE OF SOLUTIONS OF THE FUNDAMENTAL

EQUATION

We give the complete set of solutions of (15) lying in a ball of a Banach

space. Then we introduce a subset of solutions, which satisfy also ( 11 )
and ( 13), and we establish their useful properties.

DEFINITION 1. - Let lC be a compact set of R3 with Lebesgue-
measure |03BA| ~ 0. We denote by 03B2 the Banach space of continuous and
bounded functions h (P, Q, Q’) with support in (P, Q, Q’) E R3 x J’C x 1C
for which Dh(P, Q, Q’) exists and is also bounded and continuous, given
the norm 

. 

’

where the differential operator D is given by ( 14).

Vol. 71, nO 2-1999.
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The following result assures the existence of a large class of solutions
of ( 15).

PROPOSITION 2. - There exists I~1 E (0, (0) such that, for all c E
x J’C) satisfying  there exists one and only E ~8

satisfying:
(1) 
(2) e. Q’) for all
(3) h (P, Q, Q’) satisfies (15) for all P, Q, Q’ E 
The proposition gives the complete set of solutions h of ( 15) lying in a

certain ball of ~3; they are uniquely defined by their restriction to P = 0,
which can be chosen arbitrarily in a certain ball of x Thus,

apart from this analytic condition, the restriction of h for P = 0 (centre-
of-mass frame) is arbitrary.
The proof is an easy adaptation of Proposition 3 of [4] to the 4-d case

and to the bilinear operator b defined on functions E ~6 by

for all (P, Q, 60 E Obviously b : ,t~ ~ ,t3 and satisfies

where

and thus we can take Kl = m3/llCl.
Let us introduce the following set of functions.

DEFINITION 2. - Let R &#x3E; 0 and let 1C be the ball of R3 of cehtre 0
and radius R. Let V be the set offunctions c(Q, Q’) E C30(03BA x which

Annales de l’Institut Henri Poincare - Physique theorique



225NEW REPRESENTATIONS OF THE POINCARE GROUP

satisfy c(Q, Q’)* = c(Q’, Q), which depend only on the norms II and

II and such that

Note that 1&#x3E; depends on the two positive parameters m and R .
V is made of kernels c(Q, Q’) with compact support, bounded by a

constant depending on the support, and depending on ~6!! and ~Q’~ only.
These requirements take us away from physical applications.
Each c E V satisfies the hypothesis of Proposition 2 and

where L2 (l~6) refers to the ordinary Lebesgue measure (not the 0’2

measure). The following properties hold on V.

PROPOSITION 3. - Let c E V. The function h deduced from c by
Proposition 2 has the following properties:

( 1 ) h satisfies ( 15),
(2) h(P, Q, Q’ depends only on the norms
(3) for all Q, JR.3, the function P --+ h(P, Q, Q’) is afunction of

P2 analytic in a C-neighbourhood --&#x3E; --&#x3E;

(4) for all P2 in some C-neighbourhood of R+, thefunction Q, Q’ ~

h(P, Q, Q’) has compact support and belongs to C3(JR.6),
(5) the partial derivatives of h (P, Q, Q’), of any order with respect to

P2 and of order ~3 with respect to Q, Q’, belong to ,23,
(6) hand Dh satisfy the estimates

Pm9/:-(l)-(5) are easy adaptations of the corresponding proofs
in [4]. For (6) we introduce the norm

for all f E From an easy estimate involving the Cauchy-Schwartz
inequality we get
Vol. 71, n° 2-1999.
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for all f E ,t3. Now recall that h = where An are defined
in [4]. Let us suppose that for some n E N we know that 2/3

1/20 (this is obvious for n = 0). Then we obtain

It follows that these bounds hold for all n . Let us take the limit n 2014~ oo .

Because the convergence of An and DAn is uniform, the sequences
~An~* and ~DAn~* converge too (taking the integral in (21 ) as a

Riemann integral). Thus the above estimates still hold in the limit, which
establishes (20). 0

4. UNITARITY REPRESENTATIONS OF THE POINCARE
GROUP

Until now, the representations (8) of the algebra ~ were only formal, in
the sense that the domains of the operators and of the commutators were
not specified.

THEOREM 4. - Let c E 1/’. Let O be the interaction operator ( 10) with
the deduced from c in Proposition 2. Then {77, P, J, L}, given
by (8), are the generators of a unitary continuous representation 

Proof. - According to Theorem 5 of [7], H, P, J, L are the generators
of a unitary continuous representation of ~+ if the following three
conditions are satisfied: ( 1 ) they are self-adjoint, (2) they admit a common
invariant dense domain D on which the commutation rules of the algebra
hold, (3) D is a domain of essential self-adjointness for the operator

1st step : Self-adjointness of H, P, J, L. It is clear for P and J . To
study H and L we need a general estimate of the norm of vectors like

, 

Annales de l’Institut Henri Poincare - Physique theorique
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for all ~ E ~C and for kernels ~ such that

is well defined. From the Cauchy-Schwarz inequality and the Fubini
theorem we get

By using the expression of H given in Proposition 1 together with (20)
we find the following bound on the operator norm of H - Ho :

Thus H - Ho is bounded and H is self-adjoint on the domain of Ho.
Using similarly the expression of L given by Proposition 1 together

with the estimate (24) leads to

for all j E {1,2,3}. From the Kato-Rellich theorem (Theorem X.12
of [8]) it follows that L is self-adjoint on the domain of Lo provided

 1. This condition is indeed satisfied because from (20)

2nd step : Invariant domain and the commutation rules. Let D be the
domain

D is dense (because it contains and is clearly left invariant

by Ho, P, J and Lo. To show that it is also invariant under Hand L
it is sufficient to show that it is invariant under 0. Let (~ E D and let us

apply an operator

to the vector O03C6 (recall that JkO = 0). From the Leibniz rule we find

Vol. 71, nO 2-1999.
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for some coefficients Ca,~ . Because ~ E D the expression in [ ] is a
vector of 7~. By using the estimate (24) we find that (27) belongs to ?-L
if the expression in { } has a well defined . norm, which follows from
Proposition 3 and some straightforward estimate.
By working on D the commutation rules for { H, P, J, L} can be

deduced from those for {No, P, J, Lo} without having to take care of
their domain. Thus we only have to do formal calculations, and thus to
apply Proposition 1.

3th step : D is a domain of essential self-adjointness for the operator
A. Because {P, Ho, J, Lo} are the infinitesimal generators of a unitary
continuous representation of a Lie group it follows from Theorem 3 of [7]
that these operators and

are self-adjoint and that they admit a domain Do as common invariant
domain and common core. However, the largest common invariant
domain is (26), thus D is also a common core. By the Kato-Rellich
theorem (Theorem X.12 of [8]), ð is essentially self-adjoint on D if

for all ø E D, for some 0  ~i  1 and 0  k2  oo .

Now ð,. - Ac = m-2 (HZ - + L2 - Lo. Using (24) and (20) and
some straightforward estimates we can show that H2 - Ho is bounded.

Let us put Lh := L 2014 Lo. Using the same estimates and (25) we find
for all ø E D

Annales de l’Institut Henri Poincaré - Physique theorique
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for some k3 , k~ E (0, oo) . Finally by collecting these estimates we obtain

for some ks E (0, oo) and all ~ E D. Using some technics explained in [4]
we find also

and then the constant 1~1 of (28) can be taken as

It follows from (20) that ~i  1 / 2  1. D

5. BOUND STATES AND RELATIVISTIC SCHRÖDINGER
EQUATION 

.

In a quantum theory, the study of the physics of a model consists
essentially in two problems, namely the search for the bound states and
the construction of the scattering operator. In a relativistic theory, the

B~bL71,n°2-1999.
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bound states are related to the discrete part of the spectrum of the mass
operator M. More precisely the mass m R of a bound state is a solution to
the eigenvalue problem M(~ = with ~ E D(M) 0. In our
models this equation takes the form

with ~ E D(M~), ~ 7~ 0, and where S is the interaction kernel of H2
given by

The function ~, when it exists, is continuous on P (see below). Thus one
can take P = 0 (centre-of-mass frame) and this equation reduces to

where ~(6) = ~(0, 6). Now for P = 0, M2 is just H2. Thus the positive
square root of the operator involved in (30) is easily taken and leads to

The operator M, the positive square root of the operator M2 appearing
in (29), satisfies the following properties.

THEOREM 5. - For all c E 1&#x3E; the operator M is essentially self-adjoint
on the domain D (26). Moreover; its spectrum is contained in (0, oo)
where (0, 2m ) contains at most a finite number of eigenvalues m B, which
are solutions to the eigenvalue Eq. (31 ).

Remark. - Eq. (29) (or its reduced forms (30), (31 )) can be conside-
red as a relativistic Schrodinger equation because it plays the role of the
Schrodinger equation in Quantum Mechanics: it generates the discrete
structure of the bound states.

Annales de l’Institut Henri Poincare - Physique theorique
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Historical remark. Looking for a relativistic equation for the Hy-
drogen atom, Dirac rejected the equation:

which is the first natural attempt to a relativistic generalization of the
Schrodinger equation. The reason was that it is not invariant under
Lorentz transformations (see the discussion in [9]). Now, the analogue
of this equation in our models is (31 ), which cannot satisfy such an
invariance, because it has been obtained in a given referential frame
(moreover, Q is not an ordinary momentum, because is Lorentz

invariant). In fact the relativistic equation is (29) and its invariance is not
obvious, because it involves L given by (8).

Proof of Theorem 5. - The spectrum of Mo given by (6) covers the
interval [4m2, oo) and is absolutely continuous. Then Mo is essentially
self-adjoint on D. From (20) and (24) it follows that M2 - M20 is bounded.
Then M2 is essentially self-adjoint on D, and so is M.

Let ~(/), P) be the simultaneous spectral measure of Hand P,
where p &#x3E; 0 is the spectral variable associated with H . In the spectral
representation M is the multiplication by ( p2 - p2) 1/2. Because M is a
Casimir operator, the invariant subspaces are limited in the (p, P) space
by half-hyperboloids p = ( P 2 + K 2 ) 1 /2 with K &#x3E; 0.

Let us introduce the family of Hilbert spaces

and P E plays the role of parameters. The Hilbert space 1-í is the direct
integral

(see Section 1.5 of [11]). Let Ho,p and HP be the restrictions of Ho and H
to ?-~P . For instance HP is given by

for suitable 03C6, where H0,P03C6(Q) = 

From Proposition 3 the integral

Vol. 71, n° 2-1999.
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is well defined, even if we give a small imaginary value to P2. Thus
(see [4]) the essential spectrum of /7p is the interval 0), oo) and
it may exist a finite number of eigenvalues in (0, 0)), which form
continuous hypersurfaces in the (p, P)-space. These hypersurfaces have
to be half-hyperboloids p = ( P 2 + m B ) 1 ~2 for m B E (0, 2m ) solutions to
the eigenvalue equation for P = 0, that is to (31 ). 0

6. SCATTERING STATES AND SCATTERING MATRIX

A vector 03C8 E H is said to be a "two particle scattering state" if

its time evolution, for very large time (or very small time), is not

distinguishable from the two free particle evolution, that is, if there

exist 03C8out (or in H such that 0/ = (or 03C8 = where
the ’wave operators’ U +, U - are given by

Here Ho is the two free particle Hamiltonian given in (3). When the
operators (34) exist, they map any vector of 7 C on a two-particle scattering
state.

PROPOSITION 6. - For all c E V the operators U± exist on all H.
The proof can be easily adapted from the corresponding proof in [4].
Proposition 6 leads to the existence of two particle states, defined as

the states contained in the range of the operators U ~ . Now two particle
scattering processes can be obtained by computing the matrix elements
of the scattering operator S := However the question of the
existence of other states (apart from the bound states) naturally arises,
which is related to the asymptotic completeness problem. We will give
a partial answer to this question. In Quantum Mechanics, the asymptotic
completeness problem is stated once the separation of the centre-of-mass
motion has been done. In the relativistic case, this separation cannot
be performed, but we can restrict ourselves to a particular frame, given
by the choice of a fixed P E II~3. We consider again the Hilbert space
decomposition (33) and the restrictions jHp, Ho, p, LP, JP and acting
on suitable domains of still given by the same formulas, but with
fixed P. Now for each P the "wave operators"

can be constructed o on ~CP (their existence ’ follows from the same ’

proof as Proposition 6, with fixed o P). The question of the asymptotic
Annales de l’Institut Henri Poincare - Physique theorique



233NEW REPRESENTATIONS OF THE POINCARE GROUP

completeness will be discussed in According to [10], it consists
of two statements: ( 1 ) the Hamiltonian HP has no singular continuous
spectrum and (2) the ranges of U±P coincide with the subspace of ?-CP
corresponding to the absolutely continuous part of the spectrum of 7-/p.
Only the second statement, called the "completeness of the wave

operators", will be considered here. We note that it is sufficient to insure
the unitarity of the scattering operator SP := 

THEOREM 7. - For all c andfor all P E R3, the ranges of the U±P
coincide continuous subs pace of HP in HP (i.e., the
wave operators aYe complete). Then the scattering operator S zs unitary.

Proof. - Let P E R3 be fixed. Appendix A and the point (4) of
Proposition 3 imply that H p - H0,P is trace class in Then the

ranges of 7- coincide with the absolutely continuous subspace of
(Kato-Rosenblum theorem, Section 6.2, [ 11 ] ). 0

The full asymptotic completeness (with absence of singular continuous
spectrum) needs probably more restrictions on c (see [6] for the 2-d case).

7. AN EXAMPLE AND THE NON-TRIVIALITY

To establish the non-triviality we consider an example for which c is
the kernel of a one-dimensional range operator. This has the advantage of
leading to explicit results.

Let ~ E C~([0, (0)) with support in [0, R ] , with uniform norm bounded
by

and bounded below by

where " R and 0 m are " the parameters appearing £ in Definition 2.

PROPOSITION 8. - Let c be the function given by

for all above and À E lL For 1 thefunction c
is the , interaction kernel in the centre-of-mass frame , of a , continuous

Vol. 71, . 2-1999.
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unitary representation of the Poincaré group. This representation admits
a mass operator M with absolutely continuous spectrum [2m, oo) and at
most number (0, 2m), unitary scattering
operator S. Moreover

(i) 
(ii) M has an eigenvalue m B E (0, 2m ) = -1 and m/ R &#x3E; 2.

Proof. - The function (38) belongs to V. Thus the first part of the

proposition follows from Theorems 4, 5, 7 and Proposition 6. Moreover
the completeness of the wave operators implies that the absolutely
continuous spectrum of H (of M) is the same as for Ho (for Mo).

Proof of (i). Note that ~C carries two different unitary continuous
representations of the Poincare group, the free representation gener-
ated by {Ho, P , J , and the interaction representation generated by
{ H, P, J, L}. Because Ho and P commute they admit a simultaneous
spectral measure P) where E &#x3E; 0 is the spectral variable asso-
ciated with Ho. In the spectral representation Mo becomes the multipli-
cation operator by ( E 2 - p 2 ) 1 /2 . Because Mo ~ 2m the support of d ~o
is

For such ( E , P) let us consider the space = : which

appears in the spectral decomposition of ~CP which diagonalizes Ho, p

where s p (Ho, the spectrum of Ho, p, that i s the interval [~2(P, 0) ; (0).
The operator 5’p restricted to P is denoted S E, P and is called the ‘scat-
tering matrix’ . The action of Lo on the variables (E, P) is easily com-
puted. For ~6 E }R3, I  1, the Lorentz boost of speed ~6 (from
which Lo are the infinitesimal generators) acts as follows

where ~ is the Lorentz matrix of speed ~6. It follows from (39) that the
relation between scattering matrix is

Annales de l’Institut Henri Poincaré - Physique - theorique
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which shows that S is known once is given. Let us restrict ourselves
to on which the interaction operator

has one-dimensional range, that is V003C6 = 03BB(~,03C6)0~ where (. , .)o is

the scalar product of and According to [11],
Theorem 3 of Section 6.7, the scattering operator gives for all v E 

where

for all z E C, Imz &#x3E; 0. In (41 ), (., .) E,o is the scalar product of 
and is the restriction of ~ to In fact

is a constant in so that

which is non-zero for all 2m  E  ~/7~ + 4~ (see the definition of 1])
and for all v in a large set of On the other hand, for E as above
let us compute the limit needed in (41 )

which has obviously a non-zero imaginary part. Then SE,0 - I is non-
zero for all such E. Because the representation in ~-C generated by

Lo} is continuous, if follows from (40) that the scattering
operator S differs from identity.

From Theorem 5 with (38) and Â = -1 Eq. (31 ) can be
written as follows

W.71,n° 2-1999.
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where K is a constant. This function belongs to D(Mp-o) C and
is an eigenfunction of provided the implicit equation

admits a solution 0  m B  2m . To study this last question we consider
the right hand side of (43 ) as a function of the variable For m B = 0
we get from (36) .

Now it follows from (37) that for m B = 2m the right hand side of (43) is
maj orized as follows

which is &#x3E; 1 for m/ R &#x3E; 2. Thus (43) has a (unique) solution 0  m B 

2m, which is an eigenvalue of (31) and then an eigenvalue of M. 0

8. CONCLUSION

Let us sum up what we have found. We have constructed a family of
unitary, continuous representations of the Poincare group in four space-
time dimensions, as perturbations of the two free boson model. The
scattering operator S can be performed and is unitary and non-trivial in
some cases..

The physical content of this mathematical construction is based on
Wigner’s famous interpretation [ 13], according to which an elementary
particle is described by an irreducible, unitary, and continuous repre-
sentation of 7~. In the construction of S we have verified the existence
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of scattering states, i.e., states which for large (or small) time approach
the tensor product of two irreducible unitary representations of ~, in-
terpreted as describing two free particles. This allows us to assert that
our models really describe relativistic quantum systems of two particles.
Moreover the non-triviality of S allows us to claim that the interaction
between the particles can be effective.
The absence of particle creation or annihilation makes these models

interesting for low energy physics, in particular for the bound state
problem. The existence of a bound state equation similar to the ordinary
Schrodinger equation of Quantum Mechanics (and which can be called
a "relativistic Schrodinger equation") is probably the strongest result of
the paper.

However, these results have been obtained for interaction operators (9
with ranges contained in the subspace of zero angular momentum (the
so-called "s-wave subspace"). To get a better characterization of this
limitation, let us compute the change of the second Casimir operator,
the Pauli-Lubanski operator, given by ( 1 ). In the representation (8) it
becomes

where WJ is given by (6) and Wo n Lo. Now condition ( 13)
implies {0, Wo} = 0 and thus

Our interactions have no effect on the Pauli-Lubanski operator.
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APPENDIX A. A CRITERIUM FOR TRACE-CLASS
OPERATORS

Let = s) be a Hilbert space Where s is a positive cr-finite
measure, and let F be an integral operator on HS of kernel f : R3 x IR3
H C, that is
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for all suitable " u E 

LEMMA 9. -Let K be a compact subset of R3 and f E x 

S Q9 s) .such that for almost all x E R3 the ’ function y ~ ,f (x, y) has

support in K. Let us suppose that the three derivatives

exist in L 2 (II~3 x }R3, S @ s ) . Then F, defined by (44), is trace class.

Proof. - We follow [ 12, Section XI.9.32]. We use that a product of two
Hilbert-Schmidt operators is a trace class operator. Let k &#x3E; 0 be such that

K c [-k, k]3 . Let u E From three integrations by parts we get

We have written F as a product of two Hilbert-Schmidt operators, the
first one of kernel

and the second one of kernel

Thus F is trace class. 0
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