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ABSTRACT. - We introduce spatial disorder in a large system of
interacting particles that evolve according to a non-reversible dynamical
law. We show that if the regions where the components strongly interact
are scarce, several general properties of the discrete and continuous time
dynamics remain unaffected by the disorder.
For the discrete time dynamics we prove that the unique invariant

measure is Gibbsian, its two-point spatial correlation function decays
exponentially fast for increasing distances and, for a. restricted class of
models (i.e., directed probabilistic cellular automata), we prove almost
sure and disorder-averaged upper bounds for the rate of relaxation

towards equilibrium. Moreover we show, by an example, that under our
conditions these bounds are (almost) optimal.
For the continuous time dynamics, after showing the existence of

the infinite volume limit, we derive approximations by a discrete time
updating system, valid uniformly in time. @ Elsevier, Paris
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RESUME. - Nous introduisons un desordre spatial dans un systeme
etendu de particules en interaction, evoluant suivant une loi dynamique
non reversible. Dans Ie cas ou les regions de fortes interactions sont rares,
nous montrons que plusieurs proprietes generales ne sont pas affectees
par Ie desordre.
Pour la dynamique discrete, nous montrons que 1’ unique mesure

invariante est une mesure de Gibbs, dont les functions de correlation
decroissent exponentiellement vite avec la distance. Pour une classe
reduite de modeles (les automates cellulaires stochastiques orientes)
nous deduisons des bomes superieures valides, presque surement et en
moyenne sur Ie desordre, pour la vitesse de convergence vers l’equilibre.
De plus, nous montrons au moyen d’un exemple que sous les conditions
que nous avons imposees, ces bornes sont presque optimales.
Quant a la dynamique continue, apres avoir montre 1’ existence de

la limite hydrodynamique, nous deduisons des approximations par des
systemes dynamiques a temps discret, uniformement dans Ie temps.
@ Elsevier, Paris

1. INTRODUCTION

One of the interesting aspects of travelling is to find people interacting
differently in other places. Looking back in time one realizes that these
spatial variations are often much more pronounced than the changes
that have occurred as time passed. The same can be said of ecosystems
in which various species are interacting. The strength and/or nature of
these interactions sometimes very much depends on the spatial location
in the system but remains there unaltered over long times. Similarly
in physics, the study of disordered systems (amorphous materials,
doped semiconductors, spin glasses) concentrates on the effect of spatial
non-homogeneity. It is therefore also natural to ask what remains of
various general and specific studies in the theory of interacting particle
systems (IPS ) when the parameters governing the local interaction
between the various components is varying spatially. One standard way
of incorporating this is to choose random jump intensities (transition
probabilities) whose realization remains fixed in time.

In the present paper we have investigated the effect of this modification
on the standard theory of IPS close to independence. More precisely, we
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447RANDOMLY INTERACTING PARTICLE SYSTEMS

consider the IPS in a regime where the particles on most places hardly .

feel each other, but on the other hand, the randomness implies that there
are finite, but arbitrary large regions of all shapes, where the particles
are strongly interacting (low noise, almost deterministic updating, low
temperature, ...). Looking at the system in space-time these regions
become infinite cylinders in which the relaxation may be much slower
than for the uniform system in the uniqueness regime (high noise, ...).
We will restrict ourselves to discrete time (probabilistic cellular

automata = PCA) and continuous time spin flip processes. However we
wish to confront the dynamical problem directly and do not therefore
consider the stochastic Ising model for which, via arguments based on
reversibility, the theory can benefit from strong results clarifying the
equilibrium statistical mechanics of disordered Gibbs systems in the
Griffiths’ regime. Relaxation behavior of the disordered stochastic Ising
model is the subject of a series of other papers [4,5,9,10,17]. Hence we
are obliged to look here for quite general dynamical arguments to answer
quite general questions related to the uniqueness regime of randomly
interacting particle systems (RIPS).
The questions we address have to do with the almost sure existence

of a unique invariant measure for the RIPS, the characterization of that
measure and the convergence to it, starting from arbitrary initial data. For
this we concentrate mostly on PCA but we also discuss the existence and
the construction of the continuous time analogues. Finally, we wonder
how well a RIPS can be approached by a random PCA.
Our methods are based (naturally) on a combination of coupling

techniques and domination arguments which lead to the analysis of
percolation processes with random parameters.
Our results give criteria under which the RIPS share most of the

properties of the corresponding IPS in the uniqueness regime. The
most important difference concerns the bounds on the relaxation speed.
Generally speaking, we both improve and extend the results that appeared
in [8]. -

Our main results are stated in Section 3. Proofs can be found in

Section 4. We start however in the following Section 2 by giving
examples and by discussing the general set-up. 

’

2. EXAMPLES OF RIPS

We consider the evolution of spin configurations or = (x ) = =b 1, x E
on the regular d-dimensional lattice The set of all possible

Vol. 70, n° 5-1999.



448 G. GIELIS ET AL.

configurations is denoted by ~2. A Probabilistic Cellular Automaton
(PCA) is a parallel updating dynamics = 0, 1, ... , starting from
some initial data c~o = 0160 E S2. It is a Markov process defined by the
transition probabilities p~ (cr (x) ( ~ ), ~ E S2. For any finite 11 C ~d,

for ~ , 0161 E We get a random PCA, when the transition probabilities are
themselves random variables. By Q we denote the distribution function
of these random variables and E is the corresponding expectation value.

For the simplest illustration of the problem at hand we turn to one of
the oldest examples that have appeared in the study of IPS. It is the so
called light bulb PCA or also called

Stavskaya’s example. On the linear chain Z we have lamps c~ (x ) ,
x E Z, which can be ’off’ (~ (x) = 1) or ’on’ (or(~-) = -1). The transition
probabilities are given by

Here, ~8 &#x3E; 0 is a fixed parameter and is a family of

independent and identically distributed non-negative random variables
whose distribution Q can be chosen freely. If we choose yx = y fixed
(deterministic case) we recover the original Stavskaya PCA for which
there is a phase transition as 03B203B3 gets large.
The question we ask here is what happens for fJ small in case the 

are not uniformly bounded (e.g., exponentially distributed).
A similar modification can be made to

Toom’s PCA. We now have a two-dimensional PCA and the config-
uration space is SZ = {-1, ~--1 }~2. The only further change with respect
to (2) above is that now

el and e2 are the unit vectors in Z2. The non-disordered (or regular)
Toom model ( yx = Y ) shows a phase transition. Again, we can ask when

Annales de l’Institut Henri Poincare - Physique theorique



449RANDOMLY INTERACTING PARTICLE SYSTEMS

there is an almost sure (with respect to the distribution of the { yx } ) unique
invariant measure, what is the speed of convergence to that measure and
how to characterize it?

The above two examples are well-known PCA, sharing an impor-
tant feature which we will use in our first Theorem 3.1 below; they
are spatially asymmetric. More generally, let be the set of sites

y E Zd such that the single site transition probability ==

y E only depends on the ~ (y) . Note that we restrict
ourselves to nearest neighbor updating. Then, we call the PCA directed
if Ax = {x+03B1ei, a = 0, 1, i = 1, ... , d } , for ei the unit vectors of Zd in
the positive i-direction.
The continuous time spin flip dynamics is defined in terms of transition

rates c (x , ~ ) such that for the spin at time t , and 0161 E ~2,

We refer to Liggett [ 11 ] for details. Analogous to the random PCA the
continuous time RIPS has transition rates c (x , ~ ) determined by random
variables with a distribution function that we will denote by Q. Also the
definitions of E, and the concept of di rected are adopted from the
PCA.

The Majority Vote Process. This random version of the Majority
Vote IPS takes into account that some voters are more inclined to take

over the opinion of their neighbors than others are. It is defined by

The sum runs over all nearest neighbors x, i.e., z and x are connected
via a bond of the regular lattice Also here fJ &#x3E; 0 is a positive number

x E is a set of independent and identically distributed non-

negative random variables. These are finite with Q-probability one, but

they are not uniformly bounded.
This is all also true for . 

-

The disordered contact process. This model describes in a concep-

tually simple way the spread of an infection (or of a particular feature),
taking into account the dependence of the spreading rate on the local en-

Vol. 70, n° 5-1999.
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vironment:

Conditions that imply the survival (or extinction) of the population are
already intensively studied, e.g., in [7,1,13] and the references you can
find there.

Stochastic Ising model. A disordered version of the stochastic Ising
model consists in taking a random interaction potential determining the
spin flip rates. For example,

corresponds to the Metropolis algorithm for simulating the Ising model.
Here the are independent identically distributed random variables
associated to the bonds (the nearest neighbor pairs) of The sum runs
over the nearest neighbors of x .

Stochastic Ising models were considered in [4,5,9,10,17] and we refer
to them for the detailed results on the relaxation behavior.
From these examples it should be clear what we mean by adding

disorder to IPS. In what follows we will not always be explicit about
the precise way in which the interaction is random but we will continue
to write the transition probabilites of PCA as px ( ~ ~ ~ ) without even

indicating explicitly that these contain random parameters.
The following random variables kx E [0, 1 ] play an important role in

the statement of our results;

’ the configuration such _ ~ (z ) when z =1= x and
~x,a (x) - a, a = ~ 1.

Annales de l’Institut Henri Poincare - Physique theorique .
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is a normalizing constant.
Now we can formulate our main assumptions for the discrete time

dynamics
(i) locality; contains only nearest neighbors of x,
(ii) the is a set of jointly independent and stationary random

variables,
(iii) kx  1, but supx kx = 1 is not excluded.
In the same way, for continuous time processes we will simply

write the spin flip rates as c (x , ~ ) even though they are determined by
realizations of an underlying random field. Again we introduce some
positive random variables [0, (0) that are derived from the

transition rates.

We suppose that

(iv) the c(x, 0161) are local; contains only nearest neighbors 
(v) { ~x } and { ~,x } are both sets of jointly independent and stationary

random variables, moreover, ~x and Ày are independent when

(vi) Àx  oo and 03B4x &#x3E; 0, but supx Àx == 00 and infx 03B4x == 0 is not
excluded.

Note that for the stochastic Ising model condition (v) is’ not verified,
because the spin flip rates are not independent for nearest neighbors.
But, because they are independent for next nearest neighbors, if wished,
a slight modification sufffices to include also this example in the results.

3. DEFINITIONS AND MAIN RESULTS

We endow the configuration space il with the product discrete

topology. By we denote the set of continuous functions on SZ .

A function f is called local if it depends only on a finite number of spin
variables. The location of these spins is then denoted by supp f . =

sup f(~). The oscillation at site x is given by 0394x = sup |f(~x) 
- f(~)|,

with ~x E 03A9 such that ~x(z) == ~(z) if and ~x(x) = -~(x).
!!!/!!! = is the total oscillation. The distance between two

Vol. 70, n° 5-1999.



452 G. GIELIS ET AL.

sites x = (xi ), y = (yi) E Zd is

x and y are nearest neighbors y) if (jc,y) = 1. The distance
dist(A, B) between two subsets A, B C Zd is defined as

and for two functions f, g, dist( f, g) = dist(supp f, supp g) .
The boundary ~ of a volume 11 C Zd is the set

The transfer operator P of a PCA is defined by

with for a local function f

A measure on ~2 is invariant with respect to this dynamics if

In [8] conditions are given on the kx implying that for Q-almost every
realization of the disorder, the PCA has a unique invariant measure {t.
Moreover, for some m &#x3E; 0, v &#x3E; 1 and for every local function f , there
exists Q-a. s. a finite constant No = f ) such that for N &#x3E; No

For directed PCA, we can improve this result (Theorem 1 ) and in
addition, we can bound from above the disorder averaged relaxation
(Theorem 2).

Introducing a constant ~6 ~ 0, we find it convenient to make the

following change of variables:

Annales de l’Institut Henri Poincare - Physique ’ theorique
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where are now jointly independent and form a stationary field of
possibly unbounded non-negative random variables.

THEOREM 1. - Consider a directed PCA. Let 0  ()  1 and suppose
that

and

with v ~ 1 and a &#x3E; 0.

For every v &#x3E; 1/03BD or for v = 1/03BD and large enough, there is a
constant 0  À  1 .so that for every local function f there exists Q-a.s.
afinite constant N« = N«(,f, 8, v, fJ, {y~ }), such that for N &#x3E; No

THEOREM 2.- Consider a directed PCA.
Suppose

and

for some v ~ l, a &#x3E; 0.

When v &#x3E; 1 or when v = 1 and a/,B is large enough, there exists
a À &#x3E; 0 such that for all local functions f there is a finite constant
N~ = No(f, fJ, a, v, À) such that when N &#x3E; N~,

1. (23) is faster than any stretched exponential decay

2. The hypotheses of Theorems 1 and 2 do not allow for a much better
upperbound. Indeed, consider Stavskaya’s PCA starting with as initial
conditions 0-0 the all -1-configuration. Note that == -1 impies that
~N-1 (-x) = -1 + 1 ) = 20141. Hence,

Vol. 70, n° 5-1999.
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This is larger then ( 1 - Hence, when the E are not

uniformly bounded, an exponentially fast relaxation of the form 
with fixed ~, &#x3E; 0, is not possible.

In the same way, we can bound the disorder-averaged relaxation from
below. Suppose that we consider a distribution Q such that

for any 0  £  1, a &#x3E; when N is large enough.
Note that this argument does not exclude a faster decay for some

other model in the class of directed PCA. It only shows that under the
conditions stated no better bounds than (23) and (26) are possible in
general.

3. The estimates (23) and (26) are similar to the bounds that are
obtained in [4] and [5] for the stochastic Ising model. In the case that
the interactions Jxy, x rv y, are uniformly bounded the dynamics decays,
for intermediate temperatures, Q-a. s. as (23) with v = 1 - 1/J, or if we
average over the disorder as (26) with v = 1).

4. We expect that the bounds for the relaxation of directed continuous
time dynamics in [8] can be improved in the same way.

Once we know that there is a unique invariant measure (and we know
how fast it is reached by the dynamics) it is natural to ask for a detailed
characterization of this state. This will be the subject of Theorem 3. The
results are also valid for non-directed PCA.

To state the theorem we need the notion of a Gibbs measure. Denote

by S2A the restriction of the configuration ~ to the finite set A E SZA
contains the configurations == {~ (x) _ ~ 1, x E A } . An interaction ~
on ~2 is a collection of real functions indexed by finite subsets

Annales de l’Institut Henri Poincaré - Physique theorique
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with

A measure ~ on ~2 is called a Gibbs measure with respect to the

interaction ~ , if its conditional distributions satisfy (~-almost surely)

with ~~ the normalizing £ partition sum for every finite !1 C Zd.

THEOREM 3. - Take f, g local functions on ~2 and a constant K &#x3E;

8d2. If

then we can find for every m &#x3E; 0 constants 0  ci, C2  1 such that when

there exists afinite constant C = C(f, g, {qx}) such that

Moreover, if

for all x E Zd and every configuration 03B6~ S2, then the unique invariant
is Gibbsian for Q-almost every realization of the disorder

Remarks. - 
.

1. In [8], under the same conditions ((34) and (36)), but then for the
variables {kx, x E the uniqueness of the equilibrium state is proven.
However, since ~ ~ qx , the conditions of Theorem 3 are more restrictive.

2. Note that Stavskaya’s PCA does not satisfy (36)
3. In [ 12] and [ 15] similar results are proven for non-disordered dis-

crete and continuous time dynamics. There the decay of the spatial corre-
lation function (35) is immediate from the exponential decay of the time
correlations.

Vol. 70, n° 5-1999.
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The remaining two theorems are dealing with continuous time RIPS.
First of all we consider conditions on the spin flip rates implying
that the infinite volume dynamics Pt constructed with these random rates
is well defined.

Define the positive numbers E1, E2 and E3 as

with K &#x3E; 8d 2 .
Let {~}r=i,2,... be a sequence of d-dimensional boxes with diameter

2r, centered at the origin. Consider the infinite volume semigroup Pr
with generator

with rates cr (x , ~ ) such that cr (x , ~ ) == c (x , ~ ) if x E and zero
otherwise. ’

THEOREM 4. - Suppose that

then there exists a a constant C such that when

there , exist for any m &#x3E; 0 and every local function .f, Q-a.s. a , finite
constant B # = B(f, {~y}, {8x}) so that

for &#x3E; l &#x3E; lo, ~with supp f c 

Annales de Henri Poincare - Physique theorique
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Remark. - This bound implies that the infinite volume dynamics with
semigroup limr~~ Pr == Pt exists and is i.e., E for

every time ~ 0 for every! E 

In the final theorem we show that in the regime that we consider the
continuous time RIPS can be very well approximated by a discrete time
parallel updating random PCA. The difference between the two dynamics
can be bounded uniformly in time, which means that the bound also
applies to the difference between the invariant measures. An application
of such results (for non-disordered systems) can be found in the context
of constructive criteria for ergodicity, see, e.g., [6].
The random PCA we have in mind, can be constructed as follows. First

we define a new RIPS with spin flip rates

depending on some fixed ~ .
Denote by Pt the corresponding semigroup with kernel 

corresponding to the probability to find configuration 0- at time t when
the process was started in configuration ~ :

is a product measure " as there are " single spin transition prob-
z e o that formally

. 

We consider now the PCA with transition probabilities

and with corresponding transition operator Ps defined by

Vol. 70, n° 5-1999.
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THEOREM 5. - Suppose that max{E1, E2, ~3}  oo, then there exists

a constant C such that when

then there exists for every local function f with Q-probability one a finite
constant C = C( f, {~y}, such that

for 03B4 small enough.

r is the largest integer smaller than r.

4. PROOF OF THE MAIN RESULTS

4.1. The Toolbox

We start by summarizing some of the standard techniques dealing with
the uniqueness regime of IPS and by discussing their applications in the
case of RIPS.

4.1.1. Various percolation processes
Two kinds of percolation processes are essential in our study of the

uniqueness regime of the discrete and continuous time spin flip dynamics:
an independent site percolation on the so-called space-time graph of the
PCA and a ’continuous’ percolation process on Zd x ?.
The space-time graph ,C of a PCA has vertices (x, N) E Zd x Z and

edges between (x, N) and (y, N - 1) with y E and between (x, N)
and (z, N) if there is a v E ~d such that both x, z E Consider a set

of densities {O  px  1, x E ~d ~ . We independently put every vertex
(x, N) E Zd ’open’ with probability px and ’closed’ with probability
1 - Note that the density px at a point (x, N) is independent of the
time coordinate N. We say that there is an open path from (x, N) to
(y, M) on ,C if there is a sequence of open vertices

that, consecutively, are ’ connected o via an edge of ,C. The probability that
this happens will be denoted o by G((x, N), (y, M)). GN-M(x, y) is the

Annales de l’Institut Henri Poincaré - Physique ’ theorique
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probability that the points (x, N) and (y, M) are connected by a time
oriented path, this means that n i + 1 == n i - 1.
When the densities x E are independent and identically dis-

tributed random variables with distribution Q, Klein [7] and Campanino
and Klein [3] proved (a slight modification of) the following result:

PROPOSITION 1. - Let K &#x3E; 8d2. If

then there exists a , d, r) &#x3E; 1 such thatforevery 1  v  v(K, d, h)
and m &#x3E; 0, we can find ’ constants 0  Ci, C2  1 such that when

there exists, with Q-probability one, a finite ’ constant L = L (x, { px }) such
that

y~ &#x3E; L M) &#x3E; e Ll/v .

Note that if we want to, use Proposition 1 with the densities qx as

defined in (9), we should extend this proposition to the case where
the densities at nearest neighbor sites are correlated. The necessary
modifications to the proofs are mentioned in [8]. In the rest of the paper
we will always refer to Proposition 1, even when we deal with non-

independent densities.
The continuous percolation process on Zd x R is constructed as

follows. Consider two sets of positive numbers

On each line x M, x E Zd, we put cuts according to a Poisson process
with intensity ~x , and place arrows from to x with intensity 
A path is a connected set of uncut segments of vertical lines and arrows.

y) is the probability that we can walk from (x, t) to (y, s) via a
time oriented path (with non-increasing time coordinates) following the

. 
direction of the arrows. Suppose that the 03B4~ and the are both sets of

independent identically distributed random variables with distribution Q,

Vol. 70, n° 5-1999.
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that in addition are mutually independent, then Klein [7] has proven the
following result.

PROPOSITION 2. - Let K &#x3E; If

then there exists a , , &#x3E; 1 such that for every 1  v 

v(K, d, 1-’’) and m &#x3E; 0, we can find ’ constants C1 such that when

there exists, with Q-probability one, a finite ’ constant

such that

yl &#x3E; L or |t - S| &#x3E; eL1/v.

Note that if we want to use Proposition 2 with intensities ~X and ~,xy
as defined in ( 11 ) and (37), we should extend the result to the case where
the intensities are correlated when they have one lattice site common in
their indices. The necessary, but small modifications to the proof of Klein
are mentioned in [8]. In the rest of the paper we will always refer to
Proposition 2, even when we deal with non-independent intensities.

4.1.2. Various couplings
The major key to the proofs of our results is the connection between the

coupling of two spin systems and the percolation processes we defined
above. Let Pl (c~ ) , be two probability measures on A C ~d .
A coupling of the spin systems (Pi, and ( P2 , is given by a
probability measure on the product space ~~ x with

marginals Pl and P2. In this paragraph we will define three different
couplings that, abusing the notation, we will all denote by Prob. To which
one we refer will be clear from the context.

(i) Let 0160, 0161’ E S2 be two configurations coinciding outside some A C
~~, i.e., ~(z) _ ~’(.z), when z E A~. The basic coupling between two

l’Institut Henri Poincaré - Physique theorique
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copies c~n and cr~ of the same PCA with as initial conditions ~ and 0161’
gives rise to a new PCA with the properties that

with, var( -,’) the variational distance and

Here is the probability to find a time oriented open path
from (x, N) upto (y, 0) in the independent site percolation process on
the space-time graph ,C with densities kx as defined in (8).

(ii) When we start a PCA with as initial configuration 0-0 == 0160
and remember the configuration c~n on every time step ~ we get a

configuration c~ == {Cln~n=0,1,.., on the space-time graph ,C. If we choose
the initial configuration according to any invariant measure /~, we obtain a
measure  on the space-time configurations. Take V C and W, W c

such that W U W = Let c~, c~’ be two configurations on the
space-time graph ,C, such that n) = c~’(z, n) when (z, n) E W. Van
den Berg and Maes [2] constructed a coupling between the conditional
measures on V) and on V) such that for every (x , N) E V ~,

G((x, N), (y, M)) is the probability to find an open path from (x, N)
to (y, M) in the independent site percolation process on the space-time
graph ,C with densities qx as defined in (9).

(iii) Finally we consider the basic coupling between two copies of
a continuous time RIPS with initial conditions 0160, 0161’, such that
0161(z) == ~’(z), when z e A~ for some A C Zd. In this way we obtain a
RIPS with the property that i

z) is the probability to find an open path from (x, t ) to (z , 0) in the
continuous percolation process on x R with intensities Sx and as

defined in ( 11 ) and (37).

Vot. 70, n° 5-1999.
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4.2. Proofs

In the proof of Theorem 1 we will use the following j proposition.

PROPOSITION 3. - For every local function ,f

with ahy invariant measure for the dynamics.

Proof - In the basic coupling § we have ’ that for all initial conditions

Combining this with (57) and using that there is at least one invariant
measure for the dynamics yields Proposition 3. D

Proof of Theorem 1. - Define the box Nx , x E Zd, as

A time oriented path 03C9 on the space-time graph ,C is uniquely determined
by its projection c~’ on Zd and the number of steps ~==1,2,... the path
spends on each site xi E cv’. Note that 03C9’ is spatially directed. Let 03C9 be
any path from (x, N) to (y, M), with d(x, y) == m, then y E and

the number of sites in 6/ is = m + 1. _

Hence,

with kmax = E Nx} and 0  9  1.

We will use the Borel-Cantelli lemma to prove that for some 8 &#x3E; 0

there exists Q-a.s. a finite time A~i such that for all N &#x3E; A~i and Vz E 11N

whenever v &#x3E; 1 / v, or v = 1/v and 03B1/03B2 is large enough.
Annales de l’Institut Henri Poincare - Physique theorique
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Consider indeed,

for all 0  ()  1. This is summable when

e.g., when vv &#x3E; 1 or when vv = 1 and is large enough.
Using this together with Proposition 3, we see that there exists Q-a.s.

a finite Nz, such that for N &#x3E; N2

Finally, we observe that we can use condition (21 ) and the Chebychev
inequality to show that

for some a, a’. Hence, we can apply the Borel-Cantelli lemma to
conclude that the sum in (67) is Q-a. s. finite.
Theorem 1 follows for 0  8  À  1, when No is large enough. D

Proof of Theorem 2. - We first calculate an upperbound for E(~).
Therefore we define k* = k* (N) = 1 - as follows

for some 8 &#x3E; 0.

Then,
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for 8’  and N large enough. Later on in the proof we will
use the fact that we can take 8 &#x3E; 1, and hence, when ~6 &#x3E; 0 is small

enough, 8’ &#x3E; 1.

To prove Theorem 2 we rewrite Proposition 3 as follows

with xo a fixed site in supp f .
We now follow the method of the proof of Theorem 1 and consider the

projection c~’ of the space-time path c~.
In the first case where we know that in each

possible space-time path c~ from (xo, N) to (z, 0) there is at least one site
xi E c~’ where the path stays at least during li &#x3E; timesteps.
Hence,

for 8"  8’ and N large enough. Note that condition (24) guarantees that
the sum over the paths is finite and that in the case v = 1 the sum over l
converges when 8’ &#x3E; 1.

Finally, we again use condition (24) to find a bound for the second term
in the RHS of (71 )
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for some 8"’ &#x3E; 0 when N is large enough. The combination of (72) and
(73) proves Theorem 2. 0

Proof of Theorem 3. - Consider the space-time measure fc (as intro-
duced in paragraph 4.1.2(ii)). The projection of this measure to any time
layer is again the invariant measure ~,.

Denote by VN = V x {N} a copy of the set V C on the time N-

layer of the space-time graph G and by fN a copy of the function f on
this time layer.

Using the space-time coupling (see paragraph 4.1.2(ii)) we can
estimate the truncated correlation function as follows:

for any l~. Applying Proposition 1 gives (35).
To prove that is a Gibbs measure it suffices to show that for every

x E Zd there is a version of the conditional probability

which is strictly positive and continuous in ~ . (See, e.g., [ 16].)
The positivity is guaranteed by (36). To prove the continuity we define

a sequence of d -dimensional sets llr C = 1, 2, ... , containing the
site x, such that C and filling up whole ~d.. We also consider
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two associated sets of configurations {~}r==i,2,... and {~}r=i,2,... such that

Then for any time N, for all finite V ~ llr,

Using again the space-time coupling we see that (76) is bounded by

uniformly in V. Proposition 1 implies that this tends to zero when llr
approaches D

Proof Theorem 4. - Let be the connectivity function

that corresponds with the infinite volume dynamics Pr (cf. paragraph
4.1.2(iii)). To prove Theorem 4, we show that the sequence Pr f (~),
r = 1, 2, ... , is a Cauchy sequence that converges uniformly in the
B anach space of continuous functions !!. .

Take lo such that supp f C l0 and let k &#x3E; l &#x3E; lo .

In the last step, we introduced the basic coupling between two copies of
the semigroup and 0-; with as initial conditions ~ Now,
note that G~ (x, y) ~ Gt(x, y) when y. Then, (59) and Proposition 2
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tell us, that for any m &#x3E; 0 there exists Q-a.s. a finite constant B = B(f)
such that for all times t  0 (78) is bounded by

So, when the sum over r is Q-a. s. finite, the sequence P/, r = 0, 1, ... , is
a Cauchy sequence and the infinite volume dynamics P~ is Feller Q-a. s.
Therefore we are left with estimating

When K &#x3E; d + 1, we can use the Borel-Cantelli lemma and condition

(41 ) to conclude. D

To prove our last result, we will use the following lemma. Let,

LEMMA l. - The basic coupling between the RIPS Pt and Pt (44)
obeys

The proof of Lemma 1 is postponed to the end of the paper.

Proof of Theorem 5. - The proof is an extension of a result in [ 14] for
non random IPS. Take t = n ~ + ~ 0 C s  8 ,
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The first term of the right hand side is bounded by

Because,

the second term of (83) is bounded by

Prob is the basic coupling between the probability measures induced by
the original process Pt and the auxiliary dynamics Pt (as defined in (44))
respectively. Using (59) to bound we can show that (86) is
smaller than

Under the conditions of Theorem 5, there exists, for some v &#x3E; 1,
m &#x3E; 0, Q-a.s. a finite constant Bx = Bx(x, {~,y}, {~X }) such that (see
Proposition 2)

Moreover,
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Applying Lemma 1, gives, together with (87)-(89) the following upper
bound for (87)

with C = C( f, d, m, {~}, {~x})  oo Q-a.s.
Theorem 5 is proven if we can show that for every y E ~d the sum

in (90) is finite. Therefore we apply the Borel-Cantelli lemma to the
probabilities

which are summable over L.

Indeed, introduce h (,z ) as

then, (91 ) is not larger than

by sub additivity.
Repeating this argument for all the sums and using that hxy  cx, we

easily see that all the terms that appear, are, for large L, dominated by

for some constants Ci, C2. Condition (41 ) implies that the sum over L
converges. D

Proof of Lemma 1. - Following [ 14] we construct for both IPS a
random PCA with transition probabilities parametrized by 8 &#x3E; 0:
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and

The Trotter-Kurtz Theorem implies that

In the same way the basic coupling between the two RIPS Pt and Pt t
is equal to the limit towards infinite small timesteps   0 of the basic
couplings between the associated random PCA. E~ is the corresponding
expectation value in the coupled process with as initial configurations ~
and ~ .
. 

Define, for the configurations 0- and ~’, the indicator function (;c) ~
c~’ (x ) ~ that gives one when o-(~) ~ ~’ (x ) and zero otherwise.

By the triangle inequality, this is smaller than

In the limit 03B4 ~ 0 this yields

The last term is bounded by
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Consider for any x E Zd

Hence,

When we substitute this in ( 100) and integrate both sides between 0
and 8, we get

Expanding the integral term in a Taylor series for small 8 gives

for some 0  ()  1.

So, we can use ( 100) for the second time to conclude. D
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