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ABSTRACT. - Dynamical properties of Josephson media are studied
within Lagrangian and Hamiltonian formalisms with gauge type con-
straints. A geometrical interpretation of the first class gauge type con-
straints involved is suggested basing on the Marsden-Weinstein momen-
tum map reduction. An equivalent operatorial approach is also considered
in detail giving rise to certain two essentially different Poisson structures
upon orbits of the Abelian gauge group, the first Poisson structure be-

ing nondegenerate in contrast to the second one2014degenerated. The con-
sideration of the Poisson structure associated with Josephson media are
essentially augmented by means of introducing new Josephson-Vlasov
kinetic type equations endowed with the canonical Lie-Poisson bracket.
The reduction of the corresponding Hamiltonian flow explains the phys-
ical nature of the a priori involved constraints. @ Elsevier, Paris

3.40.Kf, 04.20Fy, 74.50+r, 74.60G, 74.76-w

RESUME. - Nous etudions les proprietes dynamiques des milieux
Josephson grace a des formalismes lagrangiens et hamiltoniens avec
des contraintes de type j auge. Une interpretation geometrique des
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498 A.K. PRYKARPATSKY AND J.A. ZAGRODZINSKI

contraintes de type jauge de premiere classe mises en jeu est suggere
par une reduction de la carte des moments de Marsden-Weinstein. Une

approche operationnelle est aussi consideree en detail : elle donne lieu a
essentiellement deux structures de Poisson differentes sur les orbites du

groupe de jauge abelien, la premiere etant non degeneree et la seconde
degeneree. La structure de Poisson associee aux milieux Josephson est
renforcee de fagon essentielle en introduisant de nouvelles equations du
type Josephson-Vlasov munies du crochet canonique de Lie-Poisson. La
reduction du flot hamiltonien correspondant explique la nature physique
des contraintes mises en jeu a priori. (0 Elsevier, Paris

1. INTRODUCTION

1.1. Physical background

The dynamical properties of so-called Josephson media were recently
often discussed [1-3]. Such a specific medium can be considered as a
limit of the two-dimensional (2D), plane Josephson junction arrays when
the "density" of junctions tends to infinity if the physical background
or history is reported as well as there are different motives that such a
medium is interesting. The possible approaches are originated either by
the spin-glass formalism on lattice or by systems of partial differential
equations when continuous dynamic processes are under investigation.

In the first case different collective phenomena are considered, e.g.,
the existence of vortex fluids [4], the interaction between vortices, [5],
topological invariance of arrays [6], and even 3D structures [7], although
in the one direction the structure is discrete. As a generic, the Hamiltonian
as in XY-Ising model is assumed.

In the second case, usually a phenomenological approach is adopted
starting from a discrete picture but equations can be derived also either
from a suitable Lagrangian or Hamiltonian. The ultimate form of a
Lagrangian is in the spirit of the Ginzburg-Landau free energy functional
with modifications introduced by Lawrence and Doniach for layered
systems [8]. The discretization coincides with the spin-glass formalism
if self-magnetic fields are neglected.

There are, however, some questions when one wants to compare more

precisely the results of both Lagrangian and Hamiltonian approaches.
Annales de l’Institut Poincaré - Physique theorique



499LAGRANGIAN AND HAMILTONIAN ASPECTS

The source of problems is found in a choice of canonical variables and
next in the linear dependence of canonical momenta if the mentioned
choice was done incorrectly. The point is that adopting the classical
choice of variables in the Lagrangian the space derivative of velocity
appears that makes a difficulty. To avoid the arisen problem in [3]
there was proposed the simplest solution: a reduction of the number of
generalized coordinates which is equivalent to the consideration some
invariant submanifold, carrying the canonical Poisson structure.
The arguments originating the present paper we summarize briefly

below. For details a reader is referred to [3], or [9] and to papers cited
there.

Let us consider the canonical Lagrangian in the form

(~i,~2.0), since we are interested in time evolution in 2D
Euclidean space, i.e., 03A6 : R2 x ? -+ Here and later on by (.)t we
understand the derivative with respect to the variable t E Because of
the correspondence with the spin-glass formalism we assume that 

-

and of course A = (Ai, A2, 0) x ]R ---+ ]R2; (9 :]f~ x ]R ---+ M; i.e.,
V := 9/9~2.0), if notation relating to 3D space is preserved.

Since the derivative ~t has the physical interpretation of the electric
field, quantities A and - ~ 0398 dt as the vector and scalar potential,
respectively, it is natural, following standard classical approaches, to
choose as generalizes canonical coordinates the scalar potential and
components of the vector potential. In our concrete case these coordinates
would be (9, Ai, A2 .
The relevant Euler-Lagrange equations

lead to the following field equations

Vol. 70, n° 5-1999.
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and

respectively, where we are using for brevity the shorthand mnemo

notation sin A :== (sin A i, sin A2, 0). ..
The first remark is that (4) follows from (5). Defining momenta via the

standard way we obtain

i.e., once more dependent ones, although the Poisson brackets have the
correct form. Finally the Hamiltonian is

with the density defined as usual H = pAt + p00398t - L has the form

up to full divergence div [ (A + The field equations calculated
either from the Hamiltonian or from the Lagrangian should be the same.
The field equations corresponding to the Hamilton functional (7)

coincide with those following from the Lagrangian, but surprisingly
equations

lead to the conclusion that (9~ == 0, which seems at least strange.
As it was proposed in [3] a simplest remedium makes a reduction

of a number of canonical coordinates. A situation becomes more clear

if instead of (9, as canonical coordinates there are taken two

nontrivial components of 03A6 = A + Then the component O becomes

only a gauge parameter and as a result po drops out from the further
analysis. The second set of Hamilton Eqs. ( 10) reduces then to the

equivalence ~t = 81i/8p = 

Annales de l’Institut Henri Poincaré - Physique theorique



501LAGRANGIAN AND HAMILTONIAN ASPECTS

1.2. Problem statement

From the mathematical point of view such a procedure can be
considered as a reduction of a starting manifold to some submanifold
but with some nontrivial, additional restrictions.

Firstly let us notice that when the Josephson field ~ is given physically
as a 3D-vector, the condition 03C63 = 0 should be considered as an outer

constraint imposed on the Lagrangian ( 1 ) . Secondly, let us observe

that the decomposition (2) is not alike to the corresponding Helmholtz
decomposition commonly used in classical electrodynamics and has quite
different meaning. And thirdly, we must take care of the solenoidality
condition div tP = div A + Ae = 0. Moreover, the Lagrangian ( 1 ) and
next the Hamiltonian and field equations are not invariant with respect
S02 group. We need, however, to derive true dynamical equations for
fields A and (9 being compatible with all constraints involved above
and to build the corresponding correct additional conditions. To do

this program successfully one needs to recast our initial Lagrangian
theory into dual Hamiltonian picture performing the standard Legendre
transform

up to full divergence, i.e., according to (8), where canonical phase
variables p and 03A6 pertain to the cotangent space }R2 x {0}))
over the configuration space x {0}) 3 ~, and generate the .

following symplectic structure

Since this symplectic structure is invariant under the gauge transform (2)
but the Hamiltonian (8) is not, we fail to, derive in the commonly used
straightforwardly manner all necessary reduced boundary conditions on
the Josephson fields A and 0. To cope with all these problems generated
by the special form of Lagrangian ( 1 ) in 2D-space, we intend below
to discuss a general Lagrangian picture with the degeneracy of the
corresponding Legendre transform via Dirac reduction procedure when

Vol. 70, n° 5-1999.
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such reduction is not introduced a priori. This leads further to treating the
first class gauge type constraints by means of a geometric momentum
map reduction, see, e.g., [16-20]. The price paid in this case is an
existence of some multipliers as a consequence of considered constrains.

In order to transform such a problem with a degenerate Lagrangian, but
on some invariant submanifold, the second part of the work is devoted to
analysis of the related symplectic structures in such cases. In the third part
some equivalent operator approach aspects of the problem are discussed.
The last part contains some important corollaries as well prospective

sketches of methods used in the case of self-consistent Josephson media
in spirit of Vlasov approach.
Many interesting aspects of similar physical problems with a gauge

type structure were in the past analyzed in detail in numerous papers
[ 10,11 ] . Authors made use of the Lie-algebraic theory of Poisson brackets
on duals of some naturally built Lie algebras. By this way authors were
able to construct gauge invariant Poisson structures for superfluids, spin-
glasses, chromo and magnetohydrodynamics. For these physical models
there are corresponding gauge invariant Hamiltonians giving rise to

related evolution equations with conditions derived from the momentum
map reduction.

Concerning the problem treated in the present article, we deal with
Josephson type media which are not described by a gauge invariant
Hamiltonian. That a natural canonical symplectic structure could not
be found via the standard Lie-algebraic theory of Poisson structures
on duals of some Lie algebras, even though it is also gauge invariant
one. Moreover, some additional obstacle is imposed by a special 2D
degeneration of Josephson medium under regard.

2. BASIC SETTING2014LAGRANGIAN ANALYSIS

Let us be given the following simple form of the Lagrangian ,C on some
functional manifold M smoothly parametrized by an evolution parameter

where u E M C m, k E Z+, R some ’

smooth map 0 on the j et manifold 0 M).

Annales de l’Institut Henri Poincare - Physique ’ theorique ’



503LAGRANGIAN AND HAMILTONIAN ASPECTS

The Eulerian equation has the form

where by definition

We see from ( 13) that the Lagrangian can hold derivatives in time
t e ? of orders greater or equal to one, leading then to the nondegenerate
Lagrangian problem if

for all u E M; Z+ ~ n  12014the maximal degree of the
derivative contained in the canonical Lagrangian L[u, Mj. If that is
the case, we can construct [ 12-15] simply a Hamiltonian theory on some
extended manifold M,~ C M) as follows

where, by definition, j = 0, ... , n - 1,

Vol. 70, n° 5-1999.
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and so on, the Hamiltonian being built as

where

and (-,’) denotes the standard scalar product in 
We see, thus that the system ( 15) has the standard Hamiltonian

form upon the extended manifold When the Lagrangian 
is degenerate, the above procedure fails, that is one insists to use the
standard Dirac theory of reduction [ 12-16] for the Lagrangian ,C with
constraints of the first and second class generated by the procedure
of constructing the conjugated "impulse" variables in the Hamiltonian
theory. To do this we need to introduce the so-called Lagrangian
expansion following from ( 17):

serving as constraints on the Lagrangian ( 12).
By definition, the impulse variables == 0,..., ~ 2014 1, enjoy the

canonical Poisson brackets:

for all = 0, ... , n - 1, where 8 (.) is the standard Dirac delta-function
distribution and ~~,k the Kronecker symbol. Now the total Hamiltonian is
given by

where ~, ~ E = 0, ... , n - 1, are Lagrangian vector multi-
pliers, to be found further in an explicit form. The Poisson brackets of the
constraints (20) with Nc must vanish and this requirement will determine
vector multipliers ~,~ , j = 0, ... , n - 1, provided there exist no further
independent constraints in the problem under consideration. We have for

de l’Institut Henri Poinearé - Physique theorique



505LAGRANGIAN AND HAMILTONIAN ASPECTS

If det ~ { c, c} 0, from (23 ) one can find vector multipliers
~,~, j ==0, ..., ~ - 1:

Thus, the total Hamiltonian defined by (22) takes the form:

When the case det = 0 takes place, we need to introduce
some new secondary nm - r constraints following from (23), where
r : := rank ~ { c, and to proceed further by the same way as it was done
before.

Josephson medium Example 1

To be more precise, let us consider the following canonical Lagrangian
from [3]:

where (’,’) the usual scalar product in We make the following change
of variables

From (26) and (27) we obtain:

Vol. 70, n° 5-1999.
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that is a new Lagrangian ,C with new independent variables O and
(Ai,A2,0).
Now we are in a position to use the basic theory presented above. At the

very beginning we need to introduce the conjugated impulse variables:

where 6. :== ~22014the standard Laplacian.
The system (29) gives rise us to the following relationships:

As it was mentioned before and once more it is seen from (30) that the
impulse yr and the vector impulse p are not independent what is needed
for the quantities (9~ and At to be defined from (29) in a unique way. Thus
we must introduce a one additional restriction as follows:

which can be read as a new constraint on the Lagrangian  on M.
The nontrivial canonical Poisson brackets are given as

where ~,~=1,2. The augmented Hamiltonian takes the form

where At = p - ~0398t and 03BB(x) is some Lagrangian multiplier. As a result
from (33) we obtain

Annales de l’Institut Henri Physique theorique
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3. SYMPLECTIC ANALYSIS

We can convince ourselves quite simply that the constraint (31 ) is of
the first class and has gauge nature. Indeed, let us recast the canonical
Hamiltonian system (34) into the usual symplectic picture. First we define
a functional phase manifold M~ C x 

with coordinates (A, p; (9, yr) E Mn . Upon the manifold M~. there exists
the canonical symplectic structure

where n dAj, with respect to which the Euler
equation A] = 0 is equivalent to the corresponding Hamiltonian
system stemming from (34):

where ~, E is some gauge function. We can see that the
condition At = holds for all t E R, as well.

Notice that the Hamiltonian (34) is invariant with respect to the

following gauge group action g~. : My~ --+ M,~

of an Abelian Lie group G, consisting of real valued invertible functions
on R2with an addition group operation:

where xk = x 11 x22 , ~ ~n~ (x) : := by definitions.
The above means that the gauge group G coincides with the standard

Schwartz functional space on R2 and the invariance property Nc o g03C8 =
Nc takes place on the manifold Mn for all exp() E G. Since the Lie
algebra ~ of the Lie group G coincides as a manifold with the space
G, we will interpret further the gauge element 1/1 E InG in (36) as that

Vol. 70, n° 5-1999.
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belonging to the Lie group G. Notice here that the gauge action (36) is a
symplectic one on the symplectic manifold (Mn, c~~2~) :

for all E G. Indeed,

because of both the equality d ~ ~ dx = 0 and the compatible constraint
condition div p + jr = c on the manifold Mn. Compatibility here means
that the condition

holds for all times t E that is

which is simply proved to be true. Now we are in a position to use the
standard Marsden-Weinstein reduction procedure [ 17] with respect to the
group action (36).

Let us define a momentum map J : Mn 2014~ ~* related with the action
(36). By definition we have: for any 03C8 ~G

whence we obtain the momentum map

The result above is almost obvious since the constraint c = co (x) is the
even one being involved on the phase manifold Mn for the Hamiltonian
flow of (34) to be compatible. From (42) we see that the submanifold

Annales de l’Institut Henri Poinearé - Physique theorique
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y-i(c == eO(X)) C M,~ can be reduced [ 12,16] on some submanifold

Mo C M,~ with respect to the group action (36)

The reduced symplectic structure c~o2~ on the submanifold Mo is given
by

and the corresponding reduced Hamiltonian :e V(Mo) has the form:

where we have fixed the gauge invariance as follows:

The resulting Hamiltonian flow on Mo is completely equivalent to the
flow (35) on M:

with condition div p + yr = Co (x). Thus we have built the closed

Hamiltonian theory related to the Lagrangian (28), on the symplectic
phase space M,~ C JR2)) x R)).

4. AN EQUIVALENT OPERATOR APPROACH

Let us be given any dynamical system

on some functional manifold M 3 u, where 7~ : M --+ T(M) is a smooth

vector field on M, the flow (47) can be recast into the following Eulerian
form

Vol. 70, n° 5-1999.
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with the action functional S to be

if and only if the dynamical system (47) is Hamiltonian on M. This means
that if

where the symplectic structure ~2: T (M) ~ T * (M) is a nondegenerate
skew-symmetric operator on the adjoint space T (M), satisfying the

following condition:

The element E T * (M) is given by (49) as the definition. It is obvious
that the operator ~2 in (51 ) is skew-symmetric one acting on T(M). From
(49) we can obtain easily that the equation

gives rise to the Hamiltonian form as follows: using

we have equivalently

that is we have obtained the standard Hamiltonian form of the system
(47). Besides we claim that the local functional E T * (M) satisfies
the following determining (or characteristic) Lax type equation [ 13,
p. 216]:

where ~ E D(M)-some canonical transformation generating functional
in the Hamiltonian-Jacobi theory. Indeed, from (55) we can get that

Annales de l’Institut Henri Poincare - Physique " theorique "



511LAGRANGIAN AND HAMILTONIAN ASPECTS

that is,

the generating functional of the Hamiltonian system (54).
The above results are completely valid up to the exact form of the

Hamiltonian function 1{ because of the some ambiguous definition of the
local functional E T * (M) . Indeed, we have

where 1/1 E T * (M) is some gradient-wise kernel of the vector field

K[u]: (1/1, I~) = 0, 1/1’ = 1/1’*, it means that there exists some functional
Q E D(M) such that grad Q == 1/1 on M. Here and below the sign "’ "
denotes the standard Frechet derivative of a local functional on M.

Therefore, for the Hamiltonian density H[u] to be found in exact form,
we need to calculate the quantity

determining the "Lagrangian"  [u ]. Further we construct the Hamil-
tonian density as follows:

stemming from (57). This consideration ends the formal setting of the
Hamiltonian theory via the operator approach on the manifold M with a
given dynamical system (47).

Josephson medium Example 2

To use the above results to the Lagrangian (28), we find that its density
takes the following form on an extended manifold M’ _ (A, q; (9, À)

Vol. 70, n° 5-1999.
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where by definition q := At , ~, : := E T * ( M’ ) , v are some

Lagrangian multipliers, and

(Here the sign " ~ " denotes the usual transposition operation. ) From (62)
using the formula (51 ) we obtain the corresponding symplectic operator
~2 as follows:

The inverse operator S2-1 is given by the expression:

Thus we can represent the Euler dynamical system 8S[A, q; (9, A] = 0
as a Hamiltonian one:

where by definition

and

It is obviously proved 0 that the system of Eqs. (67) is completely
equivalent to (35). From (67) one " can simply extract the above " found o

Annales de l’Institut Henri Poinearé - Physique theorique
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vector field K[A, q; (9~]:

We see from (68) that phase variables q and À are not independent,
that compels us to involve new Clebsch type independent phase variables
7T, p as follows:

As a result we obtain a new evolution system on a properly extended
functional manifold Mn:

that is the system completely identical with (35), the function ~(x),
x E being interpreted as a functional parameter. From (69) we can
easily obtain also that the constraint

is satisfied on the manifold Myr identically. The flow (70) persists the
constraint (71) as well:

upon all orbits of (70). The important consequence of the consideration
performed above is that the Lagrangian  (28) can be represented in the
correct nondegenerate form only on the extended functional manifold
Mn, giving rise to the following expression:

Vol. 70, n° 5-1999.
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where the vector c~ E serves as a Lagrangian multiplier
subject to the constraint p = on the manifold Mn, the function
À-serves like that subject to the constraint yr + div p = Co (x) on From

(73) we get that the corresponding vector 03C6 E is given as follows:

The expression (74) leads us using (51 ) to the following coimplectic
structure:

Unfortunately, the operator (75) is strongly degenerate what means
the necessity to make a reduction of the flow (70) on some submanifold
Mo C Mn .
To proceed further, let us determine the Hamiltonian function related

with the flow (70). To do this we need to calculate only the functional
~ E V(Mn) using the definition (66):

The necessary condition for the above vector a E T*(Mn) to be a

gradient is the following Volterra criterium: a’ = a’*, i.e., selfadjointness
of the corresponding Frechet derivative. It is easy to show that this

condition holds good on Mn. Thus we are in position to calculate the
functional ~ E via the following homotopy formula:

Annales de l’Institut Henri Poinearé - Physique theorique
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Whence the Hamiltonian functional 1{ E V(Mn) is given via (66) as
follows:

where we denoted

Thus

Thereby, we have got the Hamiltonian functional which up to factor 2
coincides with that given by formula (34) and that given in [3,9]. From
the structure of (75) one can see that the dynamical system (70) allows
the nondegenerate reduction upon the submanifold Mo C M" with the
canonical symplectic structure 

Vol. 70, n° 5-1999.
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that is

where by definition we have adopted the following Poisson bracket
notation.

Note that for the above functional ~ E to be obtained via
calculations (76), the following expressions for Frechet derivatives I~’
and K’* were used

5. SOME COROLLARIES AND PERSPECTIVES

We have demonstrated two different approaches to general Euler-
Lagrangian type dynamical systems on functional manifolds with con-
straints of a gauge type.
The constraints (31 ) being found via analysis the Lagrangian problem

(28), as was shown by (72), is a single and of the first class. This
fact suggests to perform the standard reduction upon some invariant
submanifold on which the reduced symplectic structure is nondegenerate.
This was the case treated in detail in this study of the special Lagrangian
problem (28). -

The momentum map y[A,p,(9,7r], defined by (42) in the frame of our
approach admits a further physical interpretation being important for the
study of Josephson media more deeply. Especially, the constraint

Annales de Henri Poincare - Physique theorique -
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imposes on the reduced symplectic manifold Mo C 
some functional conditions, which can be interpreted as a charge
density a’priori disseminated throughout a Josephson medium under
consideration. This constraint imposed on the wanted solutions to the
Eqs. (46) should obviously play the role of the physical compatibility
with the flow of charged particles in the Josephson medium. Indeed, if
these collisionless particles interact with the induced electromagnetic
Maxwell field, one can write down the following Josephson-Vlasov
(J-V) dynamical equations

on the functional manifold = M x F, where the last equation
determines the ambient charge density as a compatibility constraint

condition. The quantity f E F C R+))represents the charged
particle density in position-velocity space at time t E E M is the

particle charge and m E is the particle mass. Here we consider the
motion of a cloud of charged particles inside a Josephson medium of a
single species for simplicity. A generalization introducing several species
is pretty elementary. We choose further the natural unit system in which
e = m = c = 1. Our goal now is to understand a Hamiltonian structure of
the J-V Eqs. (88) using the group theoretical momentum map reduction
approach ofMarsden-Weinstein [ 17] . To proceed further one needs the
investigation of the symmetry properties of the corresponding to (88)
Hamiltonian functional

Vol. 70, n° 5-1999.
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Since Hamiltonian (92) is written in improper phase space variables
(x, v) E we introduce a proper momentum-position phase space
with variables (x, y) E carrying the canonical symplectic struc-
ture 52~2&#x3E; := n dx~ :== (dy, n Jx), the consistency condition
y = v + A being satisfied throughout the Josephson medium.

Corresponding to the definition of the phase space as above, we
introduce a new particle density distribution function f(x, y) E F C

as follows

identically upon for all t E ?. As a result we obtain the next

expression for the Hamiltonian functional (92)

Let us consider the following functional gauge transformation

of the whole phase space := M x F C 
X ~*(R~; JR),

where we denoted by M) C JR2)) the dual space to
the Lie algebra R) of canonical transformations of the symplectic
space introduced above. The gauge function exp((9) E G,
used before, is chosen arbitrary, but satisfying the natural growth at
infinity. The Lie algebra R) consists of elements isomorphic
to Hamiltonian vector fields on with respect to the canonical

symplectic structure SZ ~2~ == (dy, n dx) mentioned already above. Since
the set of these Hamiltonian vector fields is in one to one correspondence
to the set of generating Hamiltonian functions the phase space
F C describes correctly an infinite-dimensional space of
particle density distribution functions f(x, y) dx dy at the point (x, y) E

Annales de l’Institut Henri Poincaré - Physique theorique
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The last considerations give rise to getting a canonical Poisson
bracket on the phase space F as a Lie-Poisson bracket [16,18] as follows:
for any smooth functionals E D(F) the bracket reads as

where { ~, ~ }T* ~~2~ denotes the standard Poisson bracket on 

corresponding to the canonical symplectic structure [2(2) == 

In analogous way one can build a symplectic structure naturally
connected with the Maxwell-Josephson part of the Hamiltonian (94).
Indeed, if as a configuration space for this Hamiltonian part is considered,
the corresponding symplectic phase space to the space of vector potential
fields A E can be defined. It is some set M pertaining to
the cotangent bundle JR2)), carrying the canonical symplectic
structure :== where (A, p) E M. One can easily
be convinced that the Maxwell-Josephson part of the Hamiltonian

(94) is just described by the canonical symplectic structure that

was used intensively in Section 2. Thus we have constructed via the
canonical procedure the symplectic structure c~~2~; c~F ~ upon the phase
space := M x F, where by c~F2~ is denoted the symplectic structure
corresponding to the Lie-Poisson bracket {’, } F (96) on the distribution
function phase space F C 

Turning now back to the gauge group transformation 2014~

M~B O E R) defined by (95), we claim that:
( 1 ) the Hamiltonian functional (94) is not invariant, but

(2) the symplectic structure c~~2~ is invariant with respect to the
mentioned above gauge transformation.

To cope with this situation we consider as before a new properly
augmented symplectic functional phase space := Mn x F, where

by the definition C Mn x This means thereby that
r*(Or(G x M -~ M)), where by Or (G x M -~ M) we denoted a

one-parameter orbit of the group action (95 ) on the symplectic manifold
M. Since the symplectic structure is invariant with respect to this

group action, we claim due to the general theory [ 16,19,20] and [ 17],
that this orbit of M is necessarily a symplectic space with a canonical
Lie-Poisson structure. In our case we obtain the following symplectic
Vol. 70, n° 5-1999.
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structure upon this orbit

where due to the construction above (O, ~t) E As a consequence
the induced symplectic structure c~~.2~ = 0 c~F ~ is a subject to further
considerations.

Let us consider now the Hamiltonian functional (94) properly extended
as the one on the augmented phase space 

It is obvious now that both

( 1 ) the Hamiltonian functional (97) is invariant, and
(2) the symplectic structure c~~2~ is invariant with respect to the

extended group action (95) upon 
This means that

for all E G, where by definition

M 3 (A, p, 0,7T) -~ (A + V~, p, 0 - ~, 7T) e M. ( 100)

Thus, the same as it was in Section 2, we can find the corresponding to
(99) momentum map Y : ~ G* as follows: for any 03C8 ~G
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whence at each point (A, p, 0,7r; f ) E 7~(9r(M~)) ~ 

where we denote some regular Lie sub algebra of the Lie
group G.

As the first inference of the above consideration we can conclude

that the Josephson-Vlasov dynamical system (88)-(91 ) in the properly
extended form on the phase space 

with respect to the extended Hamiltonian function

admits the invariant Marsden-Weinstein type reduction [ 17] upon the

following reduced phase space := = Co) / G c 
This means that the dynamical system ( 103)-( 107) upon the invariant

submanifold C defined by the constraint

takes the form
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for some arbitrary fixed parameter function 8 E ~. It is easy to prove also
that ct = 0 for all t E R with respect to the evolution Eqs. ( 103)-( 107).

Returning back to the Hamiltonian (92), the resulting J-V equations
upon the phase space M(f)0 ~ (A, p, f(x, v) ) due to the transformation
(93) read as follows:

Introducing new physical variables E := -p and B := rot A, the J-V
system ( 112) will take the form

on some physical space Mo 3 (E, B, /).
The J-V evolution system ( 115)-( 119) admits the Lie-Poisson struc-

ture [ 18 ] given by {’, naturally induced from the symplectic struc-
ture c~~2~ built above, i.e., for any a, ~8 e 
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As a result, the J-V dynamical system ( 115)-( 119) reads compactly as
follows

The Hamiltonian structure ( 120) for the J-V dynamical system ( 115)-
( 119) seems to be of great interest for superconductive theories because
it enables the application of the powerful techniques of perturbation
theory for Hamiltonian systems. The relationship between some classical,
semiclassical, even quantum aspects of Josephson media and J-V theory
with its various truncations requires further development. In this frame
it seems also of interest some modification [9] of J-V type evolution

equations as

with compatibility constraints on the ambient charge density div p -
~R2 f(x, v) d v = 7t , that is ct = 0 for c = 7T + div p - ~R2 f (x, v) d v upon

Treating the model ( 122)-( 124) in detail it seems also to shine a
new light at some conceptual problems concerning the stability of vortex

type solutions upon a special type background [9].
The latter leads to the verification of collective effects theory via

artificially built and produced discrete models which mimic Josephson
media.
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