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ABSTRACT. - Within the context of renormalization group analysis,
we describe how to get a very detailed control of the effective potential
theory for some fermionic systems using the tree expansion technique.
We consider the tridimensional Gross-Neveu model (with smooth ultra-
violet cut-off) and we prove that the kernels of the effective potential can
be written in terms of a convergent perturbative expansion in the initial
interaction parameter (with an upper bound for the convergence radius

independent on the volume). Moreover, we obtain pointwise bounds for
these kernels showing that they decay polynomially (in a well precise
sense) as the distance between points becomes large. @ Elsevier, Paris

RESUME. - Du point de vue de 1’ analyse par Ie groupe de renormaliza-
tion, nous presentons une façon d’ obtenir un controle tres fin de la theo-
rie du potentiel effectif pour quelques systemes fermioniques, en utilizant
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130 A. PROCACCI, E. PEREIRA

la technique d’ expansion en arbres. Nous etudions Ie modele de Gross-
Neveu en trois dimensions (avec cutoff ultraviolet lisse) et nous demons-
trons que les noyaux du potentiel effectif peuvent etre ecrits comme un
developpement convergent dans Ie parametre initial d’ interaction (avec
une borne superieure pour Ie rayon de convergence, independante du vo-
lume). En plus, nous obtenons des bornes ponctuelles pour ces noyaux,
ce qui demontre leur decroissance polynomiale (dans un sens tres precis)
lorsque la distance entre les points devient grande. @ Elsevier, Paris

1. INTRODUCTION

In the last fifteen years a considerable effort has been spent in order to
apply the renormalization group (RG) method to many popular problems
in mathematical physics, ranging from classical mechanics to field theory
and quantum many body systems. The basic idea of RG, i.e., roughly
speaking, the analysis of the problem through a splitting in many scales
of lenght, has been made rigorous and applied in many different ways.

In the present paper, within the framework of fermionic interacting
systems, we aim to show how to obtain a very detailed description
and control of the effective potential theory, i.e., of the changes of the
interactions with the RG flow, using the Gallavotti-Nicolo tree expansion
technique. We study the infrared limit of the tridimensional Gross-Neveu
model (with a smooth ultraviolet cut-off which regularizes the theory
at short distances), and we obtain pointwise bounds for all the k-point
kernels of the effective potential after n steps of the renormalization
group transformation, showing that their long distance behavior is given,
as n -+ oo, in terms of polynomially decaying functions. We still prove
that they are analytic functions of the initial interaction parameter (with
an upper bound for the convergence radius independent on the volume).
The pointwise behaviour of the kernels of effective potential is an

important information to the knowledge of the correlation decay, which
has a direct physics interest. Iri many place it is possible to find detailed
RG analysis to get "integral" (respect to some norm) bounds (e.g., [6,8,
15,18] and see Remark 5 after Theorem 3.1 below). On the other hand, we
could not be able to find in the literature a complete and rigorous analysis
for pointwise bounds (this problem was in some sense understimated
in [6], see Remark 6 after Theorem 3.1 ).

Let us now introduce the model and some notations.

Annales de l’Institut Poincaré - Physique theorique



131POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL

The Gross-Neveu model is a relativistc Fermi system described by the
action (in Euclidean formalism) H = Ho + with Ho and beeing
the free action and the perturbation, respectively, given by:

Here we will consider just the tridimensional case (d = 3), so x ~ A C
JR2+1 the tridimensional Euclidean space-time), 7l is a periodic
box in JR 2+ 1, À a small real paramenter; represent spinors with

with and standard Grassmann

fields. We name the model Gross-Neveu but take the number of flavours

N = 1. The notation ~ means ~ = (sum over = 0, 1, 2, = 

with /B y 2 being 4 x 4 antihermitian traceless matrices such that
+ = -203B4 03BD. Expressions like or 03C803C8 or have to

be interpreted in their matricial sense, i.e.,

(the last is a 4 x 4 matrix as the product of a 4-column spinor with a 4-row
spinor). The free propagator of the model (with a smooth U.V. cut-off) is,
by definition ( 1.1 )

The notation (~ 0) indicates that the U.V. cut-off is at the scale L° = 1
(L &#x3E; 1 being a constant with dimensions of a lenght). The reasons for this
notation will be clear in the next section. p (x - y) means y)J.L.
The free propagator ~~ satisfies the pointwise (asymptotic) bound:

The action of the model is invariant under a (discret) Chiral transfor-
mation: 03C8 -+ 03B3503C8, 03C8 ~ 03C803B35. Thus, in the I.R. analysis, this model
has just a local marginal term The local quartic term

in H is irrelevant. Local quadratic terms as or

Vol. 71, n° 2-1999.



132 A. PROCACCI, E. PEREIRA

are forbidden in the effective potential by Chiral sym-
metry and euclidean symmetry, respectively. Thus, in the study of the
renormalization group (RG) flow there will be just a running coupling
constant, the "wavefunction" renormalization constant related to the mar-

ginal term.
The structure of the RG flow for this model is therefore rather simple,

but the model is far from being trivial. Roughly speaking, it can be viewed
as a sort of fermionic version of the dipole gas 2 dimensions.
The latter is a very studied problem of statistical mechanics (including
rigorous RG analysis [8,14]), consisting in a gas of classical particles
interacting through a two-body stable but not absolutely integrable
potential. The rigorous RG analysis of the dipole gas is performed, in
general, by mapping the model (throught a Sine-Gordon transformation)
into a bosonic field theory. The action of this bosonic model is formed
by a kinetic marginal term, ~9~ plus a small irrelevant perturbation
term given by a function of The relevant mass term ~2 cannot be
generated in the RG flow due to the symmetry of the initial action (its
dependence on derivative fields). Hence, the parallel with our model is
made clear: the action of our fermionic model has also the structure of a
kinetic marginal term 1/1 (i ø) 1/1 plus an irrelevant (quartic) perturbation,
and the relevant mass term ~ ~ cannot be generated during the RG flow
because of the symmetry properties of the initial action (i.e., discret
Chiral symmetry).

Still concerning the non-triviality of the model to be considered here,
we recall that to obtain some rigorous results such as the absolute

convergence of the perturbative expansion in À (uniform in the volume 7l)
for the pressure, effective potential kernels, etc., a treatment involving just
one step integration (all scales at once) does not work, as in the case of
the dipole gas, unless one is able to exploit suitable cancellations without
introducing dangerous combinatorial factors. Due to the difficulty of the
latter task, a direct proof of the analicity of the pressure for the dipole gas
is still missing [8].

In relation to our fermionic model, the machinery of the scale per scale
RG analysis (and the consequent resummation) provides the standard
(and, as far as we know, unique) tool to handle these kind of cancellations,
while the Brydges-Battle-Federbush tree equality [7], and the good
combinatorial behaviour of fermionic expectations allow to keep under
control the combinatorics.
Our multiscale RG analysis is based on the Gallavotti-Nicoló tree

expansion algorithm adapted to Fermi systems (e.g., [3-5] and [6]),
Annales de l’Institut Henri Poincaré - Physique theorique



133POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL

and includes an important technical device: the rescaling is performed
by introducing into the free measure, step by step, the wavefunction
term extracted at each step. This a very general way to perform the
rescaling, especifically suitable (and probably necessary [12]) to treat
non-canonical scaling models [6], but also widely used for canonical
scaling or even asymptotically free theories [8,14] (more comments at
the end of Section 2.3 below).
We think that the results obtained here, and also the method used in

order to obtain these results, can be useful for further purpose, e.g., the
study of the k-points correlation or Schwinger functions (with k &#x3E; 2)
for fermionic systems with anomalous scaling, like the one-dimensional
Fermi liquid and the Thirring model. 

,

Finally, we list some rigorous constructive results available in the
literature on the general Gross-Neveu model in its various versions

(N flavours, d dimensions, massive or massless, IR or UV). In particular,
we mention the construction of the d = 2, N large, massless IR
case (which is a highly non-trivial model due to the mass generation
mechanism) [ 16] and of the two-dimensional massive, A~ ~ 2, UV
(which is asymptotically free) case [ 11 ] . The tridimensional, N large,
UV case (again a very untrivial model due to its nonrenormalizability)
has also been rigorousely studied in [ 10]. In all these references the
model is mapped in a purely bosonic theory and consequentely, beyond
the multiscale analysis, technical tools like, e.g., polymer expansion and
large field small field analysis are heavely used. In [ 15] one may find
an alternative construction of the two-dimensional massive, N ~ 2, UV
case, based just on a purely fermionic formalism (i.e., more similar to the
techniques used in this paper). Constructive results on fermionic models
using just fermionic approach can also be found in [6] (d = 1 + 1 Fermi
liquid, which should include also the IR Gross-Neveu model in d = 2
with N = 1 and the Luttinger model) and in [ 18] (Yukawa model). Finally
we remark a recent renewed interest on purely fermionic constructive
field theories, e.g., [ 1 ] and [9].
We will try to be as self-contained and pedagogical as possible. In

this spirit, Sections 2 and 3 of the paper will be devoted to introduce all
the notations and definitions indispensable to understand the proofs of
Sections 4 and 5. In particular, in Section 2 we present the multiscale
decomposition leading to the RG mechanism and we define the tree
expansion algorithm for the multiscale perturbation theory. In Section 3
we define the (anomalous type) renormalization prescription, set up the
RG flow for the effective potential and introduce the main theorem

Vol. 71, n° 2-1999.



134 A. PROCACCI, E. PEREIRA

of the article (Theorem 3.1 ) concerning the pressure and the effective
potential kernels of the present model. Section 4 is devoted to preliminary
estimates including the bound on the wave function renormalization
constant and the consequent proof of analiticity of the pressure (which is
the "easy" part of the main theorem, involving just "integral" bounds). In
Section 5, we complete the the proof of the hard part of the main theorem,
i.e., the analiticity in À of the k-point kernels of effective potential and,
especially, their pointwise bounds.

2. THE RG MECHANISM AND THE BARE TREE EXPANSION

2.1. Basic definitions

Before describing the RG mechanism to be used here, we introduce
some previous structures and definitions. The generating functional of
the correlation functions is written as

In this formula (as also in (1.1)) ~x, and hx (h and h are the
external fields), with x E 11, are generators of a Grassmann algebra, i.e.,
they are anticommuting numbers (e.g., + = 0, etc.). The

symbol P~~°~ (d ~) represents a normalized Gaussian Fermionic Measure
(GFM) (formally) given by:

P ~~°&#x3E; (d ~) works like a Gaussian measure ruled by a Fermionic Wick
Theorem with covariance ~~~(~ 2014 y). Hence, the simple expectation

acts on field monomials as follows:

where is the n x n matrix with entries Gi~ = ga ~°~ (xi - 
Annales de l’Institut Henri Poincare - Physique theorique
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The reader worried about the rigorous meaning of the formulas above
must recall that 11 is periodic cube of size ~l ~ 1 ~3 , and so the integral over
momenta p in ( 1.2) is actually a sum over a discrete set of_values of
p = 27r!~!’~i,~2~3). Hence, defining ~x = we

may reduce ourselves to a countable set (~p and c.c.) of Grassmann
generators. Following this scheme we can give a precise mathematical
meaning to Grassmann integrals as Berezin integrals and also to infinite
sums of Grassmann monomials. This is a commun practice (see, e.g.,
[4,6,15]). Here and throughout this paper we interpretate the expressions
involving Grassmann variables in the sense of [4,6].

Towards the analysis of correlations, it is very useful (and a widely
adopted tool) to study a functional h ) , called effective potential or
effective action, defined by

The relation between and S(h, h) is, via a change of vari-
ables [4],

where (f, g) = and f * g(x) = y)g(y).
The expansion of h) in terms of the perturbative potential V~°~

is immediate. Namely, by the cumulant expansion formula, right hand
side of (2.4) can be rewritten as

where ~~o) is the truncated expectation relatively_ to the Gaussian Fermi
measure defined by

Recalling the definition of ( 1.1 ), it is clear that the expansion (2.6) is

actually an expansion in power on JL In particular, the partition function
(which coincides with exp[Veff(h = 0, h = 0)]) is given explicitly, as a
power series in À, by

Vol. 71, n° 2-1999.



136 A. PROCACCI, E. PEREIRA

while the "pressure" of the model p~ (~,) = (h = 0, h = 0) is
given explicitly by 

.

The expansions in power of À (2.6) and (2.9) are analytic in À but the
l1 dependence of their convergence radius is, for the time being, out of
control and the radius may shrink to zero as ^ -+ oo. Of course, the RG
analysis below will provide a bound for the convergence radius uniform
in 11. We want to stress also that (2.8) and (2.9) make even stronger the
analogy of the present model with the dipole gas. Actually, (2.8) and (2.9)
can be viewed (cum grano salis) as the partition function and the Mayer
series of a system of classical particles in the gran canonical ensamble at
inverse temperature ,B = 1 and fugacity À, enclosed in a volume 7L The
factor

can be interpreted (modulo a sign) as the Gibbs factor

and

is interpreted as the Norder Ursell coefficient of the Mayer series [7].
The potential 7(~i,...,~) is actually stable (i.e., ~(jci,...,~) ~
-BN, with B constant), due to the Hadamard inequality, which provides
a bound of type CN for the simple expectations of Fermionic fields,
as in (2.8) (see later (4.21 )). But C/(jci,...,j~) is not a tempered
interaction [24], i.e., if 2014~ oo and all others x’s are fixed, then

Annales de Henri Poincare - Physique " theorique "
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which is a too slow decay rate, a consequence of the fact that 
is not absolutely integrable (see ( 1.3)). This fact make extremely
hard to obtain a 11 ~ -independent CN bound on the N order Mayer
coefficent in (2.9) via a one step integration: one must be able to

exhibit suitable cancellations without destroying stability (i.e., without
producing dangerous combinatorial factors), exactly as in the case of
the dipole gas. The way out, of course, is to analyze the series (2.6)
and (2.8) using the RG multi scale analysis, which we describe in next
section. ’

2.2. Multiscale decomposition of the free covariance and tree
expansion definition and notations

Now we describe the free propagator multiscale decomposition which
will lead us to the multiscale tree expansion of the effective potential. We
write

where

where a and C are positive constants. Here and throughout this paper C
always denotes a generic constant (i.e., the notation C may be used for
different constants). The decomposition (2.10) induces a decomposition
of the free Gaussian fermionic measure (2.2)

./-

Vol. 71, n° 2-1999.



138 A. PROCACCI, E. PEREIRA

where are Grassmann independent fields (respect to j) on ^,
with Gaussian Fermionic Measure (GFM) P(~~), with covariance
~~B~ - y). Analogously, P(J~~~) will indicate the Gaussian fermi-
onic measure with covariance ~~(~ 2014 y), acting on Grassmann random
fields on 7l, indicated by ~~ = ~~ ~~.
The "running" effective potential ~B~~~) at scale ~’ is defined by

and

By a cumulant expansion (2.16) implies

We may represent graphically the truncated expecation in the formula
(see Fig. 1 ). The n steps iteration of (2.18), through the graphical iden-
tification above, produces the so called Gallavotti-Nicolo tree expansion
representation of the effective potential at scale n .
We now review the main ingredients and the basic notations of this

expansion (general treatments can be found in [12,13] and [4]).
Let us indicate with the symbol 0~ a rooted Cayley tree with N

end points. 9 N is organized hierarchically in a natural way. Namely, a
rooted Cayley tree starts with a single vertex, named the root of the
tree, followed by a line which bifurcates at the vertex vo into svo &#x3E; 1

Fig. 1. Graphical representation of a truncated S expectation.

Annales de l’Institut Henri Poincare - Physique " theorique "



139POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL

branches, each one of these branches bifurcates again, and so on, until
an end point is reached. A non-trivial vertex v of 8 N is a point where
a bifurcation occurs (we may consider, sometimes, the root and the
end points as non-trivial vertices too). Non-trivial vertices in a rooted
Cayley tree form a partial ordered set in a natural way. I.e., given two
non-trivial vertices v and w, we say that w  v if w can be reached

when we climb the tree starting from the vertex v . If w  v, we will

also say that w precedes v, or either, v follows w . Throughout the
paper, we denote vo the greatest non-trivial vertex of 9N (i.e., the first

preceding the root). For any non-trivial vertex v, we will indicate as sv
the number of branches in which v bifurcates. We also will indicate

as v 1, v2, ... , vsv the sv non-trivial vertices immediately preceding v
(remark that some of them may be end points). We denote v’ the unique
non-trivial vertex immediately following v (if v = vo then v’is the root).
Two rooted Cayley trees are said topologically identical (and they will be
considered as the same rooted Cayley tree) if they can be superimposed
exactly just streching/shortening lines between non-trivial vertices or

increasing/reducing angles between lines starting from the same non-
trivial vertex, without creating or destroying non-trivial vertices and

without overlapping lines. So, a rooted Cayley tree will be univocally
determinated once the sequence of its non-trivial vertices, hierarchically
organized in clusters according to the natural partial order above, has
been given. It is an easy combinatorial exercise to bound the number

of all topologically different rooted Cayley trees with N end points
(e.g., [6])

A labelled tree 9~" with N end points and root at scale n is a rooted
Cayley tree for which scale labels n v = 0, 1, 2, ... , have been assigned
at each non-trivial vertex v, compatibly with the natural partial order of
the rooted Cayley tree. Namely, if w  v, then n w  nv. In a line of

a labelled tree among two successive non-trivial vertices v and v’, we

place 1 points, called trivial vertices, and assign to them scale
labels n v + 1, n v + 2,..., ~ 2014 1, respectively. For later use, we also use
a specific symbol v* for the greater among them (i.e., the one with scale
label equal to y~ 2014 1 ).
End points in a labelled tree 81 b’n are numbered, from top to bottom,

as 1, 2, ... , N . The factor 03BB d xi[03C8xi03C8xi]2 is attached to the i th end

point. We also denote n i the scale label of the first non-trivial vertex

Vol. 71, n° 2-1999.
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Fig. 2. The neighborhood of a non-trivial vertex v in a labelled tree.

following the end point i (see Fig. 2). A non-trivial vertex v in a labelled
tree represents, through the graphical identification of Fig. 1, a factor
1 Bsv ! times a truncated expectation, ruled by the covariance y),
of sv objects ; a trivial vertex u represents in a natural way a simple
expectation ruled by the covariance y). Then it is natural to
associate to a given labelled tree a hierarchical organized sequence
of simple and truncaded expectations at different scales of N objects, say

’,.,...,’, 1.e., explicitly

where the productory 03A0vv0 runs over all non-trivial vertices (end point
and root excluded). The right hand side of (2.20), evalutaded when the N
objects are N copies of V ~°~, is easily recognized as a single term, say

in the multiscale expansion of obtained by iteration
of (2.18). Hence, the tree expansion of is simply

Annales de Henri Poincare - Physique " theorique "
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For ~V fixed, the second sum in formula above is over all possible
(topologically different) rooted Cayley trees with N end points. For e N
fixed, the third sum is over all the possible ways of labelling 8N (i.e., all
possible attributions of scale labels n v in non-trivial vertices v compatibly
with the hierarchical structure of the tree in such way that the root

carries the scale label ~c . ~ ~ ~n~ ) is explicitly given by

Remark also that, due . to the symmetries of our model (g ~~ ~ (o) = 0 for
all/)

i.e., everything goes as if were Wick ordered.

2.3. The renormalization

Of course a "bare" multiscale analysis as the one presented above is
not enough to obtain convergence of the perturbative expansion. Due
to the problem of lack of absolute integrability of the free covariance,
we also need to perform some resummation of the perturbative series
to look for suitable cancellations. This resummation is provided by the
scale per scale renormalization prescription for the marginal term 03C8 03C8
of the model. We follow the scheme of [6], and [15]. We define £ and
T~. = 1 - £ operations acting on field monomials (no matter the scale),
which split the effective potential into its relevant/marginal part plus the
irrelevant part (in the sense of dimensional power counting)

and /~ ~Z are defined directly acting on field monomials (we drop scale
indices here) as

Bbl.71,n° 2-1999.
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where x12(t) = x1 + t(x2 - x1), and (x2 - x1)2~2 = (x2 -
Note that the definitions (2.25) are consistent with L + R = 1,

and that (2.25) is a consequence of the Taylor formula

Now, for our model, due to chiral and Euclidean symmetries, and
translational invariance, it is easy to see that

where bn is a scalar constant (wavefunction constant). As a matter of fact,
we have

Observe that J’ dz W 2j~ (z) = 0: W 2~~ (z) is necessarely a sum of product of
an odd number of covariances at various scales g ~ ~°~ (x ) and 
are odd functions of x for any j. Moreover, by Euclidean symmetry,

= constyJ.L. Hence, recalling that in d = 3 
-12, we have that the running coupling bn in (2.26) is explicitly given
by:

The irrelevant part of the effective potential is given by

Annales de l’Institut Henri Poincaré - Physique theorique
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where (1/1) contains the terms with more than two fields (or two fields
with one 9~).
The scale per scale renormalization can be done following, at least,

two ways.

( 1 ) At each step we split

and we regard bj in LV(j)eff as a new expansion parameter which appears
at scale j. So, generally speaking can be regarded as a power
series in ~, , b 1, ... , b~ . Remark that, with this procedure, the factor

left in the effective potential, thus we are actually defining the
same sequence of running effective potential, but the
expansion is reorganized collecting toghether, step by step, an amount of
terms forming new expansion parameters b1, b2, ... , b~ (i.e., the running
coupling constants). Hence now is a power expansion not just in
terms of A., but also in terms of b2, ... , This method is very well
illustrated in [ 12] and [4]. It has the great advantage to leave unchanged
the effective potential during the RG analysis, so leading directly to
correlation functions via (2.5); but it seems to work just in the case
of asymptotically free theories and in general it is expected to fail in
anomalous scaling cases [3].
(2) At each step we split again = + then we remove ,

,G V ~~ ~ = ~ b~ 1/r~ i lJ1/1 from the effective potential and put it into the

measure P (d ~ ~ ~ ~ ~ ) which has still to be integrated out..This, roughly
speaking, will change the constant in front of the covariance by an
amount Sb~ , the correction at scale j of the wave function constant.
The new effective potential is indeed a power series in À, and

parameters 03B4bj appear implicitly inside the covariances (remark that 
is now a different object respect to defined before; that is why
we are using a different symbol). In this way a new sequence of

running effective potentials V ~ 1 ~ , V ~2~ , .... V~B ... is contructed, which
is obviously different from the sequence on point ( 1 ).

This method is more general, since it can be also adopted for non-
asymptotically free or even non-canonical scaling models. Moreover the
analysis of the effective potential is expected to be simpler, since it does
not depend explicitly on all running coupling at lower scales. An un-
pleasent (and not always remarked in the literature) consequence of this
procedure is that limn~~ V n ~ Veff so that (2.5) cannot be used in or-

Vol. 71, nO 2-1999. -
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der to calculate correlation functions, and the relation between the renor-
malized effective potential and the generating functional of correlation
becomes in general more involved. Anyway, an explicit formula, with a

. 
structure very similar to (2.5), does exist. It has been furnished for the
first time in [ 19] (see also [21 ]) for bosonic lattice systems using the
block spin RG transformation, and it has been extended in [20,22] for
lattice fermions. The generalization of the formula to continuous formal-
ism has been obtained in [23], where it is used to perform a pointwise
analysis of the correlation functions of the present model.
As said in the introduction, having also in mind to provide a model-

independet algorithm which can be in principle applied also to non-
asymptotically free fermionic models, we will adopt the latter and more
general method and we will follow the scheme of [6].

3. THE RG FLOW AND THE RENORMALIZED TREE
EXPANSION

Now we describe the RG flow. We will generate a sequence of

running effective potential and a sequence of running coupling
constants bj ( j = 0, 1, ... , and b° = 1 ). We will indicate as Pbj (d03C8(j))
the normalized GFM with covariance and Pb~ (d ~ ~~ ~ ) the

normalized GFM with covariance (see (2.11 )-(2.14) ). Consider
the partition function (2.8), where may replace 
(since b° - 1 ). We start integrating out the fluctuation field 1/1(0)
using

Thus,

where

Annales de l’Institut Henri Poincare Physique " theorique "
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The Fermionic truncated expectations are performed using as covariance
bo 1 g ~°~ (x - y ) acting on fields 1fr(0) and considering the fields ~~ as
constants. The general form for V ~ 1 ~ ( ~ ~ ~ 1 ~ ) is

where ~l ~2 V~l~ ~ (’1~l’ ~’ 1 ~ ) contains the terms with more than two fields.
Now we split V ~ 1 ~ into its marginal and irrelevant part using defini-
tions (2.25) of operations ,C and TZ and using the symmetries of the
model

with

and

Hence, the partition function (2.8) can be written as

Note that

where ’ P bo (’t~J’ ~ ~ 1 &#x3E; ) is the normalized GFM with covariance [boi ~’~ ~ ~ ~ +
and 0

Vol. 71, n° 2-1999. 0
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with

Consider now, following [6], the Fourier tranform of the [bo i ~~ +
~’]-1 (x - y)

and define

Then it is easy to check that

where

Defining now

(3.15) implies that
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where Pb 1 ( ~ ~ 1 ~ ) is the normalized GFM with propagator b 1 g ~ 1 ~ (x - y)
defined in (3.16)-(3.17). Note that the bound

holds, with a &#x3E; 0 constant, if ~bo is sufficiently small (actually, we will
show that ~bo ~ O(À 2), where ~, is the interaction parameter).

Therefore, using (3.18), we obtain

which completes the first RG step. In order to perform the next step,
remark that 7Z V ~ 1 ~ ( v/r~ ~ ~ 1 ~ ) contains now a term of the form ~9~. Thus,
y(2)~(~2)~ will contain infinitely many terms with fields of the type
~203C8, and so, we must extend the definition on R and L to monomials
~ ( P ) which contain fields of type a 2 ~ . The extension is obvious, since
a monomial containing double derivative fields is, by power counting,
irrelevant:

= ~(P), /~(P) = 0, if ~(P) contains terms a 21/r~. (3 . 21 )

Iterating we generate a sequence of renormalized running effec-
tive potentials, a sequence ~bn of running coupling constants, and a se-
quence of constants defined as follows

with

And, if ~bn is sufficiently small,

The running coupling constants bn are defined by
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where, ~r~oi(~ " the kernel in front of the 

in the expansion of (remark that has also an irrelevant quadratic
term proportional to ~c/ry ~ 2) a 21/ry ~ t ~ whose kernel does not contribute to
~bn_1). Finally, the pressure (or free energy) of the system is:

with

where

As a consequence of renormalization procedure described above, a
labelled tree in the renormalized tree expansion has to be interpreted
in a slightly different way. Actually, comparing (2.18) with (3.22), we see
that a renormalized labelled tree differs from the old one just by two
facts: ( 1 ) Each non-trivial (trivial) vertex v with label scale n v means
now a truncated (simple) expectation with propagator (2) Now,

immediately after each vertex of type v* (see remark below) of the

TZ operation is applied.

(3.22), the 7Z operation should be applied after
any expectation (simple or truncated), i.e., in terms of trees, after any tree
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vertex (trivial or non-trivial), but this is not necessary. As a matter of fact,
let v and v’ be two subsequent non-trivial vertices with scale indices n v
and &#x3E; nv, respectively, and let ~ ~’ n v ~ ( P ) be a monomial of fields at
scales greater than nv. Then, using the definition of 7Z operation, it is easy
to check that

where v* is the greatest vertex (see Fig. 2) in the line from v to v’: it is
the trivial vertex at scale = ~ 2014 1 if &#x3E; 1, and in the case
that = 1, then v * = v . Thus, due to (3 . 31 ), the vertices v * can
be though as the particular vertices of in which the 7Z is applied
(TZ operation is applied to what is coming out of v*). 

’

Thus, analogously to (2.20), we can associate to each label tree 
a renormalized hierachically organized sequence of simple and truncated
expectations at different scales of N objects, say ?i~ ~ (’,-,...,’), given
by

where Cw = 7Z if v  vo and (9~ = 1, ~ stands for ~,~ stands
for and note that ~/ 2014 1 = nv*. The tree expansion of the
renormalized effective potential is (compare with (2.21 ))

By the definitions above, is given explicitly by (compare
with (2.22).)

where we also use (2.23).
Observe that V~(6~B 1/1) is proportional to ~,N, but, of course, the

proportionality coefficent is not the Nth order coefficient of the power
Vol. 71, n° 2-1999.
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expansion of in terms of the parameter A. Actually, a residual
dependence on À is also hidden in the covariances (which are
used to calculate truncated and simple expectations in the (3.34)), since
bnv and both depend on À (through ~bn_ 1, see (3.23)).

We conclude this section giving the main theorem of the paper. First,
we need to introduce some notations concerning connected tree graphs
in finite sets which we will use below and throughout the rest of the
paper.

Connected tree graphs. Whenever A denotes a finite set, we denote

by IAI the number of elements of A. Given a finite set A, we define
a connected tree graph t in A as a collection t = { p 1, p2 , ... , 
such that: pi C A : |03C1iI = 2; 03C1i ~ 03C1j for all i , j ; for any pair B , C of
subsets of A such that B U C = A and B n C = 0, there is a pi E t

such that pi n .6 ~ 0 and pi n C ~ ~ (connection). Given a connected
tree graph i = p2, ..., in a finite set A, pl, ~2...., are

called links of r. We denote with 7A the set of all connected tree graphs
of A. Whenever A = { 1, 2, ... , ~}, we will = 7~.
THEOREM 3.1. - There exist ~ &#x3E; 0 and D &#x3E; 0 such that:

A. The e, ffective potential at scale n, defined inductively by (3.22),
can be written, for |03BB|  ~, in the following way

where (for j = 1, 2, ... , p - k), 0 ~ 2, and analogously fOY S~ .
Moreover, for j = 1, 2, ... , p - k, 1 rj + 3, and 03A3j rj = m,

03A3j sj = m - k. The kernels }, W2 , 0 (xl - x2) and W2 1 (xl - x2)
are analytic in À, if |03BB|  ~, uniformely in A, and satisfy the following
pointwise estimates
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where:

Tp denotes the set of all connected tree graphs t in { 1, 2, ... , p } ;
p denotes the generic link of t (recall that the number of links in t E ~p
is p - 1 ), and if p = {i, j }, then xp = xi - B~ are combinatorial

positive factors such that 2:7: Cp where C &#x3E; 0 is some constant;

03B203C1 is an integer  1, and runs over all possible choices of
p - 1 positive integers (one for each link p E t ) such that (recall that
d = 3)

In the oo (3.36) becomes:

Thus, the kernels of effective potential decay polynomially at large dis-
tahces, in general, in a non-integrable way.
B. The pressure of the model can be written as

2-1999.
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with T~ and tj given by (3.28), analytic functions and satisfying £ the
bound ’

Remark 1. - The notation 1/ry‘ means 03C80xj = 1, 03C81xj = 03C8xi and 03C82xj. _
1/f 03C803B2xi; in particular 1/ry. carries two spinor indices. Analogously for 03C8sjxj.
We stress that the factor

always contains exactly 2m fields and so carries 2m spinor indices, which
are contracted with the 2m spinor indices attached to Moreover,
recall that ~ 2 means and indices ~c, v are again contracted to the

correspondent (t, v indices in (we do not make explicit the
spinor and euclidean indices in order to avoid a heavy notation).

Remark 2. - is the kernel in related to the monomial

with 2m fields, m of which are of type ~, m - k of type 1/1, and k of type .

a 2 ~ . It is a p point contribution to the 2m point truncated correlation
function (see [23]). Indices ri and si are just telling us which fields
among 1/1 and 03C8 are sitting in the same point Observe that the number
of all possible combinations in which ri and si numbers can be distributed
cannot exceed 32p .

Remark 3. - Note that, by construction, if a field of type a 2 ~/r~ appears
at a point y in a monomial in V~B then this monomial cannot contain a
field 03C8 or 03C8y in the same point.
Remark 4. - Note that

for some constant C. In other words, this sum is not combinatorially
dangerous.
Remark 5. - By a standard analysis, one may obtain "integral" bounds

on the kernels of the effective potential of the form
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Note that ~~~+~-~] ] grows u p exponentially as n 2014~ oo, which
means that the polinomial decay of the kernels of effective potential is too
slow in order to keep x2,...,xp)~ finite as ^ --+ oo . This
kind of divergence is expected since the free covariance is not integrable.
Such integral bounds are not useful in order to get pointwise bounds on
the correlation functions (at least we were not able to use it, see [23] for
bounds on truncated correlations using the pointwise bounds (3.36) of the
theorem above).

Remark 6. - It is very interesting to derive from (3.36) the pointwise
behaviour of the kernels of the so called "adimensional" potential at
scale n (see [4,6]; in [14,21] and [15] it is called potential in the "thin
lattice"), which can be obtained from the usual effective potential through
the replacement

The relation between the kernels of the "adimensional" potential
and the usual ones is therefore, setting d = 3

Hence, using (3.36), (3.39) and the fact that [3p - 2{m + k)] &#x3E; p,
the bound on W2m k d~ (xi , x2, ... , x p ) becomes after some algebraic
manipulations,

where 8 is a small positive constant. Considering the following inequality,
which holds uniformely if and only if the distance 1

(for small, C is actually of the order cj), we get (use also Remark 4
to bound 0 
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where d (x 1, ... , == I is the shortest tree distance be-
tween points x1, x2 , ... , xp.
The formula above is the well known claim that kernels of the

adimensional potential decay exponentially fast (with a rate 0(1)) as
distances between points become large (see, e.g., [ 12], or ( 10.24) in [4],
or (5.56) in [6]). By the considerations above, (3.46) is correct just for
distances between points 0(1) or greater: the bound (3.45) (which is the
key point in order to get (3.46)) simply is not true when the distance I
is small compared with 1. However, we recall that we are interested in
the region where the distance between points is 0(1) or smaller: note
that distances of order 0(1) in the kernels of the adimensional potential
at scale n correspond to distances of order O(Ln) in the kernels of the
usual effective potential at scale n (see (3.44)).

In [6] (see there Remark 2 after Theorem 2 of Section 5, and specially
formula (5.55)) formula (3.46) was derived from a pointwise bound for
kernels of effective potential different from the one stated in Theorem 3.
Namely, mutandis (in the scaling factor 4p - 2(m + k) _ 03A3j 03B2j),
this alternative bound is

The inequality was suggested as a consequence of the analysis performed
to get integral bounds on the effective potential (Theorem 2 p. 141

in [6]). One can easely check that (3.36) implies, for distances greater
than L n, the inequality above, which, on the other hand, appears as a
much sharper bound respect to (3.36), for distances smaller than ZA
Indeed, the analysis of Section 5 will make clear that the bound above
cannot be obtained for all distances. Anyway, it is easy to understand
intuitively why it cannot work: if we suppose it true for all distances, in
the n -+ oo limit, we get a pointwise bound as

This is not consistent compared to what one should expect from per-
turbation theory. By inequality above, if, say Exi 2014 ~ ~ oo and all
others x’s are kept fixed, the polynomial decay of the p-point ker-
nels should be like ~xi - (with c some constant), so increas-
ing proportionally to p . On the other hand, one can easely produce

Annales de l’Institut Henri Poincaré - Physique theorique



155POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL

many contributions from perturbation theory to ~~~(~1~2,...,~)
which decay with a power not proportional to p. Note that (3.40),
for this specific case, gives a more realistic p independent decay as

4. BOUNDS ON THE KERNELS OF EFFECTIVE POTENTIAL

4.1. Notations and preliminary bounds

We want now to write down explicitly the the contribution ( ~, 
to the effective potential at scale n coming from a given rooted Cayley
tree 8 N with N end points.

Using the notations of Theorem 3.1, we can make the following
ansatz (from now on, unless necessary, we will omit scale apices in the
fields)

On the other hand, (3.34) we expect
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The notations in (4.2) are the following.

is the set formed by the 4N fields in the end points (recall that each end

point j carries the factor A f^d3xj 03A303B1j03B2j );
- Pvo indicates the subset of PN surviving at the root of 0~. We stress

that Pvo indicates the bare subset, i.e., the one formed with fields ~
and 03C8 without considering that a field of type 1/1 may have been
changed due to the renormalization (namely, a field 1/r~y can turn into

where x is some other point and xy(t) = x - t(y - x) is
an interpolated point in the line which joins x to y );

- indicates the set of fields constructed with the fields in Pvo
once the 7Z operation has acted in each vertex of of type v*
preceding vo, and is the monomial constructed with the

set with fields organized in a prefixed order. Recall that the
last renormalization in vo (i.e., the root of 81 b’n, see (3.22)) has not
been applied yet when we write may be also a

monomial like ~x ~y ;
- Xv0 are the set of space-time variables attached to the end points

which can be reached from vo, thus, since vo is the first non-

trivial vertex of we have Xv0 = {x1, ..., xN} and dXv0 =
dxN.

Further notations and definitions. Given any non-trivial vertex

v E we indicate by the subtree of obtained by dis-
connecting from the vertex v’, so that v’is the root of ( v ) and v
is its first non-trivial vertex.
- Pv indicates the (bare) subset of PN surviving at the root v’ of

X V is the set of space-time variables attached to the end
points which can be reached from v;

- Pven indicates the set of fields constructed with the fields in Pv once
the 7Z operation has acted in each vertex of of type v*
preceding v, is the monomial constructed with the

set Prenv. Thus, means to sum over all possible choice

of Pv in non-trivial vertices v  vo of which leads to a fixed

,~, ( P vo ren ) .
Moreover, for any v E we define
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Note represents the dimensional scaling exponent of
(recall that d = 3), and is the number of fields

of type ~ ~ ~ in In particulary, for the vertex vo,

Recall now that (see (3.22)), we need to apply the 7Z operation on
~ ( Pl‘,~‘’") emerging from v* before the truncated expectation at vertex v’

So we write (see (2.25))

with

and

Again, observe that we indicate as Prenv the set of fields in Pv after the R
operation has acted in all vertices w  v (thus v* excluded), and PJ’ is the
set of fields in Pv after the ~Z operation has acted in all vertices w  v’

(thus, v* included). Remark is univocally determinated once
Pvo all Pv, for v  vo, are given. In other words, depends on the
choice thus, to be more precise, we should write
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The notation (4. 8) is consistent: once {Pv}vv0 are given, the the structure
is completely determined since ~Z operation transforms

in a unique way 1/r~x 1/r~y into 1~l’X (~21~J’xy(t). We will not use the heavy
notation (4.8) but, of course, we tacitely assume it.

Define now

where X PUo (X is the set of space time variables attached to fields

in Pv0, and IX Pv0| I is the number of elements in X Pvo (X 
Observe that IX = IX PUo I + k, where k is the number of fields of type

in 
-

In the monomial 03C8(Prenv0) exactly k fields are sitting in interpolated
points. Let these k interpolated points be xl + tl (yl - xl ), ... , xk + tk (yk -
xk), with {xi , yi} C X pUen some subset of 2k elements of X vo such that

yl E X PUo and xi ~ X PUo for all i .

Define

where yr 2014~ ~ + means that we have to replace the variables yr

by the variables xr + in The apparent UV singularity in d ti -
integrals in right hand side of (4.10) is compensated by the d3 xi-integrals,
see ahead formula (5.25) and the remark below. By definition (4.10) we
can write

where 03C8’(Prenv0) = + zr)] ~ yr). Finally, fixing
= p and noting that p is the number of space-time points in XPv0
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(and so, for fixed m and k, we have 1 + k, 2} ~ p ~ 2m), we
can write

Now rename XPv0 = {;ci, x2,..., xp} so that

where represents the number of permutations that are necessary
. 

to rearrange 1/r~ ~ ( Pvo n ) as

once the substitution XPv0 = x2,..., x p} has been done. Note that!
and r are determinated univocally by Pi o n and

Hence,

Comparing with (4.1 )

Vol. 71, n° 2-1999.



160 A. PROCACCI, E. PEREIRA

Note that

i.e., to sum over all for a fixed- BN is the same as to sum over all

possible scale labels n v in the non-trivial vertices of eN, keeping fixed
the root scale label at the value n . Moreover we note that

Finally we can obtain the kernels of effective potential as they appear in
the main theorem by summing over all trees. Thus,

4.2. Bound on 

By definition of 03B8N,nlab (recall (3.34)), the function appear-

ing in (4.2) is explicitly given by
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Here Qv is a subset of Pv and runs over all possible ways to
choose Q v as a (proper) subset of Pv* for any vertex v  vo . Moreover,
for any non-trivial vertex v  vo

Tv1 is a subset of and Rvj is a subset of 1 for j =
2,3,...,/=~~~ - n v - 1. In short, the inclusion relations between the
sets appearing in (4.18) are ,

Remark. - Observe the renormalization scheme implicit in (4.18).
At the vertex v the set of fields qu = Usvi=1 Qvi emerges, after the

contraction occurred in the truncated expectation at scale nv. This

set contains the set that we are calling and it is effectively
reduced to Pven after 1 simple expectations, where the sets
Rv 1 yRU2, ... , Rvl are successively contracted. Then, at v*, the
set of fields Prenv emerges, and it is converted by the TZ operation (acting
exactly after v * ) into the set PJB The 7Z operation also produce the factor

in the right hand side of (4.18).

We now get a bound directly on the kernels defined in (4.18).
_ 

We use the following well known bounds for simple and truncated
expectations of fermionic fields.

LEMMA 4.1.-Suppose that represents a simple expectation
respect-to a GFM with covariance Gn(x - y) acting on Grassmann fields
~, 1/1, such that

Then, for any containing of type 03C8, | P| /2 2014
kfields of type 03C8 and kfields of type ~203C8, the following inequality holds

where
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LEMMA 4.2. - In the hypothesis of Lemma 4. l, let 03C8 (n)(P1), ... ,
;; ~n~ ( PS ) be s monomials sitting in clusters of space-time points X 1, ... ,
X S, respectively (with X i~ Xj = Ø for all f i , j } C {I, 2, ... , s } ), then the
following inequality holds pointwisely

where 
,s 

is the set of all possible graphs ~ (not necessarely
connected) between points in X = X 1 U ... U X S such that: ~ contains
exactly s - 1 links ; each link p (unordered pair of space-time
points p = f x, y}) is formed by a point in a cluster X i and a point
in a different cluster for any pair B, C subsets o, f ’ {I, 2, ... , s }
such that B U C = {I, 2, ... , s } and B n C = ø, there is a pi E ~
such that pi n EB ~ ~ and pi n Ec ] ~ ø (connection
modulo clusters). The factor d03B8 (X 1, ... , X S ) is the lenght of t, namely,

l, ..., Xs) _ where, p - {x, y}, then Ipl _ yl
indicates the Euclidean distance between the two points x, y in different
clusters.

Remark 1. - The number of space-time points in X 1 cannot exceed
I but, of course, can be less then |Pi| if some of the fields in 03C8 ( Pl ) is
sitting in the ’Same space-time point.
Remark 2. - Again we stress that ~ is not in general a connected tree

graph in X = X 1 U ... U X S , but only realizes the connection between the
clusters X 1, ... , X S . So further on we will use the symbole i to denote
connected tree graphs in some set X, while we use the symbol ~ to denote
graphs connected modulo cluster in the sense specified above.

The first lemma, known since a very long time, is the origin of the
claim that purely fermionic field theories have perturbative expansions
with better convergence properties than purely bosonic field theories.
It is a trivial consequence of the Gramm-Hadamard inequality for
determinants (recall that a fermionic simple expectation can be written
as a determinant, see (2.3)). The second lemma is more recent (mid-
eighties) and its proof requires the use of the Brydges-Battle-Federbush
tree graph equality [2,7]. The reader may find the original proof in [15]
(see there Appendix 3), and a successive and simpler proof in [ 18] (see
there Appendix A). A detailed proof of both lemmas, with notations very
similar to ours, can be found in [6] (see there Appendix 2).
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To show that the sum ~~ in right hand o side of (4.23) does not introduce "

dangerous combinatorial factors, we have " the following j proposition.

PROPOSITION 4.3. - With the notations of Lemma 4.2, there exists a ’
constant B # such that

Proof. - By definition, we can associate to any graph ~ E a

connected tree graph i in { 1, 2, ... , s } by shrinking each cluster
X i to a point f, so that, if is the incidence number of the vertex i
in i (i.e., the number of links of t attached to i ), then we have at most

graphs ~ which correspond to T. Thus, using the Cayley
formula

Using Lemmas 4.1 and 4.2 we get, after some algebraic manipulations,
- 

a bound on defined in (4.18)
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Here ~ ~ is a short notation. ~ is a graph between the points in the
set formed by Sv 2014 I links, which realizes the connection
between clusters

in the sense of Lemma 4.2; thus, by 03B8v E X v we mean actually

Recall that ~v in general is a non-connected graph (which, however,
becomes connected if one shrinks each cluster 1 ~ Qv I to a single
point d03B8v (X v ) is also a short notation for

(see again Lemma 4.2). Note the index stressing that some points in d~U
may be interpolated points.

Recalling that (see (4.19))

and o observing § that and o IPvl, we "

get

With the inclusion relations (4.20), we obtain

Thus, (4.25) may be written as
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By definition of renormalization,

and recalling that in vo we are not performing any renormalization, it

follows

and so

It is now easy to check (exponents in left hand side of equations below
are telescopic sums) that

In right hand side of (4.32) Nv denotes the number of end points of 9i~
that can be reached starting from v (thus Nvo = N). From these formulas,
it follows
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whence

In right hand side of (4. 34) nothing depends on sets so

we can bound directly this sum, of course with the condition that
all set are kept fixed. Recalling the definition (4.19) and
inclusion relations (4.20), each set must contain the set 

Pv n so defining Rv~ = noting that = Pv (thus also
_ ~ Pv ~ ) and also using (4.31 ), we have

Hence the factor right hand side of (4.34) yields at worst a
contribution 24N which can be included in the factor CN .
We now make explicit the product It is a product which

contains two kind of factors the k factors 03BEv associated to the k double
derivative (see (2.25)), and all the others which belong to
double derivative fields created and then contracted along the tree 
Let us separate these two kind of 03BEv as

In the formula above the first productory (with the apix *) is over all
vertices v in which double derivative fields are created and contracted
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later (i.e., ~v, for these vertices, links two space-time points which do not
appear in XPrenv0 as interpolated points). The other productory is over the
vertices vr in which double derivative fields are created but not contracted
later, thus elements of The factors ~ links couples of points which
appear in XPrenv0 as interpolated points. 0

We now estabilish the following propositions

PROPOSITION 4.4. - The function

in (4.34) contains intermediate points which a~e not among the k

intermediate points in X Prenv0.- 

0

Proof - The only way in which interpolated points can appear in

f(Xvo) is by contracting double derivative fields. The interpolated points
in X Prenv0 are precisely those attached to double derivative fields which are- 

0

not contracted, whence the proposition. o

PROPOSITION 4.5. - With the notations offormulas (4.34) and (4.36),
there exists a constant C &#x3E; 0 such that the following inequality holds

where

i. e., (X v) is obtained from d03B8v (X v ) by replacing xy(t) appearing in
xvbyy.

The proof is given some lines below.
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The function in the right hand side of (4.37) can be rewritten
as

where t is a connected tree graph in the set X vo (hence a link 03C1 ~ 03C4 is
an unordered pair {x, y} C X vo and |p ( _ which is compatible
with the topological structure of 03B8N,nlab (hence o N ), and the scale label n p
associated to the link p in i is fixed univocally by The definition
of compatibility of a connected tree graph t E TX 

v 0 
respect to the

topological structure of a tree 03B8N,nlab is as follows:
DEFINITION 4.6. - Let i E TXv0 and, foY any X v C X vo, denote by tv

the subgraph of t obtained by cancelling all links p = {x, y} in t such
that {x, y} n X vo BX v ~ 0. Then t is compatible with the topological
structure of 03B8N,nlab if, ‘d v E tv E T_X v (i. e., tv is a connected tree gvaph
between the points X v ). The scale label n p o, f ’ a given link in t is such
that n p = nv03C1, where vp is the minimum vertex of 03B8N,nlab which contains the
link p.

Remark 1. - Note that tv is a connected tree graph in X v which has
IX vi - 1 links, among which, sv - 1 are at scale nv, while all the others
are at scales lower than nv.

Remark 2..- Recalling the definition of 03B8v above (4.25), it is easy to
see that t can be written is a unique way as i = Uvv0 03B8v for some choice
of in any non-trivial vertex of e1~b" . In other words, the correspondence

-+ i is one to one. Moreover we also have zv = 

Proof of Proposition 4. 5. - First note that

where i = the connected tree graph in Ty compatible with
the topological structure of between points ~2,..., xN univocally
determinated by the sequence {03B8v}vv0. Thus we can also write
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where p’ can be a link between intermediate points, univocally determi-
nated by /) e T once T and the sequence are chosen. Due to the

hierachical cluster structure of it is not difficult to check that:

whence

On the other hand, each v in left hand side of (4.37) can be written as

where xl and j~- are two points surely in X v, thus

(see Definition 4.6). Note 03B8v C Tv (see Remark 2 below Definition 4.6),
i.e., 1 links in tU are at scale n v (they are the links of ~U defined
below (4.25)) and all the other links in tv are at scale lower than Thus

left hand side of (4.41 ) can be bounded as

We call p~ = n v - np. Remark that pp is surely a non negative number
for all p E T~.
Hence
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In the third line we use that logx  x1/2 uniformely in x &#x3E; 0 and also

that

(with 0, ‘di ). In the fifth line we use the fact that, for any p, p p ~ pp
if p E _X v and simultaneously p E X w, and, due to the cluster structure
o 81 b’ n , 1 w  v then p P w  p P v .

B y the inequality above and (4.40) we have

where, for example, one can take

Thus, using also Proposition 4.5 and formula (4.38) it follows that

(4.34) can be written as

where " we renamed 0 the constant a as a .

Annales de l’Institut Henri Poincaré - Physique theorique



171POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL

Remark 1. - The factor 03A303C4~Xv0 is not combinatorially dan-
gerous. Actually, by Proposition 4.3 and Remark 2 below Definition 4.6,
we have

hence, recalling (4.31 )

Remark 2. - The factor 03A3{Qv}vv0  24N (see (4.35)) has been incor-

porated in the factor 

4.3. The bound on 03B4bn

From (4.44) it is not difficult to obtain a bound for Actually, the
contribution of the labelled tree to ~bn is obtained by considering
the kernel

Note that, in this particular case where 2m = 2 and k = 0, we have
that Pvo = PJ- = {03C8x, 03C8y}, and == |Pv0| = 2. We name x
and y the space-time coordinates (just two) in XPrenv0 = Then, by
definition (3.26), we have

Using bound (4.44)

Vol. 71, nO 2-1999.



172 A. PROCACCI, E. PEREIRA

Note that there is no factor this case.

Now, using (4.46) and recalling Definition 4.6, we have

Moreover observe (just developing the telescopic sums in left hand side
of (4.50) and (4.51 ) below) that

Recall that ni is the scale label of the first non-trivial vertex in which

follows the i th end point.
Hence, using (4.49), (4.50) and (4.51 ) and recalling also that in the

present case ~Prenv0~ = 2, we obtain

Now we define
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as the contribution to 03B4bn of all tree topologically identical, but with dif-
ferent attributions of scale labels and sets {Pv} (chosen such that

II = 2). Once again we stress that fixed and fixed}

means exactly the same thing. I.e., the sum over all possible scale labels
n v (compatibly with the cluster structure of e N keeping fixed the root
scale at n) is equivalent to the sum over all possible labelled trees 81 b’n .

Thus, we have

where (3 - !!  0 in any case. This is the key point of renormaliza-
tion : in any I Pv I, and when !?.! = 2 then ~P*v~ = 4. Thus,
(3 - ~Pj~) ~ -1 for all non-trivial vertices v .

We can safely perform all sums in the right hand side of (4.54) by using
the following theorem.

THEOREM 4.7. - For any with the notation of this section, there
exists a constant C such that the following inequality holds

The proof follows from the three lemmas below.

LEMMA 4.8. - For any fixed with the notations of this section,
let D(Pv) be afunction o, f ’ Pv such that
( 1 ) It is possible to find a constant ~ &#x3E; 0 such that D ( Pv ) &#x3E; 81 |Pv I, |, for all
v  vo E and
(2) l, for all v  vo,

then the following inequality holds

Proof. -

~bl.71,n°2-1999.



174 A. PROCACCI, E. PEREIRA

Remark that, in the proof above, we used that 1, for all v .

LEMMA 4.9. - For any fixed any fixed |Pv0| and any E &#x3E; 0, with
the notations of this section, there exists Cs such that:

We can overestimate the sum over sets P1, as follows

The last sum can be performed explicitly, starting by summing first |Pv0|,
then |Pv10|,...,|P v0sv0I and so on, always following the cluster structure

of Using also the fact that

and that 1 + + L -2E + " - ~ (1 - L -~ ) -1, one can easily bound the
sum as

where S is the number of non-trivial vertices of Since, for any
rooted Cayley tree, S  N - 1, the lemma is proved with C8 = ( 1 -
L-£)-1. D 

.
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LEMMA 4.10. - For any fixed, there exists a constant C such that

Proof - Due to the cluster structure the follows indentity holds

where sv is the number of branches in v which do not terminate with end
points. In other words, sv = number of vi which are not end points (i.e.,
vi is a real non-trivial vertex). Hence

and, since v is non-trivial, sv - 1 1, we have

Proof of Theorem 4. 7. - Just note that the function D(Pv) 3
satisfies the condition of Lemma 4.9 with, e.g., ~ = 1 /4. Thus, applying
Lemmas 4. 8-4.10, the proof is straightfoward. 0

Using Theorem 4.7 and the inequality 1 ~ 24N , we get

This bound is not enough to control the wavefunction flow. It implies
that bn diverges logarithmically, which is not expected (summing over
nvo in (4.59) we will get a bound for independent on n ). However,
it can be improved. Consider in the formula (4.18) the factor
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for the special case in which v = vo and = 2. By definition of
renormalization it is not difficult to convince oneself that the further

restriction must be imposed in factor above

Using the constraint (4.61 ) we improve the estimate on the factor (4.26)
(for the special case v = vo), bounded previously by constant, in the
following way

Thus, (4.59) becomes

Considering that, for any BN which contributes to ~bn we must have 
2 (the trivial tree with svo = 1 does not contributes to ~bn ), performing the
sum over the scale nv0, we obtain at worst

We sum over all topologically distinct trees 8 N with N end points, so we
get the contribution of the Nth order in the perturbation theory to 
Name this contribution ~bn~’~ . Hence

where we used (2.19). Finally, summing over l’~ we have

where f ’ (~,) is analytic in À in a suitable convergence radius 6~ which does
not depend on l1 and n , and

for some D &#x3E; 0. Thus, we have proved the following theorem.
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THEOREM 4.11. - The number (wavefunction renormalization) ~bn
defined by (3.26) is analytic in À in a convergence radius R &#x3E; c, where
c &#x3E; 0 is a constant independent on ll and n. Moreover, there exists a
number D &#x3E; 0 such that

As a trivial corollary of this theorem we have that the running coupling
constant bn defined iteratively by (3.25), for bo = 1 (as in the present
model), admits the estimate

We can now prove part B of Theorem 3.1. We recall that the pressure
of the model can be written as

where 7) and tj are given by (3.28). Of course, Tn can be written in term
of a tree expansion, i.e.,

where Tn (8 N ) is given by

Using right hand side of (4.44) with !! = |Pv0| = 0 to bound

and then performing an analysis completely analogous to the one
presented above for 03B4bn, it is an easy exercise to check that 

hence L-2n D (~,) with D (~,) analytic in A, with a
lower bound for the convergence radius independent from the volume,
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and D(À) = O(À 2). In relation to tn, recalling its definition (3.29),
observing that, by definition (3.30)

(C and a positive contants), and using (4.23), (4.67), (4.68), we obtain

concluding the proof of (3.42).

5. POINTWISE BOUNDS ON THE KERNELS OF EFFECTIVE
POTENTIAL

5.1. Preliminaries

Now we turn to the pointwise estimates. We need the following
definition.

DEFINITION 5.1. - Given and a set of space-time coordinates
Y C non-trivial vertex 03C9 E called fixed scale label vertex

. vertex) respect to the Y| &#x3E; |X03C9 n Y| for all w  w.

Further on, we will indicate with the symbol v a generic f. s.l. vertex

for a given _Y, and {v} will represent the set of all f.s.l. vertices of 
The set {v} is naturally ordered by the tolological structure of (since
each v is a non-trivial vertex of ~") and we denote as vo the maximum
of {v}. We also define, for any f.s.l. vertex v of 

Intuitively, in a f.s.l. vertex v of Sv points of the set Y become
connected at the scale n~. Note that vo, i.e., the non-trivial vertex
on at which all points in Y becomes connected can be smaller
than vo. Tipically, the set Y will be X Prenv0 (and so it contains p -E- k

elements), or X pvo (with p elements).

DEFINITION 5.2. - Given a set of space-time coordinates Y C
X 

vo 
and a connected tree graph t * ( Y ) = f p 1, ... , 03C1|Y|-1} in Y we say
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that t* (Y) is compatible with the topological structure of i , , f’or
all f.s.l. vertices v E repect to Y t~ is a connected tree graph
between the points X ~ n Y where t~ is defined as the graph between
the points X ~ n Y obtained from t* (Y) by cancelling all links p =
{x, y} of t*(Y) such that {x, y} n [YB(Xv n Y)] ~ Ø (compare with
Deffinition 4.6).

Remark. - Recall that, given a tree t E X vo compatible with to

each link p of z is associated a scale label n p = nv, where vp is the

minimum non-trivial vertex in such that p C _X v . Analogously, to
each link p of a tree i* (Y) compatible with we associate a scale

label n p = where v is the minimum f.s.l. vertex in respect to Y
such that p C Y n X ~ and 

.

We now enunciate a result which will be useful in order to get the
pointwise bounds.

LEMMA 5.3. - With the notations of Section 4, Definitions 5.1 and 5.2,
let t E TXv0 (i. e., t is a connected tree graph in X vo) be compatible with
a given and let

where, for p E z, n p = nvp with vp being the minimum non-trivial vertes
in such that such that p C X v. Then we can find a constant C such
that the following inequality holds

where t * (t, X is a tree graph between points X Prenv0 compatible with

91 b’ n in the sense of Definition 5.2, which can be obtained univocally
from t, and, for p E t * (t, X n p - nv03C1 where v p is the minimum f.s.l.
vertex (respect to X such that p C X ~ n X 
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Proof. - First observe that, since is compatible with the

topological structure of by Definition 5.2,

where {v} is the set of f.s.l. vertices of when I. = 

Then we write

hence,

where the sup is taken over all possible configurations of the points in
for a fixed configuration of the points in XPrenv0 so that the

non-integrated term in the left hand side of formula above is a function
only of the space coordinates in 
Now, it is not difficult to see that

where {v} is the set the f.s.l. vertices of when Y = X As a matter

of fact, consider the tree graph i = {/)i,..., pN-1 } . Since z is compatible
with for any v E we know that sv - 1 links in i are at scale nv,
so that 1) = N - 1. If v is also a f. s.l vertex, i.e., v = v, then
we can individuate Sv - 1 links in z among the sv - 1 links, which realize
the connection between Sv points in XPrenv0 at scale The total number

of these links is 1 ) = p -~- k - 1. Let us cut out these links
from t, obtaining thus a new graph, say i, between the points in X vo; the
graph i has exactly N - p - k = links and, by construction,
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each one of the N - p - k space-time coordinates y ~ appears
in at least one link of r. Thus using translational invariance we have

and since 03A003C1~03C4e-a 2L-n03C1|03C1|  03A003C1~03C4 e-a 2L-n03C1|03C1|, (5.7)follows.
We now note that, given n 1 &#x3E; n 2 non-negative integers and x 1, x2 , y

points in the following inequaiity holds pointwisely

So, considering the non-integrated term in the right hand side of (5.6), by
using repeatedly the inequality (5.9), we can bound it as

where r* is a connected tree graph between points Xpren, and for a given
link p = {x, E t*, calling tp the unique path of i which joins x to x,’,
n p = ~n p~ ~ . It is now not difficult to convince oneself that we

can always chose i* in such way that it is compatible with Of

course, the association z 2014~ t* is not unique in the sense that there are
various r* compatible with which satisfy (5.10), but as we will see
later, what is really important in relation to the structure of i* is just the
fact that T* is compatible with So, for each r, we take just one
of the possible r* compatible with which satisfy (5.10) and call it
’t * (’t , Inserting (5.7) and (5.10) in (5.6), we get (5.3) D

Let us analyze in detail the structure of It involves

|XPv0| - k points. Here k is the number of fields of type ~203C8
and |XPv0| is the number of space-time points in the set XPv0 (which can
be at most but, of course, can be less if some fields in PUo are sitting
in the same space-time point). We write the set of space-time points in

Vol. 71, n° 2-1999.



182 A. PROCACCI, E. PEREIRA

the following way

and make explicit given by (after eventually some permutations
of the fields, which can just affect it by a signal)

Points z are attached to fields of which did not suffer renor-

malization (in particular, 03C8 cannot suffer renormalization). Points xi
(i = 1, 2, ... , k) belong to fields ~ which appears in some cluster in
a couple 03C8xi 03C8yi. In other words, there must be a v in such that

.~ ( Pven) _ This monomial have been replaced by the renormal-
ized one

Then the field 03C8xi has been contracted, but its space-time coordinate still
survives in Points yi belongs to fields which are in Pven, but
they have been transformed by the 7Z operation into fields a 2 ~X; ,.; ~r; ~ .
From the discussion above, the definition of renormalization and the

cluster structure of the set of points (5.11 ) has the following
properties:

(i) Some points ~2.... .zl may be coincident.

(ii) All points ~2..... xk, Yi, y2.... yk are distinct.

(iii) {z 1, Z2.... zl { rl ~2..... xk, Yi. ~2} = 0, i.e., any z is distinct
from any x and any y .

Moreover, due only to the fact that is compatible with

t*(t, has the following properties:
( 1 ) If is a couple in XPrenv0 which forms the interpolated

point and vr is the non-trivial vertex of for which

~(PJ~) = then one of the links p in i* (i, is surely
the line pr = {xr, and 

o

(2) Each link {xr, in is connected to the rest of the
tree T*(T, just by a link of the type zj}, for some zj and
nothing but xr is connected to I.e., the vertices of t * (t, Xpren)
sitting in points of the type yr have incidence number equal to
one. This trivial consequence of the fact that in the monomial

-+ just the field 03C8xr can be contracted, and
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Fig. 3. The structure of the tree graphs i and T*(r, 

it cannot contract with another 03C8xs field (even if the contraction is modulo
fields ~/r~w, where w represents a generic point in the set 

These properties yields the following structure of (see

Fig. 3)

Remark. - Since each yl (i = 1, ... , k) is connected to t*(i, XPrenv0)
just by a link, the subset of obtained by eliminating all

vertices y and all links {jc, y } is still a tree between the points x and z; let
us call this tree T~(r).

Using the bound (4.44) for the definition (4.9) of and the

bound (5.3) we get
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where

and recall that vr is the vertex of where the factor =

(x,. - yr)~2 is generated by the renormalization operation 7~.
From (4.10), the kernel of the effective potential is

where is the set of space-time points obtained from XPrenv0 replacing
Yr by xr + xr) (for r = 1, 2, ... , k).

Using (5.13), an estimate for this kernel is

But, by (5.14) and the structure of r*(r) and still recalling the definition
of i ** ( t ) and that where vr is the vertex at which the factor
03BEr is created while v03C1r is the vertex where xr, yr become connected, we
have
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Using again the structure of T**(r)

where the second productory in the right hand side of (5.18) above is over
the links p in t**(i) of the type {z, z’} and pir = 

Observe that here we are using the fact that each vertex xr of r**(r)
is connected to the corresponding yr, and then to a z, but never to

another 

Now note that

Observe that the graph obtained from T**(r) replacing every xr by
the corresponding y,. is a connected tree graph in XPv0 which is,

by construction, compatible with We denote this tree graph as

Hence, we have

And so,
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Fig. 4. The structure of the tree graph T*(r, 

Observe that n03C1ir &#x3E; since n03C1ir is the scale where xr becomes
connected with which is a scale greater or equal to the scale where 03C8xr
is contracted, while nvr is the scale where the monomial 03C8xr03C8yr appears.
Thus, considering also that 0 ~ ~ ~ 1,

Performing the change of variables

we get
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The last inequality in the right hand side of (5.24) follows from the fact
that

where -1 ) . Observe how the integration over d 3 ~ takes care
of the outward U.V. divergence of Kernels (4.10) due to the dti-integrals.

Thus, the bound on the kernels of the effective potential becomes

Remark that, by definition of r*(r, we have

where now {v} is the set of f.s.1. vertices when (see Definition 5.1)
F=Xp .2014 2014~o
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5.2. Proof of part B of Theorem 3.1

Consider the factor D(Pv) which appears in the
formula  (5.26). We can write the set Pv as

where Pv is the subset of PJ’ constructed with those fields which are
among the Pvo ones (eventually modified by the renormalization getting
some double derivative; and so Pv will indicate the bare subset of Pvo
contained in Pv). 7?~ = is the subset of PJ’ made by those fields
which are contracted in some vertex w &#x3E; v, i.e., those which are not

among the Pvo ones. Using (5.28), we define

where

Observe that D ~ 1 ~ (Rv ) satisfies the hypothesis of Lemma 4.8, i.e.,

Using the definitions (5.28)-(5.31), the productory 
appearing in the right hand side of (5.26) can be rewritten as

Using (5.30), (5.32) and Lemma 4.8, we bound the first productory in the
right hand side of (5.33) by
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Towards the pointwise bounds of the effective potential, we have to
sum the left hand side of (5.26) over all possible scale labels in the
non-trivial vertices of We make this sum keeping fixed, in a first
moment, the scale labels of the f.s.l vertices (whence the name!)
{v} of for Y = which are the scale labels n p appearing in the
factor

Note that the total number of the f.s.l. vertices, for any cannot be
less than 1 and cannot exceed p - 1 (where p = |XPv0| is the number of
points in the set 
Now we calculate the following sum

where the first sum (over the scale labels in the non-trivial vertices)
is performed, as said, keeping fixed the scales of vertices and vo .

Analogously, the second sum is over all choices of sets keeping
fixed the sets Pvo and Pv. The latter one can be rewritten as

Thus, we obtain

and, by Lemmas 4.9 and and 4.10,
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Hence, we get finally

where we used also that 2:: Pv 1 ~ CN .
Consider now the second productory appearing in the right hand side

of (5.33). Recalling the definition (5.31 ), it can be written as

where, for v fixed, v" denote the smaller f.s.l. vertex following v. Note
that in general v" &#x3E; Recalling that vo is maximum among the f. s.l.
vertices, i.e., the vertex where all points in Xp become connected, we
have that Prenv0 = Noting also that vo we get

Using (5.36) and the definition (5.29) we can bound the expression (5.26)
summed over labels n U (keeping fixed and and over sets Pv by

Now, recall that f n p } pEt* _ and that t* is compatible with 
Thus, for each f.s.l. vertex v E we have exactly s" - 1 links of
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03C4*(03C4, XPv0) at the scale nv, where Sv is the number of space-time points
in the set X p which become connected at the vertex v.

Let us now consider the factor

which appears in the right hand side of (5.38). One may check (see proof
of Lemma 4.10) that

where Sv is the number of f.s.l. vertices among the set {vl , ..., which
are not end points.

Recalling (5.27), we have

Note that Sv are exactly the number of end points directly attached
to v whose space-time coordinates are in the set Xp .

Let us analyze the factor

which also appears in (5.38). The productory is over the f.s.L vertices {v}
of and does not include end points. If v were allowed to be an end
point (say, the ith endpoint), the factor (nv" -nv)(-~P*v~) would be

where ni is the scale label of the first f.s.l. vertex immediately following
the end point i (observe that ni) and we define ai as the number of
fields of Pvo attached to the end point i plus the number of derivatives.
As a matter of fact, a field in the set P"o may get a double derivative just
in a non-trivial vertex of which precedes a f. s.l. vertex at scale ni
for some i . This is because two fields must emerge in a vertex where a
double derivative field is created, and if one of them is among the
other cannot be in P"o and must be contracted later. Thus if v is a fixed
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scale label vertex such that there exist other fixed scale vertices preceding
it, then at least 4 fields must emerge from v and no renormalization can
occur. Hence,

Moreover, due to the cluster structure of 

where we also used that

The reader may convince himself that the formula (5.43) above is true
by recalling that now vi can be end-points and recalling the comments
following the formula (5.42). Finally, we obtain

where we emphasize that ai is the contribution to II coming from the
end point ~ and also that = Now, using (5.41) and (5.44),
we can bound the left hand side of (5.38) by

Annales de l’Institut Henri Poincare - Physique theorique



193POINTWISE BOUNDS FOR THE EFFECTIVE POTENTIAL

Recalling that Sy are the number of end points of which contain
fields in Pvo and are directly attached to v, we have

Moreover, we have that

where j is labelling just the end points with space-time coordinate in
X p . Hence0

Note that 3 - 0 in any case. Using (5.48) we can write (5.45) as

The total scaling factor of this bound is given by

By the standard tree identity
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(where the inequality &#x3E; appears because Sv is the total number of

branches from v, i.e., Sv for all v) and recalling that ~i ai 
the total scale factor is bounded (independently of by

where = 1 if vo and = 0 if vo = vo. We also used that

2. Thus, we may rewrite the factor (5.50) as

where the first factor in the right hand side of (5.53) is present if vo

(otherwise it is equal to one), and it controls the sum over the scale

label nvo. The productory in right hand side of (5.53) runs over all f.s.l.
vertices, and f3v are a sequence of integers, univocally determinated once

and -r are fixed, such that f3v ~ 1 for all v, and, with d = 3

Recalling that the set {v} of all f.s.l. vertices is at most p - 1 and at

least 1 (obviously p - 1 is the worst case), we have, for any and -r,

pointwisely

where {/)i,..., = T*(T, XPv0 ). Using the formula (5.55) above we
can finally perform the sum over the scale labels of the vertices {v} and
vo in the left hand side of (5.49) and obtain the pointwise bound
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The first sum in the right hand side of (5.56) runs over all connected
tree graphs t =" f p 1, ...,03C1p-1} between the points in XPv0 which are
compatible with 03B8N, in the sense that t = T*(r, XPv0) for some tree graph
i between x 1, ... , ;c~ compatible with and 

-

We are finally in the position to show the bound on presented in
Theorem 5.1. Renominating the space-time coordinates XPv0 as x 1, ... ,

such that

Comparing (5.56) with (4.15) and using also (4.16), we obtain the bound

where the first sum in the right hand side of (5.57) is over all the tree

graphs t == {pi,..., between the points {~i,..., compatible
with 9~ in the sense that t = for some t tree graph in

{jci,..., compatible with 9N and some XPv0 (modulo a renomination
of variables), and
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where the sum over sets Pvo is carried out with the constraints that Pv0| I =

2m, k and p are fixed. Note that, by Proposition 4.3 and formula (4.31 )

Summing finally over and N we obtain the formula (3.36) in the
part A of Theorem 5.1. Namely,

where

and

due to (5.59) and the bound (2.19) on the number of all topologically
different rooted Cayley trees with N end points.
The proofs of (3.37) and (3.38) are just simple exercises. In particular,

the exponentially decaying factor L-n in (3.37) follows by the same
argument of Section 4.3 (see (4.63) and comments above).
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