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ABSTRACT. - This article deals with the geometry and mechanics
for multi-particle systems. The center-of-mass system is viewed as a
principal fibre bundle with structure group SO(3), on which a natural
connection is defined, and thereby rotational and vibrational vectors
are defined strictly. A natural Riemannian structure and the connection
on the center-of-mass system are put together to provide a geometric
setting for the study of the geometry and mechanics for the multi-

particle system. The equations of motion are discussed in keeping
with the bundle structure of the center-of-mass system. Moreover, the
reduction of the equations of motion is made along with a constant
total angular momentum. In addition, variational equations are derived
for the equations of motion with vanishing total angular momentum. In
particular, at an equilibrium state, the variational equations reduces to the
traditional equations of small vibrations. @ Elsevier, Paris

RESUME. - Ce travail traite de la geometric et de la mecanique des
systemes de plusieurs corps. Le systeme du centre de masse est considere
comme un fibre principal de groupe structural ~(9(3). 11 est muni d’une
connexion naturelle, qui permet de distinguer les vecteurs correspondant
a des rotations de ceux correspondant a des vibrations. En combinant,
sur le systeme du centre de masse, geometric riemannienne et theorie de
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526 T. IWAI AND A. TACHIBANA

connexions, on forme un cadre geometrique pour l’étude de la geometric
et de la mecanique des systeme a plusieurs corps. Les equations du
mouvement sont etudiees en respectant la structure d’ espace fibre du
systeme du centre de masse. Des equations reduites sont formees pour
une valeur constante fixee du moment cinetique total. Les equations
des petites variations sont obtenues au voisinage de mouvements de
moment cinetique total nul. En particulier, les equations des petits
mouvements au voisinage d’une position d’équilibre se reduisent aux
equations habituelles des petites vibrations. @ Elsevier, Paris

1. INTRODUCTION

Multi-particle systems are looked upon as supermolecules, gigantic
molecules, in which chemical reactions take place. The path along which
the chemical reaction takes place can be viewed as a curve in the
"internal" space, a space of molecule forms independent of its position
or attitude. Local coordinates in the internal space are called internal
coordinates. For example, configuration parameters such as bond lengths,
valence angles are internal coordinates. Traditionally, in case of the small
vibration of a molecule [ 1 ], one needs internal coordinates only in the
vicinity of a stable equilibrium position. However, internal coordinates
can be defined for configurations far from a stable equilibrium position.

In this article, the internal space is defined to be the quotient space
of the center-of-mass system by the action of the rotation group SO(3).
An additional condition put on the center-of-mass system will be de-
scribed in the following section. Then, the center-of-mass system is made
into a principal fibre bundle with the structure group SO(3), the base
space of which is called the internal space. Further, a connection is de-
fined naturally on this SO(3) bundle, and thereby rotational and vibra-
tional vectors are defined strictly. The connection was first introduced by
A. Guichardet [2], who made effective use of it to show that rotational
motions cannot be separated from vibrational motions; suppose a mole-
cule starting from an initial position performs a continuous vibrational
motion to get to a final position with the same shape or configuration as
the initial one. Then the initial and final positions of the molecule are re-
lated by a pure rotation. This implies that vibrational motions give rise to
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527MULTI-PARTICLE SYSTEMS

a rotation. Cats know this fact, who can fall on his legs when launched in
the air.
On the other hand, the center-of-mass system is endowed with a flat

Riemannian metric coming from the total kinetic energy. The Riemannian
geometry and the connection theory for the center-of-mass system are
put together to provide a geometric setting for the study of multi-particle
systems. In performing the geometric study, "moving frames" on the
center-of-mass system are of great use.

In this aspect, the geometric setting for multi-particle systems looks
like Kaluza-Klein theory which is considered as Riemannian geometry
of principal fibre bundles [3]. If a multi-particle system is replaced by a
continuum, a similar geometric study will go through. Geometrical Cat’s
problem for deformable bodies has been treated by Montgomery [4],
in which a gauge theoretical point of view is also taken. See also

a book edited by Shapere and Wilczek [5], which is a collection

of articles concerning Berry phases and deformable bodies. Quite
recently, Littlej ohn and Reinsch also study n -body systems from the
gauge theoretical point of view [6]. The present authors started a

geometric study of molecules in quantum chemistry [7], and one (T.I.)
of authors has set up a geometric setting for three-body systems
in two and three dimensions [8,9] and for n-body systems in two

dimensions [ 10] . Classical mechanics in Hamiltonian formalism has been

already discussed for n -body systems [ 11 ], rather in an abstract manner.
A point to make in this article is to discuss n-body systems from the
viewpoint of Kaluza-Klein geometry, and to write out equations of
motion in an explicit manner.

This article is organized as follows: Section 2 deals with the center-
of-mass system as a principal SO(3) bundle, on which a natural con-
nection is defined and thereby rotational and vibrational vectors are dis-

tinguished. The presence of non-vanishing curvature of this connection
implies that rotational motions cannot be separated from vibrational mo-
tions. In Section 3, a moving frame associated with the bundle structure
discussed in Section 2 plays a key role in studying the geometric structure
of the center-of-mass system. A natural Riemannian metric and the bun-
dle structure of the center-of-mass system are put together to determine
the Riemannian geometry of the internal space. In particular, sectional
curvatures of the internal space prove to be expressible in terms of the
curvature discussed in Section 2. Section 4 is concerned with equations
of motion in association with the bundle structure of the center-of-mass

system. Then two sets of equations are obtained; one is concerned mainly

Vol. 70, n° 5-1999.



528 T. IWAI AND A. TACHIBANA

with angular variables, and the other mainly with internal coordinates.
These sets of equation are, of course, coupled. In particular, if the multi-
particle system is assumed to be rigid, the set of equations concerning
angular variables becomes the Euler equation for a rigid body, and if the
system consists of free particles with vanishing total angular momentum,
the set of equations concerning the internal coordinates becomes the geo-
desic equation of the internal space. The reduction of the equations of
motion is also discussed by use of the conservation of the total angular
momentum. Section 5 deals with variational equations for the equations
of motion obtained in Section 4. In the vicinity of an equilibrium state of
the molecule, the variational equations reduce to those equations which
have been discussed in the traditional theory of small vibrations. It is
also shown that the sectional curvature of the internal space plays, in the
variational equations, a role of an additive potential which is a positive
semi-definite quadratic form in variation vectors. Section 6 deals with a
three-particle system as an example.

2. CONNECTION THEORY

2.1. The internal space

In order to define the internal space and internal coordinates, it is
strict and of great use to exploit notions from differential geometry
(see [ 12-14], for example). Let Xo be the space of all the ennuples
x = (~-i,..., xN) of the nucleus position vectors xa E }R3, a = 1,..., N.
As is well-known, the translational degrees of freedom are gotten rid of
from Xo to give rise to the center-of-mass system

The rotation group SO(3) acts on X in a natural manner,

In what follows, we assume that the molecular configurations are not
rectilinear. This means that the subspaces
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529MULTI-PARTICLE SYSTEMS

are assumed to be of dimension greater than or equal to 2; dim 2.

Then, if hx = x for h E SO(3) and for x ~ X with dim 2, one has
h = identity. Thus the group SO(3) acts freely on X, so that the quotient
space X/SO(3) becomes a manifold. For simplicity, we denote by the
same letter X the subset of X with dim 2. Now the X is made into
a principal fibre bundle over the quotient space,

where 7r is the natural projection. By definition of the quotient space,
a point of M is an equivalence class of molecular configurations which
are mutually connected by rotations, so that any molecular configuration
of an equivalence class has the same form or shape. The M is referred
to as the internal space, whose local coordinates are called internal
coordinates. In [4,5], M is called the shape space. We notice also here that
shape spaces were first introduced by D.G. Kendall [ 15] and are studied
further in statistics [ 16] .
To introduce a local coordinate system in X, we use the local triviality

of the ,S(~ ( 3 ) bundle (2.4),

where U is an open subset of M. Then one has a local section or in X,
which is, by definition, a map of U to X satisfying yr o or = 
being the identity map of M. Hence, any point is expressed
as x = along with q~ U and g~ SO(3). The local cross section
or is realized as follows: Fixing tentatively the form of the molecule by
specifying a point q~ U , we lay the molecule in the space R3 in such a
way that each particle, designated by c~, is set as

where Ca03B1(q) and ea, a = 1, 2, 3, are functions of q and the standard basis
of }R3, respectively. Eqs. (2.6) define a local section cr. An example of
how to lay the molecule in will be given in Section 6. Then we rotate
the molecule laid, to get each particle to take its position,

Vol. 70, n° 5-1999.
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which is a realization of x = Thus we can describe molecule’s
configurations in terms of local coordinates (qi) E U and g E ’S’3(3),
x=l,2,...,/=dimM. _

2.2. Connection

In what follows, rotational and vibrational vectors are defined on X
strictly according to [2,11 ] . To this end, a metric ds 2 and a connection
form cv, which are closely related with the kinetic energy and the angular
momentum of the molecule, respectively, play a key role; the metric is
defined to be

and the connection form to be

where ( ~ ) denotes the standard inner product in I~3, and R : --+ SO(3)
is the vector space isomorphism defined by

and Ax --+ is the inertia tensor defined at x E X for u; E by

We notice here that Ax is a symmetric positive-definite operator for x
with dim 2, so that Ax exists. In fact, one has

and ’ thereby = 0 for some w , if and ’ only if w x xa o 
= 0,

0 == 1, 2,..., N . If u; ~ 0, the last condition implies that all the xa
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lay in the line determined by w, which contradicts our assumption that
dim 2. Thus = 0 if and only if w = 0 .

Let us also be reminded of fundamental properties of R and Ax :

These are easy to prove by straightforward calculation. Note also that the
Lie algebra so(3) is endowed with a natural inner product defined by and
equal to 

.

On the above setting-up, we are to define rotational and vibrational
vectors definitely. Rotational vectors are defined to be infinitesimal

generators of the 5’0(3) action, which turn out to be expressed as

In terms of differential operators, the rotational vector (2.17) takes the
form

where J is the total angular momentum operator. A tangent vector v =
( v 1, ... , to X at x is called a vibrational vector, if it is orthogonal
to any rotational vector at x with respect to the metric (2.8). Hence, the
tangent vector v = ( v 1, ... , is shown to be a vibrational vector, if and

only if

This is also equivalent to

Vol. 70, n° 5-1999.
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Moreover, we have to point out that the cv satisfies, for rotational
vectors,

and is subject to the transformation

The proof can be carried out by using the definition (2.9) and the
properties (2.13)-(2.15).
We proceed to describe rotational and vibrational vectors in local

coordinates defined in (2.7). Let 03C9a and Ja be the components of 03C9 and
of J with respect to the fixed frame ea, respectively,

We note here that from (2.22) the components of the connection form,
transform according to

Now, from (2. 21 ) it follows that = R(ea), which implies that c~a
are dual to Ja. The forms cva together with dq‘ constitute a local basis of
the space of one-forms on X, which satisfy

To be strict in notation, we have to use 7r* d q for dqi , which is the pull-
back of dqi, but we use d q i for notational simplicity. By using and
dqi, we can determine vector fields through

The 03BEj and Ja are put together to form a local basis of tangent vector
fields on X. We note here that from (2.27) and (2.20) it follows that the
vector field is vibrational.

Annales de l’Institut Henri Poincaré - Physique theorique
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For local expression of we are to write out (2.9) in the local
coordinates given by (2.7). Writing out dxa, we have the expression

We here denote the components of the Maure-Cartan form d g g -1 by 

and set

Then, from (2.9), (2.28), (2.29), and (2.30), it follows that

In gauge theory, is called a Yang-Mills potential and denoted usually
by Af [ 14] . To write out 6~ of (2.29) in terms of Euler angles ~~a ) =

(c~, 8, 1/1), we take g as .,

Then, Eq. (2.29) is written out to give

We notice further that Eqs. (2.25) and (2.31) imply that ~8a are subject to
the transformation

Vol. 70, n° 5-1999.
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The infinitesimal version of (2.34) with g = is expressed as

where is the antisymmetric symbol with B123 = 1.
As for the local expression of ~l , we obtain, from (2.27) and (2.31 ),

This is a unique vibrational (or horizontal) vector field which is in one-
. to-one correspondence with i 

on U C M . In connection theory,
~l = (a/aqi)* is called the horizontal lift of a/aqi, which we denote by
ai in short in the below. Moreover, owing to (2. 31 ), the first equation
of (2.26) reduces to == which provides the well-known local
expression of Ja as

In addition, we have to touch upon the transformation property of the
components of the inertia tensor;

Indeed, Eq. (2.15) gives rise to the transformation of A (x) _ (Aab(x)):

The infinitesimal transformation of (2.39) for g = proves to

be given by
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In conclusion, we remark that the connection form vanishes in the
direction of dilatation. In fact, the infinitesimal generator of the dilatation

E is given by

for which vanishes;

This means that À is a vibrational vector field by definition.

2.3. Curvature

On using (2.24), (2.35), and (2.36), the rotational vector fields Ja
and the vibrational vector fields ai are shown to satisfy the following
commutation relations

where Fi~ is defined to be

The middle equation of (2.43) means that two independent vibrational
vector fields, al and are coupled to give rise to an infinitesimal
rotation. This fact implies that molecular vibrations cannot be separated
from rotations. Another implication is that the distribution spanned by

is not completely integrable in the sense of Frobenius [ 17], so that
there are no submanifolds to which are tangent. If there were such
a submanifold, only vibrational motions would take place on it, and it
would be able to be identified with (an open submanifold of) the internal

space M .

Vol. 70, n° 5-1999.
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We turn to the curvature form, which is defined to be

In the ordinary connection theory, in which the structure group is
assumed to act on a principal bundle to the right [ 12], the minus sign
in the right-hand side of (2.45) should be replaced by the plus sign. Let
the components of ~2 be denoted by 

Then a calculation provides

On the other hand, the theory of connection gives the formula [ 12]

Then Eqs. (2.43) and (2.48) are put together to provide

In view of (2.49) and (2.43), we understand that the presence of

non-vanishing curvature makes it impossible to separate rotation from
vibration.

In addition, we give the transformation property of the curvature form.
From (2.22) and (2.45) it follows that

Then the components of S2 are subject to the transformation

Annales de l’Institut Henri Poincaré - Physique theorique
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Alternatively, one finds that

In conclusion, we wish to show that the 03A9 vanishes for the vector À
given by (2.41 ). From (2.9) and (2.11 ), we observe that the connection
form c~ is invariant under the dilatation x h~ et x . Hence, the Lie
derivative of c~ with respect to À vanishes; ,C~,c~ = 0. From this and from
(2.42) and (2.45), one verifies that

where ~(-) stands for the interior derivative [ 17] . On setting ~, _ ~ ~.i ai ,
Eq. (2.53) reads

implying that the curvature form is degenerate in the direction of À.

3. RIEMANNIAN GEOMETRY

3.1. Canonical affine connection

We are to study the infinitesimal displacement, dx = (~i,..., 
of x~X. Since 03C9a and dqi form a local basis of the space of one-forms,
dx is put in the form 

’

or

where Ba = (B1a, B2a,..., BNa) and Bi = (B,’, B 2 , ... , are deter-
mined to be -

Vol. 70, n° 5-1999.
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respectively. The system {Ba, Bi} is called a moving frame in the center-
of-mass system X (for an elementary treatment of moving frames, see
[ 18] ), which gives conversely rise to Ja and ai through

The differentials of the moving frame are put in the form

where are one-forms, which are called the connection
forms of the canonical affine connection of X [ 12,18] . These connection
forms are expressed as

where are called the coefficients of the canonical affine

connection. We have here to distinguish ..., /J from The former

forms are concerned with the canonical affine connection on the tangent
bundle TX, and the latter with the principal ~’(9(3) bundle X 2014~ M.

3.2. Levi-Civita connection

In what follows, we study what results from the fact that the canonical
affine connection stated above is a flat Levi~Civita connection of the

Euclidean space X. The metric defined on X was already given by (2.8),
which is clearly a flat metric. Eqs. (2.8) and (3.2) are put together to
give

Annales de l’Institut Henri Poincaré - Physique theorique
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On the other hand, from the definition (3.3) of Ba and B«, we can verify
that

where Aab are the components of the inertia tensor given by (2.38). On
looking at the last term of the right-hand side of (3.7) along with (3.4),
we see that the define a metric tensor ai~ on the internal space
M,

In fact, since ds2 is invariant under the S’0(3) action and since ai and
~/~qi are in one-to-one correspondence, are independent of SO(3),
and therefore well defined on M. Thus the metric ds2 expressed as (3.7)
becomes

We choose to describe Eqs. (3.8) and (3.9) as

where the center dot indicates the inner product with respect to the metric
ds2.. , 

.

We have to note here that the map yr : X --+ M becomes a Riemannian

submersion [ 19] since jr has maximal rank and since n* preserves lengths
of horizontal (i.e., vibrational in our case) vectors.
We proceeds to the structure equations of Cartan [ 18] . Since X is a

Euclidean space, one has

which mean that the affine connection has no torsion and vanishing
curvature, respectively. From (3.12) it follows that the coefficients

Vol. 70, n° 5-1999.
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appearing in the right-hand sides of (3.6) satisfy

In fact, the left-hand side of (3.12) are written out as

Hence, the condition (3.12) along with (3.15) brings about (3.14), as is
wanted. It is to be noted that the Eqs. (3.14) are also obtained by operating
x with the vector fields (2.43).

Before studying what results from (3.13), we are to differentiate (3.11)
to obtain the condition that the canonical affine connection on X be a
metric connection [ 18] . Differentiation of the last equation of (3 .11 ) gives

Then, it follows that

Annales de l’Institut Henri Poincare - Physique " theorique "
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The first equation of (3.17) and the relation T1~ _ from (3.14) imply
that are equal to the Christoffel symbols formed from the metric
tensor 

where = (al~ ) -1. Put another way, the Levi-Civita connection on
the center-of-mass system X endowed with the metric ds2 induces the
Levi-Civita connection on the internal space M endowed with the metric

d q This fact is already pointed out in [3 ] .
The differentiation of the first and the second equations of (3 .11 ) yields

and

respectively. Eqs. (3.19), (3.20), and the second of (3.17) along with
(3.14) are put together to provide

with and

Vol. 70, n° 5-1999.
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Inserting (2.40) into (3.21 ), we find that

which may be written in a symmetric form, if := 03A3e 0393eadAec is

introduced;

3.3. Riemann curvature

We proceed to study what results from (3.13), the vanishing curvature
condition. From d(dBa) = 0, one obtains

and from = 0,

If 7~ vanished identically, the internal space M would be able to be
identified with a submanifold of X. Then Eqs. (3.28) and (3.29) would
provide the Ricci, Codazzi, and Gauss equations for the submanifold M
of X. However, there are no submanifolds to which are tangent,
so that the above equations are viewed as generalizations of the Ricci,
Codazzi, and Gauss ones [19].

Annales de l’Institut Henri Poincaré - Physique theorique



543MULTI-PARTICLE SYSTEMS

One of the consequences of geometric interest from the second

equation of (3.29) is that

where are the components of the Riemann curvature tensor formed

from aij,

Inserting (3.23) and (3.24) into (3.30) results in

Note here that the second term of the left-hand side of (3.32) is

independent of g, E SO(3), since are independent of g
because of (2.52) and (2.39). Eq. (3.32) is a specialized form of O’ Neill’s
formula [ 19], which links the Riemann curvatures of the total space and
that of the base space of a Riemannian submersion. On account of (3.32),
the Ricci tensor and the scalar curvature defined as Rij :== 03A3k Rkikj and
as R : _ ~i~ respectively, satisfy

These formula are also found in [6].
In conclusion, we mention of sectional curvature. Let ]~ i u and

~i be mutually orthogonal unit tangent vector fields on M. Then
the sectional curvature for the plane K spanned by (ui) and (V) at a point
q E M is defined to be

which takes, from (3.32), the form

Vol. 70, n° 5-1999.
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We note here that the right-hand sides of (3.36) is independent of g E
~0(3). Since the right-hand side of (3.36) is a quadratic form in the
quantity we observe that ~K is non-negative. However, it is
unlikely that I~K is strictly positive, since M is not a compact space. In
fact, for a class of planes, the KK vanishes. To show this, we take the
vector ~, given by (2.41 ). Since ~, is a vibrational vector field by definition,
the projected vector is a non-vanishing tangent vector field on M.
If K is a plane including then the sectional curvature KK vanishes
on account of (2.54) and (3.36). Furthermore, the Ricci tensor is non-
negative as well,

which is known from (3.33). We see also that the Ricci tensor vanishes
for u == 7r~ on account of (2.54). This means that the Ricci tensor 
is not strictly positive. We will give an example of in Section 6.

4. EQUATIONS OF MOTION

4.1. Setting up equations of motion

In this section, we are to obtain the equations of motion for multi-
particle systems in the Lagrangian formalism adapted for the bundle
structure of the center-of-mass system X. To this end, the Lagrangian
formalism described in terms of "quasi-coordinates" is of great use [20-
23], a brief review of which is as follows: For local expression of the
equations of motion, it is sufficient for us to work in an open subset W
of Let ~, ~ = 1, 2,..., 3 N - 3, be a local coordinate system in
W. Let XÀ and 03B803BB be a local basis of vector fields and its dual on W,
respectively, which are denoted by

respectively, with ¿À = 8~. Then, one has, after differentiation,

It is clear that 03B303BB03C303BA is anti-symmetric in 03C3 and K .
Annales de l’Institut Henri Poincaré - Physique theorique
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Let

be "quasi-velocities", the time derivatives of "quasi-coordinates". The
equations of motion can be described in terms of quasi-velocities n ~ and
coordinates ~ ~ . We express the Lagrangian L (~ , ~ ) as

Then the Lagrangian equations of motion for L * takes the form

where X(5 and are the vector fields and the coefficients given in (4.1 )
and (4.2), respectively. Occasionally, the symbols are used for X ~ .
We are to apply these equations to our multi-particle system in the open

subset Tr~(~) ~ U x SO(3) referred to in (2.5). From (2.26) and (2.27),
the system of one-forms is given by

and the dual system of vector fields is written as

Then, Eqs. (2.47), (2.49), and d(dqi) == 0 provide, when compared with
(4.2),

with the other all vanishing. To express the Lagrangian L*, we
introduce quasi-velocities according to (4.3) by

where úJ~ are defined through (2.31 ) as

Vol. 70, n° 5-1999.
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Then, from (3.10) together with the potential function V, one has the
Lagrangian

The application of (4.5) to (4.11 ) then provides

PROPOSITION 4.1. - The Lagrangian equations of motion of a mole-
cule are given by (4.12) and (4.13) in terms of internal coordinates qi
and quasi-velocities A point to make is that they contain the the struc-
ture constants Eacb of the structure group SO(3) and the curvature Fi~ on
the bundle X ~ M.

We are going to look into (4.12). In the vector notation with A = (Aab)
and cvt = (c~a ) , one has, by using (2.40),

so that Eq. (4.12) comes to be expressed as

Since the total angular momentum is expressed as

as is easily seen from (2.9), Eq. (4.15) is put in the form

If the potential is rotational invariant, this equation implies the conserva-
tion of the total angular momentum.

Annales de l’Institut Henri Poincare - Physique theorique
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On the other hand, Eq. (4.13) becomes

which proves to be equivalent to

If the molecule is allowed to be regarded as a rigid molecule, the
variables (qi) are fixed, so that V, and xa are constant in (ql ), and
hence 03B2ai = 0 from (2.30). Thus, one has = 0 and ~*jV = 0, so
that Eq. (4.19) is satisfied identically. On the other hand, Eq. (4.15) can
be shown to be equivalent to the Euler equation for a rigid body with the
torque -J(V). To this end, we first calculate the time derivative of A in
the vector notation,

where we have used (2.40). Put together, Eqs. (4.15) and (4.20) provide
the equation for the rigid body,

Further, from Eq. (2.31 ), one has cvt = (9~ = ((9~) on account of ~8a = 0,
so that Eq. (4.21 ) becomes

What to do for us is to rewrite this equation in terms of constant inertia
tensor. To this end, we are to evaluate A = A(x) at a specific point ~o
given by (2.6) along with (qi) fixed. We denote by Ao the matrix A
evaluated at xo. Then Eq. (2.39) implies that A = On using this
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relation, Eq. (4.22) turns into

Incidentally, from (2.29) one verifies that gg-l = R(Ot), so that
= Therefore, Eq. (4.23) turns over into a

preferable form

which is the Euler equation for a rigid body with ~It J (V) the
angular velocity in the body and the torque, respectively, [24]. We note
in addition that = 

In the case of molecular dynamics, the potential function V is assumed
to be rotationally invariant, so that one has

Thus we have the following.
PROPOSITION 4.2. - If the potential is rotationally invariant, then Eq.

(4.12), a part of the equations of motion, implies the conservation of
the total angular momentum. Moreover, if the molecule is assumed to be
rigid, Eq. (4.12) becomes equivalent to the Euler equation for a rigid
body

4.2. Reduction of the equations of motion

In what follows, under the assumption that the potential function
is rotationally invariant, we treat the total angular momentum L as a
constant vector, and thereby reduce the equations of motion. Eq. (4.19)
along with (4.16) and (4.25) can be put in the form

where use has been made of 03A3b AabAbc = Sac. This equation was also
found in [6].
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, 

What to note about (4.26) is that this equation is not in a closed form,
if L is fixed during the motion. In fact, the right-hand side contains
angular variables, i.e., depends on SD(3) through Aab and but the

left-hand side is independent of SO(3). This implies that we need another
equation for angular variables in order to obtain equations of motion in
the closed form. However, we can observe that, if L is constant, the right-
hand side of (4.26) is invariant under the rotation about L, i.e., under the
action of h E 5’0(3) satisfying L. In fact, is subject to the
transformation

the same transformation as A"B and subject to (2.52). We have
to notice here that Eq. (4.27) is a consequence of the fact that 9~ is

invariant under the SO(3) action; = 9~ the infinitesimal version of
which is [9~ Ja] = 0, the last equation of (2.43). Thus we need in reality
equations for angular variables which do not keep L invariant. Since the
set of h E SO(3) satisfying hL = L, L ; 0, forms a subgroup SO(2), the
angular variables we need lie on the sphere S2 ^_. 5’(3(3)/5’(9(2). To find
equations on S2, we consider the vector defined by

where g ~ 5’0(3) is the angular variable introduced in (2.7). The
magnitude of h, of course, conserved; ~~ I = == const, and hence
7JL varies in the sphere S2. A calculation along with == shows

that ~l is subject to the equation

To look into (4.29), we use the relation resulting from (4.10), (4.16), and
. (4.28),

where Ao is the inertia tensor evaluated at xo = cr (q),. and ~8° := g-1 ~8i is
a vector 03B2i == (03B2ai) evaluated also at xo (see the transformation property
(2.34) and (2.39)). Then, Eq. (4.29) is rewritten as
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This is the equation for ~, depending on internal coordinates.
Returning to Eq. (4.26), we have to rewrite it by replacing g  for L. To

this end, we use the formulae (2.52) and (4.27). Then Eq. (4.26) becomes
expressible as

where the subscript 0 indicates that those quantities are evaluated at xo =
or (~). The second term of the right-hand side of (4.32) is a generalization
of the Lorenz force in electrodynamics. The quantity ( ak A -1 ) o ( A -1 =
(Aab)) in the first term of the right-hand side of (4.32) turns out to be put
in the form

which can be verified by using (2.36) and a

consequence of (2.40). From (4.33), the first and the third terms of the
right-hand side of (4.32) are put together to be written as

the first term of which stands for minus the gradient of an effective
potential. Thus we have found that Eq. (4.32) is written as

PROPOSITION 4.3. -Along with the conservation of the total angular
momentum, the equations of motion are reduced to (4.35) and (4.31 ). The
set of these equations is reminiscent of Wong’s equation [25], if the terms
appearing in (4.34) are droppedfrom the right-hand side o,f’(4.35). In the
case o, f ’ L =11 = 0, Eq. (4.35) reduces to the usual Newton’s equations
of motion on the internal space, and Eq. (4.31 ) vanishes.
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4.3. Equilibrium states

We are to consider the equilibrium state of the molecule with non-
vanishing total angular momentum. From (4.31 ) and (4.35), it follows

that the equilibrium state determined by (q ,11 ) == 0 occurs under the
conditions

The first condition of (4.36) means that 11 has to be an eigenvector of
Ao 1; Ao 111= ~,c-111, where ~c is an eigenvalue of Ao, which depends on
q, of course. Then the second equation of (4.36) becomes

where use has been made of the relation ~Z~ = The condition

(4.37) was suggested in [6] in the name of the condition for relative

equilibria.
PROPOSITION 4.4. - The shape of the molecule in the relative

librium (, .A) = 0 is determined &#x26;y (4.37).
Now suppose that an equilibrium state with L = 0, described as ~o.

undergoes a small amount of change in L. We denote !!L~/2 an

infinitesimal parameter. Then Eq. (4.37) has a one-parameter solution

~(~) satisfying

where qo = ?(0). Differentiation of Eq. (4.38) with respect to E at £ = 0

provides

Assume that qo is a non-degenerate equilibrium position, that is, the
Hessian matrix for V at qo is non-degenerate. We may then set
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Eqs. (4.39) and (4.40) hence imply that

This provides an infinitesimal change in the equilibrium states as the
angular momentum vector is turned on.

For 0 of finite magnitude, a solution to (4.37) can be found by
the use of the gradient method. In fact, along with an initial value, the
gradient flow defined through

will approach a solution to (4.37).

5. VARIATIONAL EQUATIONS

In this section, we consider first the equation of motion with vanishing
total angular momentum. Then Eq. (4.26) reduces to the equations on the
internal space,

Let c(t, s), 2014~o  s  ~o, be a one-parameter family of solutions to
Eq. (5.1 ). That is, for each s fixed, t t-+ c(t, s) is a solution to Eq. (5.1 ). In
particular, we set c(t) := c(t, 0). Further, a variation vector field = 
is defined, along c(t), to be

Let us denote by D/dt the covariant differentiation along the curve
c (t ) . Then, in the same method as that for obtaining the equation for
geodesic deviations or the Jacobi equation [24], we find the equation for
the variation vector field ~ in the form
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where := is the Hessian for V with ~l the covariant
differentiation.
We now use (3.32) to put (5.3) in the form

To have a compact expression, we use the notation S2a = (~l~ ) (see
(2.49)). Then Eq. (5.4) turns into

and S2b (c*, -)# and -)# stand for
the vector fields associated with the 1-forms S2b (c*, -) with

l~ _ respectively. The right-hand side of this equation is viewed
as a force acting on the variation vector field yy. This force can be derived
from the potential function in ~, -

Incidentally, the term (3/8) ¿ 11*) is positive semi-
definite in ~ and is a function multiple of the sectional curvature for
the plane formed by c and ~ (see (3.36), and remember that ë and ~
are not assumed here to be unit vectors). Therefore, we observe that
the curvature S~a does not make the trajectory c(t) unstable, rather

keeps it semi-stable. However, we note that if r~ is parallel to c, the
term vanishes, so that the force

.~ has no effect in the direction of c.
Moreover, if ~ is parallel to À given by (2.41), the potential (3/8) ¿ Aab

vanishes because of (2.53), which implies that the
dilatation does not contribute to keeping the trajectory c(t) stable. This is
a reasonable consequence.

If the potential V has a critical point at qo, the point is a particular
solution, q(t) = qo, to Eq. (5.1 ). If we take this point as the solution
c(t) = qo, then the variation vector (5.2) is viewed as a small vibration
at the equilibrium state, in the traditional sense. We note here that ~ E

in this case. Since c = 0, the variational equation (5.3) is put in
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the form

where a ‘k and ~2V/~qi~qj are both evaluated at qo. Eq. (5 .7) is
just the equation of small vibrations with (aik) the G matrix and 
the force constant matrix [ 1 ] .

PROPOSITION 5.1. - The variational equations of the equations of
motion for the multi-particle system with the vanishing total angular
momentum are given by Eq. (5.5), which shows that the curvature S2
arising from the rotation of the system does not make the trajectory
unstable. Further, at a critical point of the potential, the variational

equations reduce to the traditional equations for small vibrations.

We turn to the variational equations at an equilibrium state determine
by (4.37). On denoting by 03B6 the variation vector for , we obtain, from
(4. 3 5 ) and (4. 31 ),

with Veff = (l/2)(~!Ao’~) + V, and 0

respectively, where the functions appearing in the coefficients are evalu-
ated at (q,11) satisfying (4.37) with = and further ~ is
subject to ~a = O. Eq. (5.8) reduces to Eq. (5.7), if 11= 0.
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6. AN EXAMPLE

In conclusion, we give an example of the geometry for a tri-atomic
molecule. Let us denote by Co a position vector of the center-of-mass of
two particles at jc~ and at x3. Let rand p be the length of the vector
x2 - x3 and of x1 - co, respectively, and 03C6 the angle made by two vectors
x2 - Co and Co. We choose to lay the tri-atomic molecule in the plane
so that the position vectors xl and x2 may lie, respectively, in the positive
half of the e1-axis and in the upper half plane spanned by e1 and e2 . The
third position vector x3 takes a due position so that the system may be the
center-of-mass system. Then the position vectors are expressed as

This expression is a specialization of (2.6) for the tri-atomic molecule
and defines a local section, xo = along with q 1 = p, q2 == r, q3 = ~9,
in the center-of-mass system X. Generic position vectors are then given
by xa = a = 1, 2, 3, with g E SO(3).
From the definition (2.11 ), the inertia tensor A turns out to have the

components, at jco,

with
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The value of A at a generic point x = gx0 is given by A = gA0g-1 on
account of (2.39).
Now we are in a position to calculate the connection form. A straight-

forward calculation of (2. 30) along with (6.1 ) provides, at jco,

This shows that the only non-vanishing component is The value
of ,Bu at a generic point x = gxo is calculated by using (2.34). The
components of the connection form at x are then given through (2.31 ).
The components of the curvature form evaluated at xo then turns out to
take the form

giving the values and with the others vanishing. The
value of S2a at a generic point x = gxo is obtained by using (2.51 ).
We now turn to the moving frame associated with Ja and From the

definition (3.3), the Ba are easy to obtain; Ba = ea x gx° with x° given
by (6.1 ). However, the Bf needs calculation. By operating x with

and by using (3.3), we obtain, at xo,
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where Q ~ , Q 2 , Q 3 are functions given by

At a generic point x = gxo, the above vectors take the form 
This is because the transformation property of Bf results from

the definition (3 . 3 ) along with = 9~.
Using (3.9) and (6.5), we can find the expression of the the metric

tensor on the internal space in the form

To obtain the Riemann curvature tensor is now a matter of calculation,
which can be done through (3.32). It is to be noted that we do not use the
Christoffel symbols, but use Aab, and 7~ to calculate the Riemann
curvature. However, we do not give here the Riemann curvature tensor but
give the Ricci curvature tensor only for simplicity, which can be obtained
through (3.33). A calculation results in
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with

where F1 = F312(x0), F2 = the expression of which are known
from (6.4). It is easy to see that the tensor (6.7) is positive semi-definite
(see (3.37)). There exists a zero eigenvalue, for which the associated
eigenvector is a function multiple of the dilatation vector + 
as is expected.

In conclusion, we remark that some of numerical calculations for

equilibrium state of a tri-atomic molecule are found in [26].
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