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ABSTRACT. — Within the context of renormalization group analysis,
we describe how to get a very detailed control of the effective potential
theory for some fermionic systems using the tree expansion technique.
We consider the tridimensional Gross—Neveu model (with smooth ultra-
violet cut-off) and we prove that the kernels of the effective potential can
be written in terms of a convergent perturbative expansion in the initial
interaction parameter (with an upper bound for the convergence radius
independent on the volume). Moreover, we obtain pointwise bounds for
these kernels showing that they decay polynomially (in a well precise
sense) as the distance between points becomes large. © Elsevier, Paris

RESUME. — Du point de vue de I’analyse par le groupe de renormaliza-
tion, nous présentons une facon d’obtenir un contrdle trés fin de la théo-
rie du potentiel effectif pour quelques systémes fermioniques, en utilizant
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130 A. PROCACCI, E. PEREIRA

la technique d’expansion en arbres. Nous étudions le modele de Gross—
Neveu en trois dimensions (avec cutoff ultraviolet lisse) et nous démons-
trons que les noyaux du potentiel effectif peuvent étre écrits comme un
developpement convergent dans le parametre initial d’interaction (avec
une borne supérieure pour le rayon de convergence, indépendante du vo-
lume). En plus, nous obtenons des bornes ponctuelles pour ces noyaux,
ce qui démontre leur décroissance polynomiale (dans un sens trés précis)
lorsque la distance entre les points devient grande. © Elsevier, Paris

1. INTRODUCTION

In the last fifteen years a considerable effort has been spent in order to
apply the renormalization group (RG) method to many popular problems
in mathematical physics, ranging from classical mechanics to field theory
and quantum many body systems. The basic idea of RG, i.e., roughly
speaking, the analysis of the problem through a splitting in many scales
of lenght, has been made rigorous and applied in many different ways.

In the present paper, within the framework of fermionic interacting
systems, we aim to show how to obtain a very detailed description
and control of the effective potential theory, i.e., of the changes of the
interactions with the RG flow, using the Gallavotti-Nicol6 tree expansion
technique. We study the infrared limit of the tridimensional Gross—Neveu
model (with a smooth ultraviolet cut-off which regularizes the theory
at short distances), and we obtain pointwise bounds for all the k-point
kernels of the effective potential after n steps of the renormalization
group transformation, showing that their long distance behavior is given,
as n — 00, in terms of polynomially decaying functions. We still prove
that they are analytic functions of the initial interaction parameter (with
an upper bound for the convergence radius independent on the volume).
The pointwise behaviour of the kernels of effective potential is an
important information to the knowledge of the correlation decay, which
has a direct physics interest. In many place it is possible to find detailed
RG analysis to get “integral” (respect to some norm) bounds (e.g., [6,8,
15,18] and see Remark 5 after Theorem 3.1 below). On the other hand, we
could not be able to find in the literature a complete and rigorous analysis
for pointwise bounds (this problem was in some sense understimated
in [6], see Remark 6 after Theorem 3.1).

Let us now introduce the model and some notations.
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POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 131

The Gross—Neveu model is a relativistc Fermi system described by the
action (in Euclidean formalism) H = Hy+ V© with Hy and V© beeing
the free action and the perturbation, respectively, given by:

Ho= [dxyig®Oy,  vO=i[ [y @D
/ [y

A

Here we will consider just the tridimensional case (d =3),s0x € A C
R**! (R?*! is the tridimensional Euclidean space-time), A is a periodic
box in R2+1 A a small real paramenter; ¥/, ¥, represent spinors with
entries wx Y8 (o, p=1,2,3,4), with 7 and ‘ﬁx standard Grassmann
ﬁelds We name the model Gross—Neveu but take the number of flavours

=1. The notatlon ¢ means ¢ =9, y* (sumover u =0,1,2,9, = (,M)
w1th vY, y!, y? being 4 x 4 antihermitian traceless matrices such that
yhyY + yVyH* = —28"v. Expressions like ¥ or ¥ gy or ¥y have to
be interpreted in their matricial sense, i.e.,

4 4
V=9 Taw=> ¥ tyh, yy=yy’
a=1

a,f=1

(the last is a 4 x 4 matrix as the product of a 4-column spinor with a 4-row
spinor). The free propagator of the model (with a smooth U.V. cut-off) is,
by definition (1.1)

i 97 @ =0 =80 =)
1 ip(x— p —p?
=(2n)3/d3pe”( y>?e P (1.2)

The notation (> 0) indicates that the U.V. cut-off is at the scale L° =1

(L > 1 being a constant with dimensions of a lenght). The reasons for this

notation will be clear in the next section. p(x — y) means p, (x — y)*.
The free propagator g>? satisfies the pointwise (asymptotic) bound:

C
GOy —y)| S ————, C>0. 13
18P =) < R p— > (1.3)

The action of the model is invariant under a (discret) Chiral transfor-
mation: ¥ — Y ¥, ¥ — ¥y>. Thus, in the LR. analysis, this model
has just a local marginal term [dxv (i #)¥,. The local quartic term
VO in H is irrelevant. Local quadratic terms as ém [dx¥ ¥, or

Vol. 71, n® 2-1999.



132 A. PROCACCI, E. PEREIRA

8m,, [ dxy ", are forbidden in the effective potential by Chiral sym-
metry and euclidean symmetry, respectively. Thus, in the study of the
renormalization group (RG) flow there will be just a running coupling
constant, the “wavefunction” renormalization constant related to the mar-
ginal term.

The structure of the RG flow for this model is therefore rather simple,
but the model is far from being trivial. Roughly speaking, it can be viewed
as a sort of fermionic version of the dipole gas in d > 2 dimensions.
The latter is a very studied problem of statistical mechanics (including
rigorous RG analysis [8,14]), consisting in a gas of classical particles
interacting through a two-body stable but not absolutely integrable
potential. The rigorous RG analysis of the dipole gas is performed, in
general, by mapping the model (throught a Sine-Gordon transformation)
into a bosonic field theory. The action of this bosonic model is formed
by a kinetic marginal term, $32¢ plus a small irrelevant perturbation
term given by a function of d¢. The relevant mass term ¢? cannot be
generated in the RG flow due to the symmetry of the initial action (its
dependence on derivative fields). Hence, the parallel with our model is
made clear: the action of our fermionic model has also the structure of a
kinetic marginal term ¥ (i #)¥ plus an irrelevant (quartic) perturbation,
and the relevant mass term ¥/ cannot be generated during the RG flow
because of the symmetry properties of the initial action (i.e., discret
Chiral symmetry).

Still concerning the non-triviality of the model to be considered here,
we recall that to obtain some rigorous results such as the absolute
convergence of the perturbative expansion in A (uniform in the volume A)
for the pressure, effective potential kernels, etc., a treatment involving just
one step integration (all scales at once) does not work, as in the case of
the dipole gas, unless one is able to exploit suitable cancellations without
introducing dangerous combinatorial factors. Due to the difficulty of the
latter task, a direct proof of the analicity of the pressure for the dipole gas
is still missing [8].

In relation to our fermionic model, the machinery of the scale per scale
RG analysis (and the consequent resummation) provides the standard
(and, as far as we know, unique) tool to handle these kind of cancellations,
while the Brydges—Battle—Federbush tree equality [7], and the good
combinatorial behaviour of fermionic expectations allow to keep under
control the combinatorics.

Our multiscale RG analysis is based on the Gallavotti-Nicold tree
expansion algorithm adapted to Fermi systems (e.g., [3-5] and [6]),
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POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 133

and includes an important technical device: the rescaling is performed
by introducing into the free measure, step by step, the wavefunction
term extracted at each step. This a very general way to perform the
rescaling, especifically suitable (and probably necessary [12]) to treat
non-canonical scaling models [6], but also widely used for canonical
scaling or even asymptotically free theories [8,14] (more comments at
the end of Section 2.3 below).

We think that the results obtained here, and also the method used in
order to obtain these results, can be useful for further purpose, e.g., the
study of the k-points correlation or Schwinger functions (with k > 2)
for fermionic systems with anomalous scaling, like the one-dimensional
Fermi liquid and the Thirring model. _

Finally, we- list some rigorous constructive results available in the
literature on the general Gross—Neveu model in its various versions
(N flavours, d dimensions, massive or massless, IR or UV). In particular,
we mention the construction of the d = 2, N large, massless IR
case (which is a highly non-trivial model due to the mass generation
mechanism) [16] and of the two-dimensional massive, N > 2, UV
(which is asymptotically free) case [11]. The tridimensional, N large,
UV case (again a very untrivial model due to its nonrenormalizability)
has also been rigorousely studied in [10]. In all these references the
model is mapped in a purely bosonic theory and consequentely, beyond
the multiscale analysis, technical tools like, e.g., polymer expansion and
large field small field analysis are heavely used. In [15] one may find
an alternative construction of the two-dimensional massive, N > 2, UV
case, based just on a purely fermionic formalism (i.e., more similar to the
techniques used in this paper). Constructive results on fermionic models
using just fermionic approach can also be found in [6] (d =1 + 1 Fermi
liquid, which should include also the IR Gross—Neveu model in d = 2
with N = 1 and the Luttinger model) and in [18] (Yukawa model). Finally
we remark a recent renewed interest on purely fermionic constructive
field theories, e.g., [1] and [9].

We will try to be as self-contained and pedagogical as possible. In
this spirit, Sections 2 and 3 of the paper will be devoted to introduce all
the notations and definitions indispensable to understand the proofs of
Sections 4 and 5. In particular, in Section 2 we present the multiscale
decomposition leading to the RG mechanism and we define the tree
expansion algorithm for the multiscale perturbation theory. In Section 3
we define the (anomalous type) renormalization prescription, set up the
RG flow for the effective potential and introduce the main theorem

Vol. 71, n® 2-1999.



134 A. PROCACCI, E. PEREIRA

of the article (Theorem 3.1) concerning the pressure and the effective
potential kernels of the present model. Section 4 is devoted to preliminary
estimates including the bound on the wave function renormalization
constant and the consequent proof of analiticity of the pressure (which is
the “easy” part of the main theorem, involving just “integral” bounds). In
Section 5, we complete the the proof of the hard part of the main theorem,
i.e., the analiticity in A of the k-point kernels of effective potential and,
especially, their pointwise bounds.

2. THE RG MECHANISM AND THE BARE TREE EXPANSION
2.1. Basic definitions

Before describing the RG mechanism to be used here, we introduce
some previous structures and definitions. The generating functional of
the correlation functions is written as

eXp[—S(ﬁ, h)] — / P(>O)(d]/j)ev(o)(Ev'//)_fdx}-l"]//"—fdxwxhx. (2.1)

In this formula (as also in (1.1)) ¥, ¥, h, and h, (h and h are the
external fields), with x € A, are generators of a Grassmann algebra, i.e.,
they are anticommuting numbers (e.g., ¥V, + ¥, ¥, = 0, etc.). The
symbol PZ9(dyr) represents a normalized Gaussian Fermionic Measure
(GFM) (formally) given by:

HXEA d—lZX dWX ef/\ dx?x(ia(ﬂ)))wx
JTiendV, dy, RN

/ (.. )PPVdy) = Eenl..). (2.2)

PEOdy) =

PC9(dy) works like a Gaussian measure ruled by a Fermionic Wick
Theorem with covariance g*?(x — y). Hence, the simple expectation
E,>0 acts on field monomials as follows:

Egoo (VoY) = 8550 — ),
0 ifn#m,

a am_ﬂ mY) —
5g(20) (wxl] R ' Iﬁy,l e Wf,,, ) - {det[Gij] ifn=n, (2-3)

where [G;;] is the n X n matrix with entries G;; = g(%?,) (xi — yj).
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POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 135

The reader worried about the rigorous meaning of the formulas above
must recall that A is periodic cube of size |A|!/3, and so the integral over
momenta p in (1.2) is actually a sum over a discrete set of values of

= 2| A|"13(ny, ny, n3). Hence, defining ¥, = |A|7' 3, ¥, P we
may reduce ourselves to a countable set (Jp and c.c.) of Grassmann
generators. Following this scheme we can give a precise mathematical
meaning to Grassmann integrals as Berezin integrals and also to infinite
sums of Grassmann monomials. This is a commun practice (see, e.g.,
[4,6,15]). Here and throughout this paper we interpretate the expressions
involving Grassmann variables in the sense of [4,6].

Towards the analysis of correlations, it is very useful (and a widely
adopted tool) to study a functional Veie(h, h), called effective potential or
effective action, defined by

Ve (R, h) = log / PO (dy) eV "I HhYh (2.4)

The relation between Ve (i, h) and S(h, k) is, via a change of vari-
ables [4],

S(h,h) = (h,§2% % h) — Vet (8% 1), (2.5)

where (f, g) = [dxf(x)g(x) and f x g(x) = [dyf (x — y)g(y)-

The expansion of Veg(h, k) in terms of the perturbative potential VO
is immediate. Namely, by the cumulant expansion formula, right hand
side of (2.4) can be rewritten as

Vegr (1, h)

—Z Egeol (VO@ +hy+h),... VO +h ¥ +h)], 26)

~~

N times

where EgT(ZO) is the truncated expectation relatively to the Gaussian Fermi
measure PZ9(dvyr), defined by

Elon (VO,..., V)

8

3 © ©

A VP4 +An V)
(3 v logé’ cole ]) ‘}»l="‘=)~N=0. 2.7
Recalling the deﬁmtlon of V@ (1.1), it is clear that the expansion (2.6) is
actually an expansion in power on A. In particular, the partition function
(which coincides with exp[Vegr(h = 0, h = 0)]) is given explicitly, as a

power series in A, by

Vol. 71, n°® 2-1999.



136 A. PROCACCI, E. PEREIRA

Ea(h) = / PO dy) e’

© 3N B ) B
=Z m/dm "'/de€g<>°)[(‘/’x1Wx,) "'(‘pr‘/’xN)2],(2.8)
A 4 N times
while the “pressure” of the model p(A) = |A|™'Vy (h =0, h = 0) is
given explicitly by '
| Alpa(A)
=log &4 (1)
3 AN T — 2 —_ )
= Z vl /dx1 .../degg(gw[(l/fxl V). (y;lepr) ]. 2.9
N=1 ° A 4 ~

. ey
~

N times

The expansions in power of A (2.6) and (2.9) are analytic in A but the
A dependence of their convergence radius is, for the time being, out of
control and the radius may shrink to zero as A — o0o. Of course, the RG
analysis below will provide a bound for the convergence radius uniform
in A. We want to stress also that (2.8) and (2.9) make even stronger the
analogy of the present model with the dipole gas. Actually, (2.8) and (2.9)
can be viewed (cum grano salis) as the partition function and the Mayer
series of a system of classical particles in the gran canonical ensamble at
inverse temperature 8 = 1 and fugacity A, enclosed in a volume A. The
factor

Eoo [(Vy, %,)2 e Yy ‘/fxzv)z]

can be interpreted (modulo a sign) as the Gibbs factor
exp[—U(xlv ey -xN)] )

and

Eroo [(Fa )’ o Wy ¥rey)’]

is interpreted as the N order Ursell coefficient of the Mayer series [7].
The potential U(xy,...,xy) is actually stable (i.e., U(xy,...,xy) =
—BN, with B constant), due to the Hadamard inequality, which provides
a bound of type CV for the simple expectations of Fermionic fields,
as in (2.8) (see later (4.21)). But U(xy,...,xy) is not a tempered
interaction [24], i.e., if |x; — x;| — oo and all others x’s are fixed, then

2
|U(x1,...,xy)| ~ const/|x; — x;|%,

Annales de I’Institut Henri Poincaré - Physique théorique



POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 137
which is a too slow decay rate, a consequence of the fact that g>?
is not absolutely integrable (see (1.3)). This fact make extremely
hard to obtain a |A|-independent CV bound on the N order Mayer
coefficent in (2.9) via a one step integration: one must be able to
exhibit suitable cancellations without destroying stability (i.e., without
producing dangerous combinatorial factors), exactly as in the case of
the dipole gas. The way out, of course, is to analyze the series (2.6)
and (2.8) using the RG multiscale analysis, which we describe in next
section.

2.2. Multiscale decomposition of the free covariance and tree
expansion definition and notations

Now we describe the free propagator multiscale decomposition which
will lead us to the multiscale tree expansion of the effective potential. We
write

o0
g(ZO)(x —y) = Zg(f)(x -y), (2.10)
Jj=0
where
) d3p 2j 2 2j+2 2 [f i
() . _ — L4 _ L~ . ( - )
g0 =) = [ G e B,

L>1, 2.11)

gP(x)=L"%C(L7x), |gV(x)| < CL™ exp[—aL~/|x|], (2.12)

d3 .2 72,2 ipx
Clx) = (2”’;3(6 7 e Lp);f%ep ,
|IC )| < Cexpl—alx|], (2.13)

) S Ep g B ipay)

-0 =Y P -y = [ et Lo, @14
oy @)

where o and C are positive constants. Here and throughout this paper C

always denotes a generic constant (i.e., the notation C may be used for

different constants). The decomposition (2.10) induces a decomposition

of the free Gaussian fermionic measure (2.2)

YO =y = i y@ and PCV@y)=][P(dy"?), (215

j=0 j=0
Vol. 71, n° 2-1999.



138 A. PROCACCI, E. PEREIRA

where ¥ () are Grassmann independent fields (respect to j) on A,
with Gaussian Fermionic Measure (GFM) P(dvy)), with covariance
g (x — y). Analogously, P(dyZ7) will indicate the Gaussian fermi-
onic measure with covariance g(>/)(x — y), acting on Grassmann random
fields on A, indicated by >/ =322 y®.

The “running” effective potential V.’ (>)) at scale j is defined by

GHD () () . )
R <w<>f+'>>=/ P(dyV) eVer @4y (2.16)
and

n y
Ea)=lim [[Z; withZ;= / P(dy D)%t @) (2.17)
=0

By a cumulant expansion (2.16) implies

V(j+1)(w(>j)1)

Z ¥7 Ep[Var @ +y>0), L VP +y BT 2.18)
We may represent graphically the truncated expecation in the formula
(see Fig. 1). The n steps iteration of (2.18), through the graphical iden-
tification above, produces the so called Gallavotti—Nicol6 tree expansion
representation of the effective potential V. (") at scale n.

We now review the main ingredients and the basic notations of this
expansion (general treatments can be found in [12,13] and [4]).

Let us indicate with the symbol 8" a rooted Cayley tree with N
end points. 6V is organized hierarchically in a natural way. Namely, a
rooted Cayley tree starts with a single vertex, named the root of the
tree, followed by a line which bifurcates at the vertex vy into Sy > 1

0)
)[ eff °>°° eff =

Ji

Fig. 1. Graphical representation of a truncated expectation.
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POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 139

branches, each one of these branches bifurcates again, and so on, until
an end point is reached. A non-trivial vertex v of OV is a point where
a bifurcation occurs (we may consider, sometimes, the root and the
end points as non-trivial vertices too). Non-trivial vertices in a rooted
Cayley tree form a partial ordered set in a natural way. Le., given two
non-trivial vertices v and w, we say that w < v if w can be reached
when we climb the tree starting from the vertex v. If w < v, we will
also say that w precedes v, or either, v follows w. Throughout the
paper, we denote v, the greatest non-trivial vertex of 8V (i.e., the first
preceding the root). For any non-trivial vertex v, we will indicate as s,
the number of branches in which v bifurcates. We also will indicate
as v',v%,...,v" the s, non-trivial vertices immediately preceding v
(remark that some of them may be end points). We denote v’ the unique
non-trivial vertex immediately following v (if v = vy then v’ is the root).
Two rooted Cayley trees are said topologically identical (and they will be
considered as the same rooted Cayley tree) if they can be superimposed
exactly just streching/shortening lines between non-trivial vertices or
increasing/reducing angles between lines starting from the same non-
trivial vertex, without creating or destroying non-trivial vertices and
without overlapping lines. So, a rooted Cayley tree will be univocally
determinated once the sequence of its non-trivial vertices, hierarchically
organized in clusters according to the natural partial order above, has
been given. It is an easy combinatorial exercise to bound the number
of all topologically different rooted Cayley trees with N end points

(e.g., [6])
> 1< (o). (2.19)
9N

A labelled tree 6" with N end points and root at scale n is a rooted
Cayley tree for which scale labels n, =0, 1,2, ..., have been assigned
at each non-trivial vertex v, compatibly with the natural partial order of
the rooted Cayley tree. Namely, if w < v, then n,, < n,. In a line of
a labelled tree among two successive non-trivial vertices v and v, we
place n,, — n, — 1 points, called trivial vertices, and assign to them scale
labels n, + 1,1, + 2, ..., ny — 1, respectively. For later use, we also use
a specific symbol v* for the greater among them (i.e., the one with scale
label equal to n, — 1). '

End points in a labelled tree 6" are numbered, from top to bottom,
as 1,2,..., N. The factor A [dx;[, ¥,]* is attached to the ith end
point. We also denote n; the scale label of the first non-trivial vertex

Vol. 71, n® 2-1999.



140 A. PROCACCI, E. PEREIRA

Ny Np-l+ + + niton, n;

Fig. 2. The neighborhood of a non-trivial vertex v in a labelled tree.

following the end point i (see Fig. 2). A non-trivial vertex v in a labelled
tree represents, through the graphical identification of Fig. 1, a factor
1\s,! times a truncated expectation, ruled by the covariance g™’ (x — y),
of s, objects; a trivial vertex u represents in a natural way a simple
expectation ruled by the covariance g’ (x — y). Then it is natural to
associate to a given labelled tree 9,1;’5” a hierarchical organized sequence
of simple and truncaded expectations at different scales of N objects, say
EOV () -y ot ), ie., explicitly
” 1
£ )= [H En+Enr

<Yy
X [Ena1-E0()s ey Enyrr -+ E0 ()], (2.20)

where the productory [],<,, runs over all non-trivial vertices (end point
and root excluded). The right hand side of (2.20), evalutaded when the N
objects are N copies of V@, is easily recogmzed as a single term, say
V™ (@GN, in the multiscale expansion of V% obtained by iteration

of (2.18). Hence, the tree expansion of e(")

Vegr 1s simply
=YY Y v, (221)
N=1 6N gNn. g fixed
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POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 141

For N fixed, the second sum in formula above is over all possible
(topologically different) rooted Cayley trees with N end points. For oN
fixed, the third sum is over all the possible ways of labelling 6~ (i.e., all
possible attributions of scale labels n, in non-trivial vertices v compatibly
with the hierarchical structure of the tree 87), in such way that the root
carries the scale label n. V™ (@,.", ¥>") is explicitly given by

V(n) (elglb,n, w(}n)) — SQ(N.n) (V(O) . V(O))

—}\.N/d.XI /de[H gn /—1 ﬂv+] '83:,]

v<vg
X [Sn.+1' [1/f(>0)1ﬁ(>0)]
Enprr - E [T Y0 ] (2.22)

Remark also that, due to the symmetries of our model (g (0) = 0 for
all j)

Enr &[T VWO = [0 w2 T (223)

i.e., everything goes as if [¥/1/]*> were Wick ordered.

2.3. The renormalization

Of course a “bare” multiscale analysis as the one presented above is
not enough to obtain convergence of the perturbative expansion. Due
to the problem of lack of absolute integrability of the free covariance,
we also need to perform some resummation of the perturbative series
to look for suitable cancellations. This resummation is provided by the
scale per scale renormalization prescription for the marginal term U o
of the model. We follow the scheme of [6], and [15]. We define £ and
R =1 — L operations acting on field monomials (no matter the scale),
which split the effective potential into its relevant/marginal part plus the
irrelevant part (in the sense of dimensional power counting)

VP =cvP +RVY (2.24)
and £, R are defined directly acting on field monomials (we drop scale
indices here) as

‘C[—lpxl "'mewh "'wym] 0
R[Tb—xl "'melﬁy. e “/fy,,.] =le "'me‘/fyl . 'w}’m ifm>2,
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E[T‘)Exl wxz] = le ‘ﬂxl + (x2 - XI)M—!LTXI au‘ﬂx, )
1

7%%@%J=/HKL4XM—meM¥%mV (2.25)
0

where x130) = x1 + 1(x2 — x1), and (¥ — x1)?8% = (x2 — x1)"(x, —
x1)"9,,0,. Note that the definitions (2.25) are consistent with £ + R =1,
and that (2.25) is a consequence of the Taylor formula

1
1pxz = wxl + (x — Xl)awxx + (x2 “xl)z/dt(l - t)azwxn(t)'
0

Now, for our model, due to chiral and Euclidean symmetries, and
translational invariance, it is easy to see that

LV =b, / dxyr i Jy, (2.26)

where b, is a scalar constant (wavefunction constant). As a matter of fact,
we have

LV = [ axayws o -y,
+/w@u—WW%w—w%%m. 2.27)

Observe that [ dz W[(2"]) (x)=0: W[(z"]) (z) is necessarely a sum of product of
an odd number of covariances g/ at various scales g% (x) and g/’ (x)
are odd functlons of x for anyj. Moreover, by Euclidean symmetry,
i dzz“Wm (z) = const y*. Hence, recalling that in d = 3 tr[y,y*] =
—12, we have that the running coupling b, in (2.26) is explicitly given
by:

The irrelevant part of the effective potential is given by

(”)_/dl‘(l —-t)/dx| dXQ(X] —xz)

X Wi (1 = X2 e, + VP @), (229)

122
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where VIE") (1) contains the terms with more than two fields (or two fields
with one 32).

The scale per scale renormalization can be done following, at least,
two ways.

(1) At each step we split

e(f}f) — EV(]) + RV(;)

and we regard b; in EVe(f{) as a new expansion parameter which appears

at scale j. So, generally speaking V(J D can be regarded as a power
series in A, by,...,b;. Remark that, with this procedure, the factor
EVe(f’f) is left in the effective potential, thus we are actually defining the
same sequence Ve(f]f), . Ve(f’f), ... of running effective potential, but the
expansion is reorgamzed collecting toghether, step by step, an amount of
terms forming new expansion parameters by, by, ..., b; (i.e., the running
coupling constants). Hence V(’ D now is a power expansion not just in
terms of A, but also in terms of by, by, ..., bj. This method is very well
illustrated in [12] and [4]. It has the great advantage to leave unchanged
the effective potential during the RG analysis, so leading directly to
correlation functions via (2.5); but it seems to work just in the case
of asymptotically free theories and in general it is expected to fail in
anomalous scaling cases [3].

(2) At each step we split again V) = LV + RV then we remove
LV =8b;yi py from the effective potential and put it into the
measure P(dy 7)) which has still to be integrated out. This, roughly
speaking, will change the constant in front of the covariance by an
amount 8b;, the correction at scale j of the wave function constant.
The new effective potential V) is indeed a power series in A, and
parameters 8b; appear implicitly inside the covariances (remark that V)
is now a different object respect to V, e(f’f) defined before; that is why
we are using a different symbol). In this way a new sequence of
running effective potentials V¥, v® V) is contructed, which
is obviously different from the sequence on point (1).

This method is more general, since it can be also adopted for non-
asymptotically free or even non-canonical scaling models. Moreover the
analysis of the effective potential is expected to be simpler, since it does
not depend explicitly on all running coupling at lower scales. An un-
pleasent (and not always remarked in the literature) consequence of this
procedure is that lim,_,o V" % Ve so that (2.5) cannot be used in or-
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der to calculate correlation functions, and the relation between the renor-
malized effective potential and the generating functional of correlation
becomes in general more involved. Anyway, an explicit formula, with a
structure very similar to (2.5), does exist. It has been furnished for the
first time in [19] (see also [21]) for bosonic lattice systems using the
block spin RG transformation, and it has been extended in [20,22] for
lattice fermions. The generalization of the formula to continuous formal-
ism has been obtained in [23], where it is used to perform a pointwise
analysis of the correlation functions of the present model.

As said in the introduction, having also in mind to provide a model-
independet algorithm which can be in principle applied also to non-
asymptotically free fermionic models, we will adopt the latter and more
general method and we will follow the scheme of [6].

3. THE RG FLOW AND THE RENORMALIZED TREE
EXPANSION

Now we describe the RG flow. We will generate a sequence of
running effective potential V) and a sequence of running coupling
constants b; (j =0, 1, ..., and by = 1). We will indicate as P, (dy>/))
the normalized GFM with covariance b;'g>/) and P, (dy'") the
normalized GFM with covariance bj‘lg(f ) (see (2.11)~(2.14)). Consider
the partition function (2.8), where Py, (dy*?) may replace P(dy>?)
(since by = 1). We start integrating out the fluctuation field yw©
using

Py (dyPD) = Py (dy D) Py ().
Thus,

Ea(0) :/Pb0 (dw(>l))Pbo (dlﬁ(o)) ev(O)(w(go))
:/Pbo(dw(zn)ev(])(zﬁ(zo))ewﬂ, a1

where

v (w(?l))

_ .
1

— } : mgg(o)/bo [V(O)(w(él) + 1‘0(0))’ o, V(O)(w(Zl) + w(o))], (3.2)
N=1 :
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|A|T1 zlog/PbO(dw(O)) eV(O)(\/,(O))

ZN. Tom VOW®),... VOW®)]. (33

The Fermionic truncated expectations are performed using as covariance
by '8 @ (x — y) acting on fields ¥© and considering the fields ¥ as
constants. The general form for V(D) is

VO (D)
= / dxy dx, W) (i — x) ¥y, WS+ 3V (W), 3.4)
1>2

where 37, Vi’ (¥>Y) contains the terms with more than two fields.
Now we split V) into its marginal and irrelevant part using defini-
tions (2.25) of operations £ and R and using the symmetries of the
model

VO (D) = Ly D (yED) 4 RY D (D)
zabo/dxwf”i JUCY L RVO (4 D) (355)

with

1
RV (¢ D) =/dt(1 — t)/dx1 dxy(x1 — x2) W) (%2 — x1)
0

—
T PR+ V(o 39
1>2
and
8bo=— tr[ / dzW) (2)i ;/] (3.7

Hence, the partition functlon (2.8) can be written as

(D]

EA(A)_CTIMI/P d¢(>1)) sho [ a7V iy D RVOWED) (3 gy

Note that
= &) —
Py, (dyy D) e2bo [ =¥V v =Py, (YD), (3.9)

where P, (D) is the normalized GFM with covariance [byi &P +
8boi 917 '(x — y) and
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|Alf =log/ Py, (dy D) b0 [ Vit

(3b0)N

/ dx; - / AL i [T Yo s V] (310)

N=1

with

d3
CEx =) =/ (2:53

Consider now, following [6], the Fourier tranform of the [by1 ;391) +
8boi 917" (x — )

_L2] 2

PrelPC) =i ggCD(x —y).  (3.11)

ya

1

[boi 2V +8boi §]~ "(p) = [boeL r? + 8bo)~ (3.12)
and define
by = by + 8by. (3.13)
Then it is easy to check that
[boe"’?" + 8bg) '
1 1 1 _L2p2 —2L2 2
= ety [ et 4 2 — (.14
by b bl bo+8bge —L%p
[boi §>1 +8boi 7] (x — )
1 1
=—b—lg@”(x—y>+b—l[g<”<x—y>+r“’(x—y>]. (3.15)

where

d3p . p [C_L2p2 _ e_2LZp2]
W(x —vy)=8b /— ip(x=y) L ) 3.16
PRI = [ G S byt dbpe 10

Defining now

g - =gV -y +rPx —y). (3.17)
(3.15) implies that

Fbo (1//(21)) (w(>2)) (w(l)) (3.18)
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where P,, (") is the normalized GFM with propagator ifg”(l)(x -y)
defined in (3.16)—(3.17). Note that the bound

18D (x — y)| <const L™*'exp[—aL™"|x — y|] (3.19)

holds, With o > 0 constant, if 8by is sufficiently small (actually, we will
show that §by &~ O(A?), where A is the interaction parameter).
Therefore, using (3.18), we obtain

E (0 = e(Ti+mlAl / Py, (dw(>2))1.~)bl (dw(l)) eRV(')(llf@')) (3.20)

which completes the first RG step. In order to perform the next step,
remark that RV @ (y(ZD) contains now a term of the form 3. Thus,
V@ (D) will contain infinitely many terms with fields of the type
sz, and so, we must extend the definition on R and £ to monomials
¥ (P) which contain fields of type 8%v. The extension is obvious, since
a monomial containing double derivative fields is, by power counting,
irrelevant:

Ry (P)=vy(P), Ly (P)=0, ify(P) contains terms d>yr. (3.21)

Iterating we generate a sequence V™ of renormalized running effec-
tive potentials, a sequence §b, of running coupling constants, and a se-
quence of constants T}, t, defined as follows

Y @D (g Gt D)
o0
~ n >n 1

o N

X [RV® (&M 4y ™) RV® (ym ™)) (3.22)
with
gV =y =g" @ -y +rPx —y),

g2 g2
PO (x — y) = 8y /ng;eipu—y)% UE:_IL:(Sb—n_el 2:2}7"1»]2]‘ (3.23)
And, if §b, is sufficiently small,
8™ (x — y)| < const L™*"exp[—aL™"|x — y|]. (3.24)
The running coupling constants b, are defined by
| by = by_y + 8b,_, (3.25)
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1 .

Sby_1 = Etr[ / dzW3h, ()i z], (3.26)
where, W[2 0)(x — ¥) is the kernel in front of the monomial (/Q)wi?”
in the expansion of V) (remark that V™ has also an irrelevant quadratic
term proportional to ¥, [ Bzwg(f)) whose kernel does not contribute to
8b,_1). Finally, the pressure (or free energy) of the system is:

o0
paQ) => (T; +1)), (3.27)
j=0
with
| AT 41 :-_log/ﬁbj (dw(/))env(f)(w(f))
© 1 . . . .
= Z mgg‘f)/bj [RVD (3 D), ..., RVYD (y)], (3.28)
| Altj41 —log/P;, (dy @Y et [
(Sb )N
5 @t / dx; - / dxnEle o,
X [wxlwx“-.-v“//xlv’w‘x}v], (3-29)
where
= d?p —LY P2 ipi—y) _ s o4 (Z))
c'z/ (x—)’)=/(2n)3e P”elPX—y =la’g 2J (x_y) (330)

As a consequence of renormalization procedure described above, a
labelled tree 9{:1;" in the renormalized tree expansion has to be interpreted
in a slightly different way. Actually, comparing (2.18) with (3.22), we see
that a renormalized labelled tree 6,." differs from the old one just by two
facts: (1) Each non-trivial (trivial) vertex v with label scale n, means
now a truncated (simple) expectation with propagator ﬁ g™ (2) Now,

immediately after each vertex of type v* (see remark below) of 91]:5" the
‘R operation is applied.

Remark. — By (3.22), the R operation 6", should be applied after
any expectation (simple or truncated), i.e., in terms of trees, after any tree
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vertex (trivial or non-trivial), but this is not necessary. As a matter of fact,
let v and v’ be two subsequent non-trivial vertices with scale indices 7,
and n, > n,, respectively, and let 1 ™) (P) be a monomial of fields at
scales greater than n,. Then, using the definition of R operation, it is easy
to check that

R [REnye-i[++ [REnys1 ¥ E™(P)] ---]]
=RE. [Enect [+ [Enetr ¥ ™ (P)] ---]], (3.31)

where v* is the greatest vertex (see Fig. 2) in the line from v to v': it is
the trivial vertex at scale n,« = n, — 1 if n,, — n, > 1, and in the case
that n,y — n, = 1, then v* = v. Thus, due to (3.31), the vertices v* can
be though as the particular vertices of 012’5” in which the R is applied
(R operation is applied to what is coming out of v*). '
Thus, analogously to (2.20), we can associate to each label tree 6"
a renormalized hierachically organized sequence of simple and truncated

expectations at different scales of N objects, say flgl‘)”'") (5 ...y0), given
by
SN T
EON ()= [ || R '5,,v
<Yy

X (8n|+1 50( ) nN+1 80( )) (3 32)

where O, =R if v < vy and Oy, =1, ET stands for £F, om0 1, » Em Stands
for Ezm p,» and note that n, — 1 = n,«. The tree expansmn of the
renormallzed effective potential is (compare with (2.21))

VOG ) =33 3 VO T v ). 333

= N pN.n, oN
N=1 6N ghm. 6N fixed

By the definitions above, V(")(G,I:[;") is given explicitly by (compare
with (2.22))
v (e, ,\N/d dxy---d Ov&ny1+ & Ler
(% X1axy---dxy H 1 ”Hs

| M
<Yy

I ven it (.34

i=1
where we also use (2.23).
Observe that V@ (6,%.", ¥) is proportional to A¥, but, of course, the
proportionality coefficent is not the Nth order coefficient of the power
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expansion of V™ in terms of the parameter A. Actually, a residual
dependence on A is also hidden in the covariances ;}:— g™ (which are
used to calculate truncated and simple expectations in the (3.34)), since
b,, and g ™) both depend on A (through 8b,_,, see (3.23)).

We conclude this section giving the main theorem of the paper. First,
we need to introduce some notations concerning connected tree graphs
in finite sets which we will use below and throughout the rest of the

paper.

Connected tree graphs. Whenever A denotes a finite set, we denote
by |A| the number of elements of A. Given a finite set A, we define
a connected tree graph T in A as a collection T = {pj, p2, ..., P|a|-1}
such that: p; C A: |p;i| =2; p; # p; for all i, j; for any pair B, C of
subsets of A such that BUC = A and BNC =, there is a p; € T
such that p; N B # @ and p; N C # @ (connection). Given a connected
tree graph T = {p1, p2, ..., pja—1} in a finite set A, p1, p2, ..., Pja|-1 are
called links of . We denote with 7 the set of all connected tree graphs
of A. Whenever A ={1,2,...,n}, we will abbreviate 7}; 5 . = 7,.

THEOREM 3.1. — There exist € > 0 and D > 0 such that:
A. The effective potential at scale n, V™ defined inductively by (3.22),
can be written, for |A| < &, in the following way

VO () =4 / dx[F0)* + / dx, / A W0y — x0T o
A A A

+ /dxl /deWQ(f'l)(xl — X)W, 0%V,
) A

m

+§:Z Z /dx1 /dx,,

m=2 k=0 p=max{m—1+k,2} 4

(n){r 2S5}
Z Z 2mk’ ! (x1,x2,...,x[;)
r .

s Fp—k S1seesSp—k
Xy Uit W 1%,y - 07, (3.35)
where (for j =1,2,...,p — k), 0 <r; <2, and analogously for s;.
Moreover, for j =1,2,....,p —k, 1 <r;+s; <3 and ) ;rj =m,

>.jsj=m—k. The kemels 2(:1){,:’ il (")(xl — X3) and W2 " (x) — x2)
are analytic in X, if |A| <e¢, umformely in A, and satisfy the following
pointwise estimates
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‘WZ(:ln),k(xl’xZ’ e 7xp)|

n—1
<D Y B S [ YD Leee I (336)

€T,  (Bplper PET Lnp=0

n—1

(W3S (k1 — x3)| < DIAZL™ Y L0 ot M nal (3.37)
n1=0
n—1 _
’Wz(’n])(xl _x2)| < D2}\2 Z L—4n1 e—aL ||X|—x2|, (3.38)
n1=0

where:

(m)frj,sj}
WZ(:ln)'k(xl,xZ,---’xp): Z W2m,kj ! (-xls-xZa"-vxp);

{rj.s;j}

T, denotes the set of all connected tree graphs t in {1,2,..., p};
p denotes the generic link of T (recall that the number of links in T € T,
is p—1), and if p = {i, j}, then x, = x; — xj; B, are combinatorial
positive factors such that .. B, < CP where C > 0 is some constant,
B, is an integer > 1, and Z{TSP}TE” runs over all possible choices of
p — 1 positive integers (one for each link p € t) such that (recall that
d=3)

Y By=@+1p- [Zm(d; D —|—2k] —4p—2m+k). (3.39)

pET

In the limit n — oo (3.36) becomes:

nli)rrolo|W2(fn),k(x1,x2,...,xp)|
* 1
<@y B > s (3.40)
P

TGTP {Bolper PET

Thus, the kernels of effective potential decay polynomially at large dis-
tances, in general, in a non-integrable way.
B. The pressure of the model can be written as

1 (e¢]
—log E4(0) = (Tj +1)) (3.41)
1Al =
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with T; and t; given by (3.28), analytic functions of A and satisfying the
bound

IT;| <K L7¥ DA%, || < L™ 9DA% (3.42)

.= —0 —1 - —
Remark 1. - The notation ‘/’;,- means ¥, =1, ¥ =1, and wfi =
—a—p . . —2 . . . g S
¥, ¥, in particular - carries two spinor indices. Analogously for /7.
We stress that the factor

P TPk Sp—k 02 2
R A R St o SRR ERY

always contains exactly 2m fields and so carries 2m spinor indices, which
are contracted with the 2m spinor indices attached to W,Lr,’)(}'{s’ ! Moreover,
recall that 9% means 9,0, and indices u, v are again contracted to the
correspondent 1, v indices in W,E,'fi{rj *" (we do not make explicit the

spinor and euclidean indices in order to avoid a heavy notation).

Remark 2. - Wz(fn),{,:’ * is the kernel in V® related to the monomial
with 2m fields, m of which are of type ¥, m — k of type ¥, and k of type
3%y It is a p point contribution to the 2m point truncated correlation
function (see [23]). Indices r; and s; are just telling us which fields
among ¥ and ¥ are sitting in the same point x;. Observe that the number
of all possible combinations in which r; and s; numbers can be distributed
cannot exceed 327,

Remark 3. - Note that, by construction, if a field of type 3%y appears
at a point y in a monomial in V®, then this monomial cannot contain a
field ¥, or v, in the same point.

Remark 4. — Note that

Y= 3 1<cr

{Bolrep ny+-tnp_1=4p—2(m+k)

for some constant C. In other words, this sum is not combinatorially
dangerous.

Remark 5.— By a standard analysis, one may obtain “integral” bounds
on the kernels of the effective potential of the form

;|W,;'jz(x1,...,x,,)||=/dx].../dx,,[w,f;j;(xl,...,xp)|
A A

< | Alconst LM2m 5t +2k—d=1], (3.43)

Annales de I’Institut Henri Poincaré - Physique théorique



POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 153

Note that L"2m“F'+2-d] grows up exponentially as n — oo, which
means that the polinomial deca?' of the kernels of effective potential is too
slow in order to keep MLIIIW,ﬁ,'fk (x1,x2,...,xp)|l finite as A — oo. This
kind of divergence is expected since the free covariance is not integrable.
Such integral bounds are not useful in order to get pointwise bounds on
the correlation functions (at least we were not able to use it, see [23] for
bounds on truncated correlations using the pointwise bounds (3.36) of the

theorem above).

Remark 6. -1t is very interesting to derive from (3.36) the pointwise
behaviour of the kernels of the so called “adimensional” potential at
scale n (see [4,6]; in [14,21] and [15] it is called potential in the “thin
lattice™), which can be obtained from the usual effective potential through
the replacement

—@-1)
wx - LT"WL_"I'
The relation between the kernels WZ(,';{fd' of the “adimensional” potential
and the usual ones Wz(:'n) « 18 therefore, setting d =3

(n),ad.
Womk (X1, X2, ..., Xp)

= L"Br=2mtlw ) (L"x), L"xy, ..., L"x,).  (3.44)
Hence, using (3.36), (3.39) and the fact that [3p — 2(m + k)] > p,

the bound on Wz(,",,),’,?d'(xl,xz,...,xp) becomes after some algebraic
manipulations,
,ad.
| W2 ey, oy xp)|

< LT"I=IP(DIAP

n—1
X8 Y I3 oo o]
e, {Bp)per PET Ln,=0
where ¢ is a small positive constant. Considering the following inequality,
which holds uniformely if and only if the distance |x,| > 1
LPI e=allIxpl — [ BJ g=a(L/=Dlxpl g=alxsl < € g=lxl (3.45)

(for |x,| small, C is actually of the order C 7y, we get (use also Remark 4
to bound Z?ﬂp,pa 1)

|Wanri (1, %2, ..., xp)| < (DIAPCPL™MI=0P gmed(iep) (3 46)

Vol. 71, n° 2-1999.



154 A. PROCACCI, E. PEREIRA

where d(xy,...,x,) =min; ) per |x,| is the shortest tree distance be-
tween points xi, X2, ..., Xp.

The formula above is the well known claim that kernels of the
adimensional potential decay exponentially fast (with a rate O(1)) as
distances between points become large (see, e.g., [12], or (10.24) in [4],
or (5.56) in [6]). By the considerations above, (3.46) is correct just for
distances between points O(1) or greater: the bound (3.45) (which is the
key point in order to get (3.46)) simply is not true when the distance |x,|
is small compared with 1. However, we recall that we are interested in
the region where the distance between points is O(1) or smaller: note
that distances of order O(1) in the kernels of the adimensional potential
at scale n correspond to distances of order O(L") in the kernels of the
usual effective potential at scale n (see (3.44)).

In [6] (see there Remark 2 after Theorem 2 of Section 5, and specially
formula (5.55)) formula (3.46) was derived from a pointwise bound for
kernels of effective potential different from the one stated in Theorem 3.
Namely, mutatis mutandis (in the scaling factor 4p —2(m +k) =3, B;),
this alternative bound is

|W2(:ln),k(xlax2’ cee ’xP)l

n—1

m=0

The inequality was suggested as a consequence of the analysis performed
to get integral bounds on the effective potential (Theorem 2 p. 141
in [6]). One can easely check that (3.36) implies, for distances greater
than L", the inequality above, which, on the other hand, appears as a
much sharper bound respect to (3.36), for distances smaller than L”.
Indeed, the analysis of Section 5 will make clear that the bound above
cannot be obtained for all distances. Anyway, it is easy to understand
intuitively why it cannot work: if we suppose it true for all distances, in
the n — oo limit, we get a pointwise bound as

. —4p+2(m+k)
nlggo |W2(fn)’k(x1,x2, ey Xp)| S DPAPCPd(xy, ..., Xp)] .

This is not consistent.compared to what one should expect from per-
turbation theory. By inequality above, if, say |x; — x;j| — o0 and all
others x’s are kept fixed, the polynomial decay of the p-point ker-
nels should be like |x; — x;|™" (with ¢ some constant), so increas-
ing proportionally to p. On the other hand, one can easely produce
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many contributions from perturbation theory to WZ(:ln),k (X1, X2, ..., Xp)

which decay with a power not proportional to p. Note that (3.40),
for this specific case, gives a more realistic p independent decay as
i — ;7"

4. BOUNDS ON THE KERNELS OF EFFECTIVE POTENTIAL
4.1. Notations and preliminary bounds

We want now to write down explicitly the the contribution V™ (yr, 6%)
to the effective potential at scale n coming from a given rooted Cayley
tree O with N end points.

Using the notations of Theorem 3.1, we can make the following
ansatz (from now on, unless necessary, we will omit scale apices in the
fields)

V(") (l/f, QN)
N+1 m 2m
= Y vewea)=Yy Y [,
9[’3’6"2 oV fixed m=1 k=0 p=max{m—1+k,2}

(1).r.5 (N,
X Z[ Z W2I’:1./: v(Ollz\ilt)n,xl,)cz,...,xp)]

r.s N, gN ¢
== Oy ¢ O fixed

r K3 k
x [V [w][0%y] (k1. X2, - xp), (4.1)
where we wrote r = {ry,...,r,—}, s ={s1,...,5p—}, and
r s k
VI Y] i xa,uxyp)
=V W U Y Y o 9,
On the other hand, (3.34) we expect

V(n) (w’ 9]216")

N+1 m
m=1 k=0 PIVOEPN: {Pv}u<v0:

| Py |=2m; k( ng")zk P,f(e)“ fixed

x / dX o Vi (O P (Po}ocugs Xog) W (PET). (4.2)
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The notations in (4.2) are the following.
—a _ﬂ o
{df x,ﬂ/f leﬂ""w_x:’wx:,’ xNN’wxﬂ]Cl

is the set formed by the 4N fields in the end points (recall that each end

point j carries the factor A [, d*x; g 5, V.. W lﬁ el

— P,, indicates the subset of Py surviving at the root of O" . We stress
that P,, indicates the bare subset, i.e., the one formed with fields v
and  without considering that a field of type ¥ may have been
changed due to the renormalization (namely, a field v, can turn into
02Yxy(), Where x is some other point and xy(r) = x —t(y — x) is
an interpolated point in the line which joins x to y);

— P;" indicates the set of fields constructed with the fields in P,
once the R operation has acted in each vertex of 6" of type v*
preceding vy, and &(P,jg“) is the monomial constructed with the
set P)o" with fields organized in a prefixed order. Recall that the

last renormalization in v§ (i.e., the root of 0,1;'5", see (3.22)) has not
been applied yet when we write P;". Thus, ¥ (P;") may be also a
monomial like ¥ v, ;
- X,, are the set of space-time variables attached to the end points
which can be reached from vy, thus, since vy is the first non-
.. N,
trivial vertex of 6", we have X, = {x|,...,xy} and dX, =
dxl s dXN.

Further notations and definitions. Given any non-trivial vertex
v € 6", we indicate by Glﬁ'b"(v) the subtree of 6" obtained by dis-
connecting from 6" the vertex v’, so that v’ is the root of Glab (v) and v
is its first non-trivial vertex.

- P,, indicates the (bare) subset of Py surviving at the root v’ of

6" (v); X, is the set of space-time variables attached to the end
points Wthh can be reached from v;

— P*" indicates the set of fields constructed with the fields in P, once
the R operation has acted in each vertex of 912'5" (v) of type v*
preceding v, and 1,/~f(PU‘e") is the monomial constructed with the
set P;°". Thus, Z( Puliy, MEANS to sum over all possible choice

of P, in non-trivial vertices v < vy of 6" which leads to a fixed
VP,
Moreover, for any v € 911:5" we define
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| P,| = | P}*"| = number of fields in P,,
| P"|| = Py| 42 x [number of fields of type 8%y in P;*"]. (4.3)
Note that —||P;*"|| represents the dimensional scaling exponent of

&(P:}‘") (recall that d = 3), and %(llPlfe"II — | P,|) is the number of fields
of type 87y in P™", In particulary, for the vertex v,

[Pyl =2m, ||P,ll=2m+2k and (||P’§“|y—|Pv0|)=k.

N —

_ Recall now that (see (3.22)), we need to apply the R operation on
Y (P*") emerging from v* before the truncated expectation at vertex v’
of 9&;". So we write (see (2.25))

RY (P&") = [£,17 L™ (PY), (4.4)
with
1/7(10‘“‘) if || Pl > 2,
V(P / di (1 =07,y NP =2, @5)

ie.,if 1//( ren) = I/Jny,
with {x, y} € X, and

| if || Pren ) > 2, 46

sv - L~ (x - y) if “ PJen” = 2, i.C., if W(Plfgn) ‘/f W}” ( . )
and

(0 P > 2, 47

”‘{2 if [| Pren ) = 2. @

Again, observe that we indicate as P,°" the set of fields in P, after the R
operation has acted in all vertices w < v (thus v* excluded), and P} is the
set of fields in P, after the R operation has acted in all vertices w < v’
(thus, v* included). Remark that &(PJ(‘:“) is univocally determinated once
Py, and all P,, for v < vy, are given. In other words, Plfg“ depends on the
choice {P,},<y,, thus, to be more precise, we should write

U (P) = Y(py)yesy (PR (4.8)
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The notation (4.8) is consistent: once { P, },<,, are given, the the structure
of Y(Py;") is completely determined since R operation transforms

in a unique way ¥, ¥, into ¥,3%¥y,). We will not use the heavy
notation (4.8) but, of course, we tacitely assume it.
Define now

é:lﬂ)k(elab ’ Pren {Py }v<vo’XP’°“)

= /d(Xvo\XP,fg")VZ (elab s PJS"» {Pv}v<v0a XU(})’ (49)

where X Poy X P;gn) is the set of space time variables attached to fields
in Py, and | X on| (X ngnl) is the number of elements in X Poy (X pggn)‘
Observe that | X P58n| =X onl + k, where k is the number of fields of type
9%y in Y (Pm).

In the monomial ¥ (P,;’") exactly k fields are sitting in interpolated

points. Let these k interpolated points be x; + ¢ (y; —x1), ..., Xk +tx (Vk —
Xxi), with {x;, y;} C X pien Some subset of 2k elements of X v such that

y; € _)gpvo and x; ¢ XPUO for all i.
Define

(n) en
Wom i (B> Pic”, {Po}o<up- X p,,)

1
dn dty n
Z/—3— / /d3x1 kaZ(m),k
0 l

(y _xr)
<9lab P AP u<vg X pgn, yr = %+ == ), (4.10)

where y, — x, + M means that we have to replace the variables y,

by the variables x, + —M in K\ . The apparent UV singularity in d#;-

integrals in right hand 81de of (4. 10) is compensated by the d*x;-integrals,
see ahead formula (5.25) and the remark below. By definition (4.10) we
can write

/ d(X pe) K3 1 Bras” s Pig™ {PoYu<ugs X pyen) ¥ (P
_/d(xp YWin (B0, PR {PuYycy X p )0 (PEY), (4.11)

where w’(P,fg“) = w(Pr'srl [z + t.(y, — 2,)] = y,). Finally, fixing

vy ’
| Xp,|=p and noting that p is the number of space-time points in X Py
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(and so, for fixed m and k, we have max{m — 1 + k, 2} < p < 2m), we
can write

N+1 m 2m

VO =33 3 > > [axs,

m=1 k=0 p=max{m—1+k,2} PUOGPN: |Pv0|=2m; {Pv}v<v01
/<’f(f’5(e)'1)=ky 1X pyy =P PJS“ fixed
(n) ren 71 ( pren
X W2m k(elab P, {Pv}v<v07 XPUO)‘/f (on ) (412)

vy

Now rename XPUO = {x1, x2, ..., xp} so that

¥ (PN = (=" [P [y 0%y (s  xp), (413)

where 77 (P,") represents the number of permutations that are necessary
to rearrange J’(Pjg“) as

r

(V) W] (0% (132, . xp),

once the substitution X Xp, = {x1,x2,..., x,} has been done. Note that s
and r are determinated univocally by Pren nd

P — P,
Ir| = Zr] l B =m, Is| = Z]_l O _k=m—k.
Hence,
V(n)(‘/f elab )
N+1 m ren
SIS > T B
m=1k=0 p=max{m—14k,2} Pyy€Py: |Py|=2m, {Polu<yy:
k(PREM=k, |X pyy|=p Pyt fixed

x/dx1~~-dxpW2(") (Ons"s P (Po}v<ugs X py = (%1, -, X))

x [P W] [0%w] (. xp). 4.14)
Comparing with (4.1)
(n) r,s

JT(PI'CI'I)
Wom k (elab X1 X2, s Xp) = Z (=17
Pyy€Pn: | Pyy|=2m,

k(PIM=k, X pyy |=p
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|: Z Z (") Olab ) P;gn’ {Pv}v<v0’ XPUO

{nv]u<v0 {Pv}v<v0
nfixed  PJ fixed

- {xl,.--,xp})]. (4.15)

Note that

> o= >

{”u}vév(,: n fixed 6’11;/6": ON fixed

i.e., to sum over all 6" for a fixed 6V is the same as to sum over all
possible scale labels n, in the non-trivial vertices of 6V, keeping fixed
the root scale label at the value n. Moreover we note that

AN
Z < ( ) <24V, (4.16)
Pyy€PN: | Pygl=2m, 2m

k(PEM=k, |X pyy |=p
Finally we can obtain the kernels of effective potential as they appear in
the main theorem by summing over all trees. Thus,
(n),r,s
W2:'In 2 (X1, X2, ..., Xp)

o0
ZZ 3 WO x X)), (417

N=p 6N gN-n. gV fixed
4.2. Bound on V,»,
By definition of 91':‘,’" (recall (3.34)), the function 2(,',',) k(91ab ) appear-
ing in (4.2) is explicitly given by
Vame (05 Pyt AP }u<vys Xog)

:)\N{H[SU]ZuLZvnu} Y10

v<vo {Qv}v<v0 LAY

X{ Z 5(nv,—1)[‘Z(Rul)]g(nv,—z)W(va—l\va)]
R

vlseees Ryl

' 'g(n»+2) [V (Ry1\Ru2)| ity [¥ (@0 \ P\ Ry1)] }
< 1 55,» V(PiNQu), - ¥ (P \Quw)].  (418)

v<vg v-
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Here Q, is a subset of P and ZKQU}M‘) runs over all possible ways to
choose Q, as a (proper) subset of P, for any vertex v < vg. Moreover,

for any non-trivial vertex v < vy
7= Qu, (4.19)
i=1 v

R, is a subset of g,\P,", and R,; is a subset of R,;_; for j =
2,3,...,1l=ny —n, — 1. In short, the inclusion relations between the
sets appearing in (4.18) are

R,CRy_1C---CRy, C qv\PJen. 4.20)

Remark. — Observe the renormalization scheme implicit in (4.18).
At the vertex v the set of fields ¢, = U2, Q,; emerges, after the
contraction occurred in the truncated expectation at scale n,. This
set contains the set that we are calling P;*", and it is effectively
reduced to P)°" after n,, — n, — 1 simple expectations, where the sets
Ryi1\Ry2, ..., Ryi—1\ Ry, Ry are successively contracted. Then, at v*, the
set of fields P;°" emerges, and it is converted by the R operation (acting
exactly after v*) into the set P. The R operation also produce the factor

{I1y<y,[60]" L%} in the right hand side of (4.18).
We now get a bound directly on the kernels Vz(:,? « defined in (4.18).
We use the following well known bounds for simple and truncated

expectations of fermionic fields.

LEMMA 4.1. - Suppose that £y, represents a simple expectation
respect to a GFM with covariance G, (x — y) acting on Grassmann fields
¥, ¥, such that

|Gn(x —y)| < cL™ exp[—L7"|x — yl].

Then, for any monomial W (P) containing | P|/2 fields of type ¥, | P|/2 —
k fields of type Y and k fields of type 3>, the following inequality holds

&[0 @ (P)]| < CIPIL=IPN, (4.21)

where
3-1D
2

1Pl = |P| + 2k. (4.22)
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LEMMA 4.2.—In the hypothesis of Lemma 4.1, let ™ (P)), ...,
1/~/ " (Py) be s monomials sitting in clusters of space-time points X {, ...,
X, respectively (with X; N X ; =W forall {i, j} C{1,2,...,s}), then the
following inequality holds pointwisely

|E0, [0 PP, (P
< CEizI P =n i IR Z e K X (4.23)

19671] VVVVV X,

where Ty . x. is the set of all possible graphs ¥ (not necessarely
connected) between points in X = X | U ---U X such that: ¥ contains
exactly s — 1 links; each link p € ¥ (unordered pair of space-time
points p = {x,y}) is formed by a point in a cluster X; and a point
in a different cluster X ;; for any pair B, C of subsets of {1,2,...,s}
such that B U C = {1,2,...,s} and BN C =, there is a p; €V
such that pi N[Ujep X ;1# 0 and p; N (Ujec X ;1 # @ (connection
modulo clusters). The factor d°(X |, ..., X ) is the lenght of T, namely,
dy(X.....X\) = Y ey |0l where, if p = (x,y), then |p| = |x — y|
indicates the Euclidean distance between the two points x, y in different
clusters.

Remark 1. —The number of space-time points in X; cannot exceed
| P;|, but, of course, can be less then | P;| if some of the fields in ¥ (P;) is
sitting in the same space-time point.

Remark 2. - Again we stress that ¥ is not in general a connected tree
graphin X = X | U...U X, but only realizes the connection between the
clusters X, ..., X. So further on we will use the symbole 7 to denote
connected tree graphs in some set X, while we use the symbol ¥ to denote
graphs connected modulo cluster in the sense specified above.

The first lemma, known since a very long time, is the origin of the
claim that purely fermionic field theories have perturbative expansions
with better convergence properties than purely bosonic field theories.
It is a trivial consequence of the Gramm-Hadamard inequality for
determinants (recall that a fermionic simple expectation can be written
as a determinant, see (2.3)). The second lemma is more recent (mid-
eighties) and its proof requires the use of the Brydges-Battle-Federbush
tree graph equality [2,7]. The reader may find the original proof in [15]
(see there Appendix 3), and a successive and simpler proof in [18] (see
there Appendix A). A detailed proof of both lemmas, with notations very
similar to ours, can be found in [6] (see there Appendix 2).
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To show that the sum ), in right hand side of (4.23) does not introduce
dangerous combinatorial factors, we have the following proposition.

PROPOSITION 4.3. — With the notations of Lemma 4.2, there exists a
constant B such that

Y 1< (- 2BX=lfl (4.24)

veTx,...x,

Proof. — By definition, we can associate to any graph ¢ € 7x _ x a
connected tree graph t € 7; in {1,2,...,s} by shrinking each cluster
X, to a point i, so that, if d;(7) is the incidence number of the vertex i
in 7 (i.e., the number of links of t attached to i), then we have at most
[T—; |P|%® graphs ¥ which correspond to . Thus, using the Cayley
formula

T die) _ 4
Yoo RO = ZZ(H)H[ l(d_l),HlPI

1967—1] ,,,,, X, teTsi=1 di+dy+-+ds=
N s 5=2 [Z |P I]s -2
=[[IRI|D_ I~ (s—z)'H|P|~1———
i=1 i=1 2)'
< (s — 2)lei=oelPil XinlPil (s —2)1e22i=IPl g

Using Lemmas 4.1 and 4.2 we get, after some algebraic manipulations,
a bound on Vz(,',',) ; defined in (4.18)

2(;:!)/{( lab k4 Plf:n’ {P }v<U07 v())l

AN{H[&]“L""Z"} > 11

v<vg {Qv}v<v0 v<vp

x{ S Rl =UPE D g Rl g R
R

. IRu IIL—(IquII—IlP,fe“II)}

x H {ngglqpv,» 1-1Q,i |)LvnvIZ',-i. AP, ||)]}

v<vp
1 . —ny /
<[1{5 X e}, (4.25)
v<vg T heX,
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Here > .y is a short notation. ¥, is a graph between the points in the
set Ly X pe\g ,» formed by s, — 1 links, which realizes the connection
between clusters

Xpine,i - Xps 0

in the sense of Lemma 4.2; thus, by ¢, € X, we mean actually

By € TKP:,\Q Qs ©

v‘U

Recall that ¥, in general is a non-connected graph (which, however,
becomes connected if one shrinks each cluster X P, tOa single

point z;). dy, (X',) is also a short notation for
do, (X'pv0,i0- -+ Xps \0us)
(see again Lemma 4.2). Note the index ' stressing that some points in dy,

may be interpolated points.
Recalling that (see (4.19))

Sy Sy
MIQul=lgl. D 1Qull=lgll,
i=1

i=1

and observing that ||Ry;|| = |Ry|, and llgy |l — | P;"[| = Iqu] — | Py, we
get
I ALY S LL) ALl
Rypyeens Ryt
< Y LRl Rl Ga=IPD),
Ryi,..., Ry

With the inclusion relations (4.20), we obtain
Z L1 Rul p =IRu-1l | 1 =Rl [ ~llgul=|Pul]

.....

< [1 +L7 '+ L7+ L—(n,,r—nv—l)]lqul
Thus, (4.25) may be written as

Z(Zz)k(elab ’ szgn’ {P }v<v0’ o)‘

{ ey

v<vg

—|Py] < Clvl=IPl(4.06)

Annales de I’Institut Henri Poincaré - Physique théorique



POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 165

x Y H[czfi,ll’v.-l—w L—n.,(Ei';lnP;-u—nP.:e"m]

{Qv]v<v0 VY
x H[ Z —otL‘""dau(Xv)]' 4.27)
v<vp Sul o X,

By definition of renormalization,

IS = 1Pl + 2o (4.28)

and recalling that in v we are not performing any renormalization, it
follows

'
T LS
v<vg

=0y (50 P (= PEEn ) o S P P
=L 0 1 vy 0 H L ”U(Zi=1"Pvi" [ Pyl +zv) (429)

v<vg

and so
I Z(Z)k(elg/bn szgn» { }v<v0»_vo)‘

™ g (42 125 =P
<N T cZtatpat-py

<Y

> HL_nu@;"i.uP;u—nPU*u)

{Qv]v<v0 v<vg
[H (&1 H - Y e )] (4.30)
v<vg <y v heX,
It is now easy to check (exponents in left hand side of equations below

are telescopic sums) that

CZUQU()(Z?L”PU"‘_IP”') < C4N’ (431)

PR oW Lt e A )
— L—ﬂu0(4N—IIPJO Il)L2u<uo(ﬂv/—nu)(4Nu—l|PS‘ |I). (4.32)
In right hand side of (4.32) N, denotes the number of end points of 9]1:5"

that can be reached starting from v (thus N,, = N). From these formulas,
it follows
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iy (0 ,nP* =P _ v 1
L " H 1O P I=IPE D

v<vg
_ _ ren _ _ *
—L Ny (AN—[ PR H L (=) 4Ny~ Py ||)’ (4.33)
v<vg

whence
(n) Nn
2m k( lab PJ:nv {P, }v<v0, O)I

< CN)\.N —hygy (4N— I P,l;(e)n”) Z H ll("lu/_”11)(41\/11_”1:';< I

{Qv}v<v0 v<vg

I:H (£, & H Z —aL ™" dy, (X', ):' (4.34)

V< v<yg U 19UGX

In right hand side of (4.34) nothing depends on sets {Q, Jo<vg> SO
we can bound directly this sum, of course with the condition that
all set {P,},<,, are kept fixed. Recalling the definition (4. 19) and
inclusion relations (4.20), each set Q,; must contain the set P
P,N Pyi, so defining R, = Q,i\ P, noting that | JI" Pv. = P, (thus also
> |Pv,| = |P,|) and also using (4 31), we have

: <nlilE (L)

{Qv}v<v0 vy Ni=1 IR
Py fixedVv<ug

= [J 2Zimit-imn < oav, 4.35)

v<yg

v’

Hence the factor 3, | v1g in right hand side of (4.34) yields at worst a
contribution 24V which can be included in the factor CV.

We now make explicit the product [T, <y [6,17. Tt is a product which
contains two kind of factors &,: the k factors &, associated to the k double

derivative in w(P’e") (see (2.25)), and all the others which belong to

double derivative fields created and then contracted along the tree 91ab .
Let us separate these two kind of &, as

k
[T =11 er [, > (4.36)

v<vg v<vg r=1

In the formula above the first productory (with the apix x) is over all
vertices v in which double derivative fields are created and contracted
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later (i.e., &,, for these vertices, links two space-time points which do not
appear in X pien aS interpolated points). The other productory is over the
vertices v, in which double derivative fields are created but not contracted
later, thus elements of P;*". The factors &,, links couples of points which
appear in X pien a8 interpolated points. O

We now estabilish the following propositions

PROPOSITION 4.4. — The function

fXy) = H Y e

v<vg S z?,,eX

in (4.34) contains intermediate points which are not among the k
intermediate points in X pen-

Proof. — The only way in which interpolated points can appear in
f(X,,) is by contracting double derivative fields. The interpolated points
in X pien are precisely those attached to double derivative fields which are
not contracted, whence the proposition. O

PROPOSITION 4.5. — With the notations of formulas (4.34) and (4.36),
there exists a constant C > 0 such that the following inequality holds

[H g [ = 30 et i, )]

v<vg v<v " heX,

CN[H 3 e K >] 4.37)

v<g U 19€X

where
~ 1 1 * 4
iz ga(1-7) @ 4, =do (X, 10 ),

Le., dj (X,) is obtained from dy, (X ',) by replacing xy(t) appearing in
X', by y.

The proof is given some lines below.
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Remark. — The function in the right hand side of (4.37) can be rewritten
as

[H Z e LT (X, )] [H 5] Z He—&L—np|p|’

v<vg 5! vy Y IGTK.;O: pPET
© comp OV

(4.38)
where t is a connected tree graph in the set X, (hence a link p € 7 is
an unordered pair {x, y} C X, and |p| = |x — y|), which is compatible
with the topological structure of 6,;" (hence 6), and the scale label n P
associated to the link p in 7 is fixed univocally by 6/%.". The definition
of compatibility of a connected tree graph v € Ty , Tespect to the
topological structure of a tree 9{;’5” is as follows:

DEFINITION 4.6. — Let T € 7T, X, and, for any X, C X, denote by t,

the subgraph of t obtained by cancellmg all links p = {x, y} in T such
that {x,y} N X, \X, # @. Then t is compatible with the topological

structure of 9|ab lf Yv e 91ab , Ty € Ty (i.e., T, is a connected tree graph
between the points X ). The scale label n p of a glven link in T is such
that n, = n,,,, where v, is the minimum vertex of ‘9|ab which contains the
link p.

Remark 1.— Note that 7, is a connected tree graph in X, which has
|X .| — 1 links, among which, s, — 1 are at scale n,, while all the others
are at scales lower than n,,.

Remark 2. - Recalling the definition of #, above (4.25), it is easy to
see that 7 can be written is a unique way as t = {J, ¢,,, ¥, for some choice
of 9, in any non-trivial vertex of 6,.". In other words, the correspondence
{Pv}v<v, —> T is one to one. Moreover we also have 7, = J V.

wv

Proof of Proposition 4.5. — First note that

H e_al‘ 'lvd;v(xv) = He_al‘ﬂl‘) |P|’

<o PET

where T =, ,, ¥ is the connected tree graph in Ty w0 compatible with

the topological structure of 9,1:5” between points xj, x, . .., Xy univocally
determinated by the sequence {1, },<y,. Thus we can also write

H e~ L ™"dy, (X)) _ He—uL—"plp’l

PA) PET
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where p’ can be a link between intermediate points, univocally determi-
nated by p € T once 91]:5", 7 and the sequence { P,} are chosen. Due to the
hierachical cluster structure of 6", it is not difficult to check that:

1
—n / > R —n X
ML ”|,0|/(1 L>§jL *lpl, (4.39)

pET pET

whence
—n ’ _ 1 —ny g%
[T et dn® < T eme0-DE™ 4G, (4.40)

v<yg v
On the other hand, each &, in left hand side of (4.37) can be written as

&0] = L7 |xi — x;1, (4.41)

where x; and x; are two points surely in X, thus

% —x;1 <Y ol (4.42)

PETY

(see Definition 4.6). Note ¥, C 7, (see Remark 2 below Definition 4.6),
i.e., s, — 1 links in 1, are at scale n, (they are the links of ?, defined
below (4.25)) and all the other links in 7, are at scale lower than #,. Thus
left hand side of (4.41) can be bounded as

Gl SLT™ Y lpl=> L7 |p|L= ") (4.43)

PETy PETY

We call p, =n, —n,. Remark that p, is surely a non negative number
forall p € 7.
Hence

Mer<IT(X Lo )

V<vq V<vq TETy,

=exp(z*zv10g [Z L“”v|p|L—1)5D
V<V

PETy

1/2
<exp(z Z”{Z L—"p|p|L—PZ] )
v<vp

PETY

* —Pp
<CXP<Z Z Z L—nplpll/ZLTp)

v<vg PETY
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p(zZ(r""lpl)”ir%)

PET p=1
\/Z 1/2} 2 VL —np |1/2
—exp|2—— L7 = e VL p
g e =11

1/2

In the third line we use that logx < x'/* uniformely in x > 0 and also

that

Vai - Aa <a -+ Vg

(with g; > 0, Vi). In the fifth line we use the fact that, for any p, p; # p,
if p € X, and simultaneously p € X ,,, and, due to the cluster structure
of@lab ,1fw<vthenp <P,

By the inequality above and (4.40) we have

|:H [é ]zL H Ze—aL ””dgu(X'U):I

v<vg v<yg U'

NI 12 -,
< He2ﬁ_|(L Pleh He—a(l—{)L "?1pl

PET pPET

s N S =Ny ¥
ch He alL /’lpIZCN H e al ”dl,u(ﬁv)’

PET v<Yg
where, for example, one can take

R «/’ _ 1 1
C :max{e o= t2 705 ‘/_} and o= —(1 - ——)a. O
x>0 2 L

Thus, using also Proposition 4.5 and formula (4.38) it follows that
(4.34) can be written as

(’l) N n
Vomok Bias” s Pog™s {PoYv<vgs X )|
< CN N o GN=IPT D H (=) ANy~ P} 1l)

v<vp

k 1 "
s 1] X mew) aa
r=1

vy Y TETKVO: pET

 comp 6V

where we renamed the constant « as «.
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Remark 1. - The factor [],<,, ?17 Dorex w is not combinatorially dan-
gerous. Actually, by Proposition 4.3 and Remark 2 below Definition 4.6,

we have
Z | = H Zl < H CZ?;.(IP,,,'I—IQU,-I)(SU —2)!

re&voz v<yy Dy v< U
7 comp OV
S N :
< H CiLiIPiD 1Pel (5, — 2)1, (4.45)
v<yg

hence, recalling (4.31)

COZI P D=1Py]

[H_!] Y o<l oo <et @

teX, : v<vg

Remark 2. - The factor Z{Qv}m() < 2*N (see (4.35)) has been incor-
porated in the factor CV.

4.3. The bound on b,

From (4.44) it is not difficult to obtain a bound for §b,. Actually, the
contribution of the labelled tree 6,)," to 8b, is obtained by considering
the kernel

(n) (nN,
Valo (Bras”s P {Po}u<ugr X o) -

Note that, in this pa_nicular case where 2m = 2 and k = 0, we have
that P, = P,jg“ ={¥,,¥,}, and so IIPJS“II = |Py,| = 2. We name x

vo
and y the space-time coordinates (just two) in X pien = X Poy* Then, by

definition (3.26), we have
Mbn (elgt;n’ on» {Pv}v<v0)|

1 1 )
- ‘ [ AXug ulVIR O PR (P s X)) = 30"
A

1 ;
< / dX 0| Vao (Ons"s P (Plocugs Xop)|IX — ¥, (4.47)
A

Using bound (4.44)

|8bﬂ (911:6"’ on, {Pv}v<v0)|
Vol. 71, n® 2-1999.
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]. ren *
< _CN)LNL—nUOMN—IIP,}O 1N L(nv/—nv)(4Nu—lva II)an0
A 1

v<vo

1

X / dXUO(L_”v0|x—y|)[H ;} S [ . 4.48)

vy Y reTLUO: pET

7 comp 6V

Note that there is no factor [I*_,[£,,]° in this case.
Now, using (4.46) and recalling Definition 4.6, we have

R b B Il S

vy T V” rGTlvoi PET

7 comp 6V
<[H H > HL3"p/ds<N.—1>|s|e—&'$'

vy TV re’T_)gUO: pET

T comp oN
; N-2
x [/ds|g|e—“'5'] <CVILr =cN I L. 449
h . PET v<vg

Moreover observe (just developing the telescopic sums in left hand side
of (4.50) and (4.51) below) that

H L3"U(Sv_l) — L3nv0(N_]) H L"'3(nu’_n”)(N”_l)’ (4.50)
V<o v<up
N
LN H Lo =N — HL”"i. (4.51)
v<vg i=l

Recall that n; is the scale label of the first non-trivial vertex in Olﬁ'l;" which
follows the ith end point.

Hence, using (4.49), (4.50) and (4.51) and recalling also that in the
present case || Py"[| = 2, we obtain

|8b" (9]1;/6"’ on, {Pv}v<v0)|

N
< OV T Low-mG-IRD T] L, 452)
i=1

v<vg

Now we define

8b,(6%) = D > (B, Poyo {Pulucr)  (453)
{"v}ugv() {Pu}ugu()Z
n fixed || P{,(L‘}nnzg
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as the contribution to 8b, of all tree topologically identical, but with dif-

ferent attributions of scale labels {n,} and sets {P,} (chosen such that

| P;" || = 2). Once again we stress that 3, ), v 7 fixed and E{elz,n: oM fixed)

means exactly the same thing. Le., the sum over all possible scale labels

n, (compatibly with the cluster structure of 6N keeping fixed the root

scale at n) is equivalent to the sum over all possible labelled trees o
Thus, we have

|8n (67)]

< CNAN Z Z H LAy =) 3= IIP*II)HL—H: (4.54)

["v}vgvo {Pv]USUO v<vg
nfixed | PLN =2
where (3 — || P¥||) < 0 in any case. This is the key point of renormaliza-
tion: in any case || P}|| > | P,|, and when | P,| = 2 then || P}|| = 4. Thus,
(3 — | P*|l) < —1 for all non-trivial vertices v.
We can safely perform all sums in the right hand side of (4.54) by using
the following theorem.

THEOREM 4.7.— For any 6", with the notation of this section, there
exists a constant C such that the following inequality holds

Z Z H L(n r—ny) 3= Py HL ni < CN “SupMvg | (455)

{”v}u<v0 {Pv]v<u0 v<vo
ﬁxed P"O fixed

The proof follows from the three lemmas below.

LEMMA 4.8. — For any fixed 6., with the notations of this section,
let D(P,) be a function of P, such that
(1) It is possible to find a constant € > 0 such that D(P,) > €|P,|, for all
v < €0, and
(2) D(P,) = 1, for all v < vy,
then the following inequality holds

[T Lo <LV [T LotP [T L) (4.56)
v<up V< v<vo
Proof. —
H L—D(Pv)(”u’_"v) — H L—D(P,,) H L_D(Pv)(nu’_"v—l)
V< v<vg v<vo
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< H L—EIPuI H L~ —ne=1)

v<vg v<vg
<L e I
v<vg v<vg v
gLN—] H L'—€|Pu| H L-(nu/'“”v)‘ O
v<vg v<vp

Remark that, in the proof above, we used that n,, — n, > 1, for all v.

LEMMA 4.9. — For any fixed 6", any fixed | P,,| and any & > 0, with
the notations of this section, there exists C, such that:

> <l (4.57)
{Pu}v<v03 V<9
Py, fixed

Proof. — We can overestimate the sum over sets P, as follows

Yo Py | »
ZI: Z;?:l IPUII L_<9|Pv| .
| Pyl

| Py|=0

> o<l

{Pv}v<v05 V< v<Yg
Py, fixed

The last sum can be performed explicitly, starting by summing first | P,,|,
then IPv(I) [, ..., |Pv-"vol and so on, always following the cluster structure
0

of 6,%;". Using also the fact that
> (n)“k =(1+L7)",
oo \k

and that 1 + L% 4+ L% 4+ ... < (1 — L™%)~!, one can easily bound the
sum as

Z;il [PV," Sy
oS (Moo <io-m

vy | Py|=0

where S is the number of non-trivial vertices of 6,),". Since, for any
rooted Cayley tree, S < N — 1, the lemma is proved with C, = (1 —
L™ o
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LEMMA 4.10. - For any 912[5” fixed, there exists a constant C such that

Z H L~ /—nv)HL ni L CN LS (4.58)

{nv}v<vo v<vo
Ny, fixed

Proof. — Due to the cluster structure of ‘91ab , the follows indentity holds

—(ny—my) _ —ny (§y—1) 7 —nyyu,
Iz 11z L ,

v<vg v<vg

where 5, is the number of branches in v which do not terminate with end
points. In other words, 5, = number of v’ which are not end points (i.e.,
v' is a real non-trivial vertex). Hence

H L~ (ny n,,)HL—n, _ H L—nv(av—l)L—nvosvo
v<vo v<vg

and, since v is non-trivial, s, — 1 > 1, we have

N-—1
3 HL—w—l><<l_’ ) . D

{"v}v<v0 v<vp
ny, fixed

Proof of Theorem 4.7. — Just note that the function D(P,) = || P}|| — 3
satisfies the condition of Lemma 4.9 with, e.g., ¢ = 1/4. Thus, applying
Lemmas 4.8-4.10, the proof is straightfoward. O

Using Theorem 4.7 and the inequality Poy 1 <2V, we get

186, (6™)| < CVAN > L7, (4.59)
n,,0=0

This bound is not enough to control the wavefunction flow. It implies
that b, diverges logarithmically, which is not expected (summing over
ny, in (4.59) we will get a bound for |8b,| independent on n). However,
it can be improved. Consider in the formula (4.18) the factor

> 5(nv6—1) [J/(Rvol)]g(nv(/)—ﬂ [ (Rugi—1\ Rug)]

-+ Eng+2) [V (Rugt \Rug2) | En 1) [ (@0 \ P\ Ry1)] (4.60)
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for the special case in which v = vy and IIPJS"H = 2. By definition of
renormalization it is not difficult to convince oneself that the further
restriction must be imposed in factor above

[Ruill =2, if || PR =2. (4.61)

Using the constraint (4.61) we improve the estimate on the factor (4.26)
(for the special case v = vp), bounded previously by constant, in the
following way

Z L~ Rugtl [ ~IRogi=11 . [ =Rl < L= 2(=nug) Cldug 1= Prg | (4.62)

Thus, (4.59) becomes

|8b, (ON)| < CVAN D Lm0 L7207 0), (4.63)

nyy=0

Considering that, for any 6N which contributes to b, we must have s,, >
2 (the trivial tree with s,, = 1 does not contributes to 8b,,), performing the
sum over the scale n,,,, we obtain at worst

|8b, (6V)] < CMANnL™". (4.64)

We sum over all topologically distinct trees " with N end points, so we
get the contribution of the Nth order in the perturbation theory to &b,.
Name this contribution bV, Hence

86N < ST VAN aL T < CNANRL T, (4.65)
oN

where we used (2.19). Finally, summing over N we have

185, < D 86V <1 fFO)InL ™, (4.66)
N2>2

where f (1) is analytic in A in a suitable convergence radius &, which does
not depend on A and n, and

|f (W) < DA?

for some D > 0. Thus, we have proved the following theorem.
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THEOREM 4.11. — The number (wavefunction renormalization) b,
defined by (3.26) is analytic in )\ in a convergence radius R > &, where
e > 0 is a constant independent on A and n. Moreover, there exists a
number D > 0 such that

|8b,| < D n L7222, (4.67)

As a trivial corollary of this theorem we have that the running coupling
constant b, defined iteratively by (3.25), for by = 1 (as in the present
model), admits the estimate

|b, — 1] < CAZ. (4.68)

We can now prove part B of Theorem 3.1. We recall that the pressure
of the model can be written as

pa) =) (Tj+1)),

j=0

where T; and ¢; are given by (3.28). Of course, T, can be written in term
of a tree expansion, i.e.,

o0

D> TH(6Y),

N=2 gN

T,

where T,,(6") is given by

T,0Y)= ) > lAl/dX,,O v

{nv}v<v0 n ’—" [Pv}v<vo
[P 1=0

(Glab ) PJS“ - @ {P }v<v0, O)
Using right hand side of (4.44) with || Py |l = | Pyy| = 0 to bound

IVO(,n)(elab ’Pljen {P }U<v0a v0)|

and then performing an analysis completely analogous to the one
presented above for 8b,, it is an easy exercise to check that |7, (68V)| <
CNANL=2", hence |T,| < L™>*D(A) with D(}) analytic in A, with a
lower bound for the convergence radius independent from the volume,
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and D(A) = O(A?). In relation to t,, recalling its definition (3.29),
observing that, by definition (3.30)

|C(>n)(x _ y)l <C L2 e—el ™" x—yl

(C and « positive contants), and using (4.23), (4.67), (4.68), we obtain

o0
tn < Z DN)\ZNL_n(N_E+3)
N=1

concluding the proof of (3.42).

5. POINTWISE BOUNDS ON THE KERNELS OF EFFECTIVE
POTENTIAL

5.1. Preliminaries

Now we turn to the pointwise estimates. We need the following
definition.

DEFINITION 5.1. - Given 6)" and a set of space-time coordinates
Y Cc X, a non-trivial vertex w € 6" is called fixed scale label vertex
(f.s.1. vertex) respect to the set Y, if | X ,NY|>|X;NY|forall w < w.

Further on, we will indicate with the symbol v a generic f.s.l. vertex
for a given Y, and {v} will represent the set of all f.s.l. vertices of 912'5".
The set {v} is naturally ordered by the tolological structure of 0,1:5" (since
each v is a non-trivial vertex of 912'5") and we denote as Vo the maximum
of {v}. We also define, for any f.s.. vertex v of 6"

5, = # of vertices v’ in the set {v!, ..., v*}
such that [ X, NY| > 1. a1

Intuitively, in a f.s.1. vertex v of 6", 5, points of the set ¥ become
connected at the scale n,. Note that vy < vy, i.e., the non-trivial vertex
on 6" at which all points in ¥ becomes connected can be smaller
than vy. Tipically, the set ¥ will be X P (and so it contains p + k
elements), or X Py (with p elements).

DEFINITION 5.2. — Given 6)%.", a set of space-time coordinates Y C
X, and a connected tree graph t*(Y) = {py, ..., py-1} in ¥, we say
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that t*(Y) is compatible with the topological structure of 0121,;" if, for
all fs.l. vertices v € 612/,;" repect to Y, 1) is a connected tree graph
between the points X, N Y, where 1) is defined as the graph between
the points X, N Y obtained from t*(Y) by cancelling all links p =
{x,y} of v*(Y) such that {x,y} N [Y\(X, NY)] # @ (compare with
Definition 4.6).

Remark. — Recall that, given a tree T € X, compatible with oN", to
each link p of 7 is associated a scale label n, = n,, where v, is the
minimum non-trivial vertex in 6" such that p C X ,. Analogously, to
each link p of a tree T*(¥) compatible with 6,%" we associate a scale
label n, = n,, where v is the minimum f.s.1. vertex in 61" respect to ¥
such that p C Y N X, and

H L~ — H L—nv(fv—lj. (52)

pET*(Y) V<vo

We now enunciate a result which will be useful in order to get the
pointwise bounds.

LEMMA 5.3. — With the notations of Section 4, Definitions 5.1 and 5.2,
lett e TLO (i.e., T is a connected tree graph in X ,, ) be compatible with

a given 6., and let

ft (XUO) = H e—otL‘"Plpl’

PET

where, for p € T, n, = n,, with v, being the minimum non-trivial vertes
in 01" such that such that p C X ,. Then we can find a constant C such
that the following inequality holds

[aX\X ) 11X

<cV [ b [ [T Lrwes ‘"”'P'], (5.3)
v<Yg pet*(r,gpggn)
where (7, X Pv'g") is a tree graph between points X pgen compatible with

05" in the sense of Definition 5.2, which can be obtained univocally
from t, and, for p € t*(z, ng(e)n), n, = ny, where v, is the minimum f.s.1.

vertex of 912'5" (respect to X Pvrgn) such thatp CX ,NX pgen-
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Proof. — First observe that, since t*(7, X P;gn) is compatible with the

topological structure of 61", by Definition 5.2,

H —3n,, H L—3nvh (svh—l) (54)

pET*(T,X pren) V<V
0

where {v} is the set of f.s.1. vertices of 6,," when ¥ = X pgn-
Then we write

fr(Xy) = [He ? ‘"”'P'] [He—% ‘"”'P'], (5.5

pET pET

hence,

[ A\ ) £ ()

< sup |: —"0|p|:| /d(X \X Pren) |:H e —"p|p|:| (56)
pet

X, \X Pren peT

where the sup is taken over all possible configurations of the points in
X0\ X pgen for a fixed configuration of the points in X pien SO that the
non-integrated term in the left hand side of formula above is a function
only of the space coordinates in X pgen-

Now, it is not difficult to see that

/d(xvo\XP““ [He 7L_""|p|]
pET
< CN H L3"U(Sv—1) H L_3"V(§V_1), (57)

v<vo v<vg

where {v} is the set the f.s.1. vertices of 9,2’5" when Y =X pgen- As a matter
of fact, consider the tree graph t = {p1, ..., py_1}. Since t is compatible
with 6., for any v € 6%:" we know that s, — 1 links in 7 are at scale n,,
so that ngvo(sv —1)=N —1.Ifvis also af.s.] vertex, i.e., v = v, then
we can individuate s, — 1 links in T among the s, — 1 links, which realize
the connection between s, points in X pgen at scale n,. The total number
of these links is >, <, (v —1) = p +k — 1. Let us cut out these links
from , obtaining thus a new graph, say 7, between the points in X, ; the
graph 7 has exactly N — p —k =X, \X P;(c)nl links and, by construction,
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each one of the N — p — k space-time coordinates y € X, \ X pien appears
in at least one link of 7. Thus using translational invariance we have

/d(XUO\XPren |:]:[e 7L np|P|:|

pET

2 N—-p—k
. d3 —|z| 3n
LR O
peT
<OV T L2 [ L6 (5.8)

v<vp v<vo

and since Hpe~ e Lol < Hper e 2 —’l,o|p|’ (5.7) follows.
We now note that, given n; > n, non-negative integers and x;, x2, y
points in R?, the following inequality holds pointwisely

—% 1 -ny — — LY Iy — —Qgy-ny —
sup e FLT" =yl e=7 L7 22 ylge LM X —x2| (5.9)
yeR3

So, considering the non-integrated term in the right hand side of (5.6), by
using repeatedly the inequality (5.9), we can bound it as

sup []e? ELEE I | S FLTNL(5.10)

_,,O\X P’e“ PET pet*(X_pll;En)

where 7* is a connected tree graph between points X pEens and for a given
link p = {x,x'} € t*, calling 7, the unique path of t which joins x to x’,

= maxX,er,{n,}. It is now not difficult to convince oneself that we
can always chose t* in such way that it is compatible with 6y,". Of
course, the association T — 7* is not unique in the sense that there are
various 7* compatible with 91]:5” which satisfy (5.10), but as we will see
later, what is really important in relation to the structure of t* is just the
fact that t* is compatible with 6,%.". So, for each 7, we take just one
of the possible t* compatible with 911:,;" which satisfy (5.10) and call it
T*(r, XPvrgn). Inserting (5.7) and (5.10) in (5.6), we get (5.3) O

Let us analyze in detail the structure of 7*(7, X Pren) It involves

| X Py | + k points. Here k is the number of fields of type 321/f in W(Pren ,
and |X p, | is the number of space-time points in the set X P (which can
be at most | P,, |, but, of course, can be less if some fields in P,, are sitting
in the same space-time point). We write the set of space~time points in
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the following way
X.Pl‘;(e)" - {Zl’ 22y e e ey 2y X1y X25 o ooy Xky Y15 Y2, "-’yk} (5'11)

and make explicit J(P;g“), given by (after eventually some permutations
of the fields, which can just affect it by a signal)

J(ngn) = Wzl o '%zs l/fzs+1 T wzla2wXIYI(tl) T azkayk(tk)' (5.12)

Points z are attached to fields of P;™" which did not suffer renor-
malization (in particular, ¥ cannot suffer renormalization). Points x;
(i=1,2,...,k) belong to fields ¥ which appears in some cluster in
a couple ¥, y,. In other words, there must be a v in 63" such that
{/;(P;e") = _‘/7xi ¥y, This monomial have been replaced by the renormal-
ized one
W(P:) = RW(PJCH) = Wxia2wxi)h‘(ti)'

Then the field ?p"xl, has been contracted, but its space-time coordinate still
survives in P;™. Points y; belongs to fields v, which are in P;e", but
they have been transformed by the R operation into fields 3y, ().

From the discussion above, the definition of renormalization and the
cluster structure of 912/5", the set of points (5.11) has the following
properties:

(i) Some points z;, 25, . . ., z; may be coincident.
(ii) All points x;, X2, ..., Xk, Y1, Y2, - - . , yx are distinct.
(ii) {z1,22,..., 2} N {x1, x2, ..., x, y1, 2} =0, i.e., any z is distinct
from any x and any y.
Moreover, due only to the fact that t*(t, X Pvrgn) is compatible with

9,ab , (1, X Pvrgn) has the following properties:

(1) If x,, y, is a couple in X P which forms the interpolated
pomt X, yr(t,) and v, is the non-trivial vertex of Qlab" for which
W(P’f“ = 1//Xr ¥y, , then one of the links p in t*(7, X Pvrgn) is surely
the line o, = {x,, y,} and n, <n,;

(2) Each link {x,, y,} in t*(z, X Purgn) is connected to the rest of the
tree 7¥(7, X Pren) just by a link of the type {x,, z;}, for some z; and
nothing but x, is connected to y,. Le., the vertices of t*(7, X Plen)

sitting in points of the type y, have incidence number equal to
one. This is a trivial consequence of the fact that in the monomial
Uy, Yy, = ¥y, 8%Ys,y,,) just the field ¥, can be contracted, and

Annales de 'Institut Henri Poincaré - Physique théorique



POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL 183

Fig. 3. The structure of the tree graphs T and t*(z, X ngn).

it cannot contract with another ¥ field (even if the contraction is modulo
fields v,,, where w represents a generic point in the set X, \ X P;(e)n).

These properties yields the following structure of t*(z, X Plggn) (see
Fig. 3)

t*(T’ XPI‘;S“) = {(-xl ) }’1), (xz, }’2), ceey (Xk, }’k), (xl, Zi1)9 (-st Ziz)’ ey
(x, z;,), and other links between z points such that
™(1, X Plggn) is a connected tree graph}.

Remark. — Since each y; (i =1,...,k) is connected to t*(t,XPvrgn)

just by a link, the subset of 7*(7, X Pur(e)n) obtained by eliminating all

vertices y and all links {x, y} is still a tree between the points x and z; let
us call this tree T**(1).

Using the bound (4.44) for V2(,',',),k, the definition (4.9) of Kz(:'n) « and the
bound (5.3) we get

N,
|K§nm),k (Grab s Pug> {Po}u<ugs XP»’S“)

vy

|
v<vg Sy:

N
< CNAN LGB T Lo - C-IRD T L [H L]
i=1

v<LUg
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X Z F‘L’(xlaxz’~"7xk’y1»y25-"9ykazl,-..,Z]), (5.13)

IGTKUO

T comp 011;’5”

where

F(xl,.. xkvylv--~1yk’zl9-~‘azl)

=l =y I L7we 0 (s

r=1 PET*(T,X pren)
v

=~

and recall that v, is the vertex of 91ab where the factor [£,, ] =
[L~™ (x, — y,)]? is generated by the renormalization o eration K.
From (4.10), the kernel of the effective potential W2m, k18

2‘:’,,)k(9,§b”, P {Po}o<ys XP,,O)

v
1
dt dt
/.Tl/ 3k/dx1...dxk
Ui
0 1
énm)k(elab ’ P,fg"’ {Pv}v<u0» -—/PJS")’ (5.15)

where X /Pvrgn is the set of space-time points obtained from X Py replacing

yr by x, + i(y, —x,) (forr=1,2,...,k).
Using (5.13), an estimate for this kernel is

W (N,
[ Womk Gra” s Pig"s {Poto<os X p, )|

N
< CNAN Lo G1PE"D [T Lot [ 2= 1] L'
i=1

v<vg vy VY
1
dtl dr,
X dx; -- dxk/ —
> ;
TGTX 0
T comp Ola

— X — X
xFr<x],...,xk,x1+ylt 1,...,xk+y"t k,zl,...,zl>.(5.16)
1 k

But, by (5.14) and the structure of t*(t) and still recalling the definition
of t**(r) and that n,, > n, ,.» Where v, is the vertex at which the factor
&, is created while v, is the vertex where x,, y, become connected, we
have
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y1—X1 Yk — Xk
Ff(xl"--vxkvxl—i— t ’--'$xk+ ¢ ’Z17"'7Z1
1 k

k
g H L—-3nur tlz [L—nU, (xr _ yr)]2 e—%L“nvr Lx’—;‘le
r=1

&
x [ LreeitL (5.17)
PET**(T)
Using again the structure of t**(t)

[ Lmwe it

peT* (1)

k
_ ) _aghp; . _ _Qgy-n
=HL 3np, o= GL 0 Ixr =i | H L3 e~ %L Plpl, (5.18)
r=1

PET(T): x,¢p

where the second productory in the right hand side of (5.18) above is over
the links p in 7**(t) of the type {z, 7’} and p;, = {x,, z;,}.

Observe that here we are using the fact that each vertex x, of T**(7)
is connected to the corresponding y,, and then to a z, but never to
another x,.

Now note that

k k
H e‘%L "Pir |x,—zi, | _ H e_%L "Pir | xp—yr+yr—ziy |
r=1 =1

r
<Jetse " byl gL b (5.19)

r=1

Observe that the graph obtained from 7**(t) replacing every x, by
the corresponding y, is a connected tree graph in X Py which is,

by construction, compatible with 911;’1;". We denote this tree graph as
T*(T, X_on) (see Fig. 4).
Hence, we have

[ Lowe o

peT (1)
k n
. o —np; _ _ _ey-n
< He+4L i Jxr—yrl H L 3n, e il /’|p|. (5‘20)
r=1 per*(r,ﬁp‘)o)

And so,
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Fig. 4. The structure of the tree graph t*(r, X pvo).

Y1 — X1 Yk — Xk
Ft(xlo'-~9xk9xl+_——9---3xk+—_»zl7 s 2
151 4
k

< H L7 2 (L (x, — yr)]ze-%-ﬂr'r"vr xr =yl =L™"ir |x,=y,|)
r=1

x [ LTreemitNL (5.21)
pET(T.X p, )
Observe that n, > n,, since n, is the scale where x, becomes
connected with z;,, which is a scale greater or equal to the scale where WXr
is contracted, while #,, is the scale where the monomial ¥, v, appears.
Thus, considering also that 0 <z, <1,

57 LT %, — yel = L7 x, — | 2 47 L7 |x, — y, | [1 = LY.

: (5.22)
Performing the change of variables
Sr = t,«_la Er =L"" (xr - yr), (523)
we get
rdn [ di
/dxl---dxk —tTl/tTk
o ! o *
—X —X
X Fr<x1,...,xk,x1 +th———],...,xk+&—t—k—,z1,...,Zz)
1 k
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k 00
< (H/d35r/dsrssgfe‘%(l”yl)"'g">
r=1 1

< qI e

per*(t.X p, )

<ct I Lmenit (5.24)

peTH(r.X p,)

The last inequality in the right hand side of (5.24) follows from the fact
that

oo
/d3§r/dsrsagze—%a—r')srwrl
1
o0 o0
=4x / u*du / dvvde ¥ L C, (5.25)
0 1

where @ = (1 — L~"). Observe how the integration over d>£ takes care
of the outward U.V. divergence of Kernels (4.10) due to the dt;-integrals.
Thus, the bound on the kernels of the effective potential becomes

|W2(fn),k (B> Poe™ (P} XPUOH

vy ? v<vg’

N
< CN)\.NL—MO(:I’_"P'SSHH) H L(n,,/—nv)(B—IlP;*ll) HL—n[
i=1

v<vg

] 0 I e

v<up VY TGT.&vU pEr*(t,&PUO)

T comp 0&;"

Remark that, by definition of t*(z, X on), we have

I r7»=]]L72% ", (5.27)

per*(r,épvo) VVvo

where now {v} is the set of f.s.l. vertices when (see Definition 5.1)
Y = X P, *
r=24p,
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5.2. Proof of part B of Theorem 3.1

Consider the factor D(P,) = —(3 — ||Pf|]) which appears in the
formula (5.26). We can write the set P as

P¥=P*UR?, (5.28)

where P} is the subset of P* constructed with those fields which are
among the P,; ones (eventually modified by the renormalization getting
some double derivative; and so f’v will indicate the bare subset of P,
contained in P,). R* = P*\P/* is the subset of P* made by those fields
which are contracted in some vertex w > v, i.e., those which are not

among the P,, ones. Using (5.28), we define

D(P,) =DV (R,) + D?(P,), (5.29)
where
—||R* if | P¥|| # 0,
DO(R,) = { [ i1, # (5.30)
—@ =R if P} =0,

PO(B,) = {o _ifIRTI=0,
=@ =1PSI) if P}l #0.
Observe that DV (R,) satisfies the hypothesis of Lemma 4.8, i.e.,

(5.31)

DY(R)>1 and DWY(R,) >¢|R,| forsomee>0. (5.32)

Using the definitions (5.28)~(5.31), the productory [T, _,, L™ ) G=I1P1)

appearing in the right hand side of (5.26) can be rewritten as

H Loy —nm)G=IPS D

v<ug

— [T L-—PP® I 1~y =n)DD(Py) (5.33)

v<ug v<vg

Using (5.30), (5.32) and Lemma 4.8, we bound the first productory in thé
right hand side of (5.33) by

11 L~ =n) DO Ry  ON I] L~e®! IT -,

v<vg v<vp v<vg
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Towards the pointwise bounds of the effective potential, we have to
sum the left hand side of (5.26) over all possible scale labels in the
non-trivial vertices of 6;y,". We make this sum keeping fixed, in a first
moment, the scale labels {n,} of the f.s.l vertices (whence the name!)
{v) of 6" for ¥ = X p,,» Which are the scale labels n, appearing in the
factor

[ Lowest™bio J[LmGD [ o™l

per*(r,zp,,o) V<V pEt*(r,Xp,,o)

Note that the total number of the f.s.1. vertices, for any 9{;’5" , cannot be
less than 1 and cannot exceed p — 1 (where p = | X PVOI is the number of
points in the set X p ).

Now we calculate the following sum

F= > > L™ L ‘””)HL‘"', (5.34)

{nv}v<yy: {P.,},Ku0 v<vg v<vp
nog (v} fixed p, (P} fixed

where the first sum (over the scale labels in the non-trivial vertices)
is performed, as said, keeping fixed the scales of vertices {v} and vy.
Analogously, the second sum is over all choices of sets {P,} keeping
fixed the sets P,, and P,. The latter one can be rewritten as

> =2
{PU],KQ)O: [Rv}u<v0
P,,O,{Pv} fixed

Thus, we obtain

Z H L_isvl Z H L‘(" y—ny) HL"‘":

{Rv}v<yy V<v0 {nvly<yy:  V<vO
Nygs {ny} fixed

and, by Lemmas 4.9 and and 4.10,
F< CNL—n,,Oon Z H L—n.,(s.,—l)

("v}v<v05 v<vg
n.,O,{nv} fixed

<CVL ™o [T L7meD, (5.35)

v<uvp
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Hence, we get finally

3 > I ™ /—nu)D“)(Rv)HL ni

{nu}v<v0 [Pv}v<v0 v<vg
Nygys {ny} fixed P,,0 fixed

< CNL—HUOSUO H L"”V(s"_l), (5'36)

v<vg

where we used also that 3°5 1 < CV.
Consider now the second productory appearing in the right hand side
of (5.33). Recalling the definition (5.31), it can be written as

I [~y =n)DA(P,) _ II LGN,

v<vg v<vg

where, for v fixed, v’ denote the smaller f.s.1. vertex following v. Note
that in general v’ > v'. Recalling that v, is maximum among the f.s.1.
vertices, i.e., the vertex where all points in X Xp, become connected, we

have that Pt = P +. Noting also that vy < vy we get

1~ G=1P Dy I [~y =n)DA(P,)

v<vg

= L7O7IATImg T Lowr-mG-IPD (5.37)

v<vp

Using (5.36) and the definition (5.29) we can bound the expression (5.26)
summed over labels n, (keeping fixed n,, and n,) and over sets P, by

( ) N
Z Z 2::1 k labn’ ngn» {Pv}v<v07 XP.,O)

{nv)v<v0 {Pv}v<v0
nyy.{nv} fixed Py, fixed

< CN)\NL_H"OS"O H L—nv(.rv—l)L—"vo(3—"1’58"") H L(nvl/—nv)(3—||Pv*||)

v<vg v<Vvg

X[H iv} > I rrmwerttRL (539

vy "V TETKUO per*(r,lpuo)

T comp 912/6"

Now, recall that {n,},c.+ = {nv}V<V0 and that t* is compatible with 6,};".
Thus, for each f.s.]. vertex v € 91ab , we have exactly 5, — 1 links of
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T*(t, X p, ) at the scale n,, where 5, is the number of space-time points
in the set X Pyy which become connected at the vertex v.
Let us now consider the factor

L'3"V0 H L3(”v”_"") (5.39)

v<vg

which appears in the right hand side of (5.38). One may check (see proof
of Lemma 4.10) that

L3 H 130w 1 3nvGyp=1) H LGv(iv—l), (5.40)
v<vg v<vg
where :EV is the number of f.s.1. vertices among the set {v', ..., v®*} which

are not end points.
Recalling (5.27), we have

L2 [ v [ r=]] L3650 (5.41)

v<vo per*(r,lpv ) v<vo
0

Note that §, — §V are exactly the number of end points directly attached
to v whose space-time coordinates are in the set X Py
Let us analyze the factor

AR | L@ =n) (IR

v<vg

which also appears in (5.38). The productory is over the f.s.1. vertices {v}
of 911;’,;" and does not include end points. If v were allowed to be an end
point (say, the ith endpoint), the factor (n,» — n,)(—|| P,*||) would be

(ny —ny) (=||P}|) = —mey;  if v were the end point i, (5.42)

where n; is the scale label of the first f.s.1. vertex immediately following
the end point i (observe that n; > n;) and we define «; as the number of
fields of P,, attached to the end point i plus the number of derivatives.
As a matter of fact, a field in the set P,, may get a double derivative just
in a non-trivial vertex of 911:5" which precedes a f.s.1. vertex at scale n;
for some i. This is because two fields must emerge in a vertex where a
double derivative field is created, and if one of them is among P,,, the
other cannot be in P,, and must be contracted later. Thus if v is a fixed
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scale label vertex such that there exist other fixed scale vertices preceding
it, then at least 4 fields must emerge from v and no renormalization can
occur. Hence,

~ N ~
[T rov—mern ] L [ rov—rocirn,
v<vp: i=1 v<vp:
Vv not e.p. v also e.p.

Moreover, due to the cluster structure of G,ab

II L(nmnv)(—an b= p=molPol T Lm0R =327 1P )
v<vo: V<vg:
v also e.p. Vv not e.p.

— 7 —nygll Pyl
= L ™ol

where we also used that

1P =>" || P =0. (5.43)

i=l

The reader may convince himself that the formula (5.43) above is true
by recalling that now v’ can be end-points and recalling the comments
following the formula (5.42). Finally, we obtain

Lol Pl H Ly =nv) (= 121 __HLnlotl (5.44)

v<vg i=1

where we emphasize that ; is the contribution to || P;"|| coming from the

end point i and also that Z,_l o; = || P,;"||. Now, using (5.41) and (5.44),
we can bound the left hand side of (5. 38) by

( ) N
Z Z Wap i (O P Py} y<vys X_PUO)

{"v}v<v0: {Pu}v<v0
nvo,{nvl fixed P,,O fixed

< H L—3nv(§v—§v)lN_ILa,-n,-L—nvosuO H L(sv=1)

v<vg i=1 v<vp

x [H i] > [T e sl (5.45)

TETL;(, pet*(r.lpvo)

T comp 9][;’!;"
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Recalling that 5, — 5, are the number of end points of 6" which contain
fields in P,, and are directly attached to v, we have

- p
H L-—3nv(§v“'fv) — H L_3nj' (5.46)
v<vo Jj=1

Moreover, we have that
N p
1o =], (5.47)
i=1 j=1

where j is labelling just the end points with space-time coordinate in
X Py Hence

. N p
H L3 Gv=5y) H Leini — H 0BG (5.48)
i=1 j=1

v<vo
Note that 3 — o; >0 in any case. Using (5.48) we can write (5.45) as

Z Z Wérnn),k (6[1;/6"7 P;§n7 {Pv}v<v0» XPUO)

{"v}v<voi {Pv]v<v03
"”0’[""} fixed P,J0 fixed

14
< CN)\'NL—nUOXUO H L—nv(sv—l) H L—-nj(3—ot,-)

v<vp j=1

1 Xy —np
X[HS—;] > [T el (5.49)

vy VY TG’ZXUO per*(r,X_on)

N,n

T comp 6,

The total scaling factor of this bound is given by
P
L ~"v05u H L= HL—nj(3—ai)_ (5.50)
v<ug Jj=1

By the standard tree identity

SNsv-D=p-1 (5.51)

V<V0
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(where the inequality > appears because s, is the total number of
branches from v, i.e., s, > §, for all v) and recalling that Y _; a;; = || Pyl

the total scale factor is bounded (independently of ;") by
S+ Y (v= D+ B—a) 28 +p+3p— P77

V< J
=08yyvy +4p —2(m + k), (5.52)

where 8,,,, = 1 if vy # vo and 8,5y, = 0 if vy = vo. We also used that
Sy, = 2. Thus, we may rewrite the factor (5.50) as

p
L—"vosvo H L_nv(sv“l) HL_nj(3‘ai) — L_a"'OVOnUO H L_ﬂv”v’ (5.53)

v<uvg j=1 v<vo

where the first factor in the right hand side of (5.53) is present if vo # vg
(otherwise it is equal to one), and it controls the sum over the scale
label n,,. The productory in right hand side of (5.53) runs over all f.s.1.
vertices, and B, are a sequence of integers, univocally determinated once
912’5" and 7 are fixed, such that 8, > 1 for all v, and, with d =3

d-1
2

Y B=@d+1p- [2m +2k|. (5.54)

v<vg

Recalling that the set {v} of all f.s.l. vertices is at most p — 1 and at
least 1 (obviously p — 1 is the worst case), we have, for any 91ab and 7,

pointwisely
Z H LBy H e~ 5L Inl

nug.(nvlvsvg V<V per*(t.X 5, )

ny=0 "p—l=0 ﬂl+“'+ﬂp—|
=4p—2(m+k)

x e~ FLTMprl+ LT "p=11pp_ i (5.55)
where {p1, ..., pp—1} = T¥(7, XP ). Using the formula (5.55) above we

can finally perform the sum over the scale labels of the vertices {v} and
vp in the left hand side of (5.49) and obtain the pointwise bound

Z Z W(n) elab ’ Plfgn7 {Pv}v<v0y XPUO)

(”v)vSvO {Pv}v<v0
Py, fixed
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<cMv Ny B,(eN,on)i---zn: >

teTy n1=0 np—1=0 Bi+--+Bp-1
£ Py P
% =4p—2(m-+k)
T comp 6},
LB .. [ ~Bpinp-1g=§ Lo+l o) (5.56)

The first sum in the right hand side of (5.56) runs over all connected
tree graphs ¢t = {p;,..., pp—1} between the points in X Pey which are

compatible with ", in the sense that r = 7*(z, X on) for some tree graph
T between xp, ..., xy compatible with oV, and

Bix,, ) (0") = [H %] 3 1.

vy Y 7 comp. OV:
T*(Eipvo):t(épvo)

We are finally in the position to show the bound on Wy ¢ presented in

Theorem 5.1. Renominating the space-time coordinates X p, as xi, ...,
Xp, such that

¥ (Pe) = (1" P[P W] [029]) (1, 3o, ).
Comparing (5.56) with (4.15) and using also (4.16), we obtain the bound

|W2(7n),’lf'£(9N’", X1y X2y eens xp)|

LD DA DS DD

te'T(x‘ ..... xp} ny=0 "p—l-_—O Bi1yeos ﬂp—l

LB [~ Bpmpgmalnl L o=aLl TP opmil (5 57)

where the first sum in the right hand side of (5.57) is over all the tree
graphs t = {py,..., pp—1} between the points {xi,...,x,} compatible
with 8%, in the sense that t = 7*(7, X on) for some T tree graph in
{x1, ..., xy} compatible with &V and some X Py (modulo a renomination
of variables), and

B, (6Y) = > B, (6", P,), (5.58)
Pug: 1(X p, )=t
when XPUO_){XI ,,,,, Xp}

Vol. 71, n® 2-1999.



196 A. PROCACCI, E. PEREIRA

where the sum over sets Py, is carried out with the constraints that | P, | =
2m, k and p are fixed. Note that, by Proposition 4.3 and formula (4.31)

> B(EY)< > [Hi'] > 1<cV. (559

1€T(x),..xp) Pyy: [ng()]:p v<og VY° TETKUO

T comp. 91’;/6"

Summing finally over OV and N we obtain the formula (3.36) in the
part A of Theorem 5.1. Namely,

(n){rj,s;}
[Wo i (k1. X2, .., xp) |

< DPAP Z B, nz—:l nz_l Z LB [ =Bp-1mp-1

€T, n1=0 np-1=0 Br++By-1

=4p—2(m+k)
x e~eL"oil ‘e—aL_”l’—' l/’p—l|’ (5.60)
where
oo
M=0 ON: N=M+p
t comp. 6V
and
> B <CP

teT,

due to (5.59) and the bound (2.19) on the number of all topologically
different rooted Cayley trees with N end points.

The proofs of (3.37) and (3.38) are just simple exercises. In particular,
the exponentially decaying factor L™ in (3.37) follows by the same
argument of Section 4.3 (see (4.63) and comments above).
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