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ABSTRACT. - The constraint equations for Yang-Mills and Dirac fields
are investigated for the extended phase space consisting of the Cauchy
data A E H2(R3), E E H1(R3), and 03A8 E H2(R3). The solution set is a
smooth submanifold of a dense subspace of the extended phase space. It is
a principal fibre bundle over the reduced phase space with structure group
consisting of the gauge symmetries approaching the identity at infinity.
@ Elsevier, Paris

Key words : Banach manifolds, constraints, non-linear partial differential equations,
reduction, Yang-Mills fields.

RESUME. - Les equations de contraintes pour les champs de Yang-Mills et
Dirac sont examinees dans l’espace de phases prolonge compose de donnees
de Cauchy A ~ H2(R3), E ~ H1(R3), et 03A8 E H2(R3). L’ensemble de
solutions est une sous-variete d’ un sous-espace dense de l’espace de phases
prolonge. C’ est un espace fibre ayant pour base l’espace de phase reduit
et pour groupe structural Ie groupe de symetries de j auge convergeant vers
l’identité a l’infini. @ Elsevier, Paris

1. INTRODUCTION

This paper is second in a series devoted to a systematic study of a
classical phase space for minimally interacting Yang-Mills and Dirac fields
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278 J. SNIATYCKI

in the Minkowski space-time. The structure of such a phase space plays
an important role in the quantization of the theory, independently of the
quantization techniques employed. An analysis of a possible phase space
for the theory involves:

1. A determination of a space of Cauchy data admitting solutions to the
evolution component of the field equations,

2. An analysis of the constraint equation in the chosen space of the
Cauchy data,

3. A determination of the reduced phase space and an analysis of its
structure,

4. An analysis of the physical consequences of the given choice of the
phase space.

There are several papers devoted to the first point, that is a determination
of various spaces of Cauchy data admitting unique solutions of the field
equations, Ref. [ 1-7] . A complete analysis of the constraint equation was
given by Moncrief, [8]. However, there are no existence and uniqueness
theorems for the space of the Cauchy data used in [8].
We consider here the Yang-Mills-Dirac theory for the internal symmetry

group G with the Lie algebra g admitting an Ad-invariant positive
definite metric. The Yang-Mills potential A,~ describes a connection in
the principal fibre bundle R4 x G with respect to the trivialization given
by the product structure. It is a g-valued 1-form on The curvature
form of the connection given by A~ is described by the Yang-Mills field
Fv == + where [.,.] denotes the Lie bracket
in g. The 3+ 1 splitting of the space-time leads to a decomposition of
the Yang-Mills potential A~ into its time component Ao and the spatial
component A = (A1, A2, A3). Similarly, the Yang-Mills field F~v can
be decomposed into its electric components E = (~oi?~o2?~o3) and the
magnetic components B = ( F23 , F31, F12 ) . From the point of view of the
evolution equations it is convenient to consider A, E and B as g-valued
time-dependent vector fields on 1R3, and Ao as a g-valued time dependent
function on 1R3. The vector potential A describes the induced connection in
1R3 x G. The matter is described by a Dirac spinor field ~, that is a time
dependent map from 1R3 to C~ 0 V, where V is the space of a representation
of G. The field equations split into the evolution equations

Annales de Poincaré - Physique theorique



279REGULARITY OF CONSTRAINTS IN YANG-MILLS-DIRAC THEORY

and the constraint equation

where [.;.] is the Lie bracket in g combined with the Euclidean scalar

product of vector fields in 1R3, is an orthonormal basis in g, and the
Latin indices are lowered in terms of the Ad-invariant metric in g.

In the preceding paper [9] we have proved the existence and uniqueness
theorems for the evolution component of the field equations, Eq. ( 1 ), with
the Cauchy data (A, E) for the Yang-Mills field in the space

and the Cauchy data 03A8 for the Dirac field in

Here, for any vector space W, we use H~ ((~3, W ) to denote the Sobolev
space of maps from the source space 1R3 to the target space W which are

square integrable together with their derivatives up to the order &#x26;. In [9]
we omitted the target spaces in our notation for the sake of brevity. In the

present paper we have several intermediate target spaces and use the full
notation for Sobolev spaces in order to avoid a confusion.

The aim of this paper is to study the structure of the constraint set, that is
the solution set of Eq. (2). The main results obtained here are summarized
in the theorems below.

THEOREM 1. - For minimally interacting Yang-Mills and Dirac fields, the
constraint set .

is a , C(X) -submanifold of the ’ Banach space

with the norm

Similarly, in absence of Dirac fields the set of the Cauchy data (A, E)
satisfying the canstraint equation is a C°° -submanifold of

Vol.70,n° 3-1999.



280 J. SNIATYCKI

Using the Implicit Function Theorem for Banach manifolds, [ 10], and
the results of Eardley and Moncrief, [4], one can show that Theorem 1
is a consequence of

THEOREM 2. - For each A E H2(~3, g @ 1R3), the operator

maps

onto the Banach space

Outline of Proof - It follows from the results of Ref. [4], that the Laplace
operator restricted to the space ~~ E E L6~5(~3, g)~ is onto
B. Hence, taking e == grad ~), we see that the divergence operator div maps
D onto B. Now, the covariant divergence operator DivAe == div e + [A; e]
is a perturbation of the ordinary divergence div by a multiplication
operator e 1-+ ~A; e]. We show that, for A E H2(~3, g (g) 1R3), the operator
D 2014~ B : e ’2014~ [~4; e] is compact. Since div e is onto and [~4; e] is compact
it follows that DivA is semi-Fredholm, which implies that it has closed

range, [111. Next we show that the annihilator of the range of DivA vanishes
which implies that DivA is onto B. This will complete the proof.
The problem of regularity of the constraint set in the extended phase

space PYM was studied in [ 12] . However, the argument given there was
based on an invalid assumption that the range of grad from R) to
£2(1R3, 1R3) is closed. Therefore, even though the operator grad + [~4,.] is a
compact perturbation of grad, we cannot conclude that it is semi-Fredholm,
which would have implied that DivA were semi-Fredholm. This difficulty
is overcome here by the restriction of the target space for our operators by
the condition that the divergence is contained in L6~5(~3~ ~),
The extended phase space

is weakly symplectic, with the weak symplectic form cv = d8, where

The pull-back of 03C9 to C has involutive kernel The reduced

phase space P is defined as the set of equivalence classes of points in C
Annales de Henri Poincaré - Physique theorique



281REGULARITY OF CONSTRAINTS IN YANG-MILLS-DIRAC THEORY

under the equivalence relation p ~ ~ if and only if there is a piece-wise
smooth curve in C with the tangent vector contained in If ker 03C9C
is a distribution, it is clearly involutive and the equivalence classes coincide
with integral manifolds of ker 03C9C. We denote by p : C ~ P the canonical

projection associating to each p ~ C its equivalence class containing p.
In [9] we have studied the gauge symmetry group GS(P) of the extended

phase space P. It consists of time independent gauge transformations,
represented by maps $ from R3 to g , such that the action on the Cauchy
data ( A, E, ~ ) given by

is continuous in P. We have shown that ~ E GS(P) if and only if the
Beppo Levi norm

where Bl is the unit ball in 1R3 centered at the origin, is finite. With

the topology given by this norm, the gauge symmetry group of P is a
Hilbert-Lie group.

The action in P of an element ç of the Lie algebra gs(P) of GS(P)
is given by the vector field

where

is the covariant differential of ç with respect to the connection A. The
action of GS(P) in P preserves the 1-form 9. Since cv = dB, this action
is Hamiltonian with an equivariant momentum map V such that, for every
E 

The closure, with respect to the norm ~3, of the group of smooth maps
I&#x3E; which differ from the identity only in compact sets is a normal subgroup
GS(P)o of the gauge symmetry group GS(P). The constraint manifold C
coincides with the zero level of the momentum map V restricted to the

Lie algebra gs(P)o of GS(P)o,

Vol. 70, n° 3-1999.
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The action of GS(P)o in P is proper, [9].

THEOREM 3. - The action of GS(P)o in C is free and proper. The
reduced phase space P coincides with the set C/GS(P)o of the orbits of
the G,S’(P)o-action in C,

It is a quotient manifold of C endowed with a weak Riemannian metric
induced by the L2 scalar product in P, and with a , l such that

where 03B8C is the pull-back of 03B8 to C. symplectic
~~~f

The constraint manifold C is a principal fibre bundle over P with structure
group GS(P)0.

The existence of a symplectic structure in the reduced phase space is
a folk theorem based on the assumption that the reduced phase space is
a manifold. For the symplectic strata in the bag model it was proved in
[13]. The existence of a weak Riemannian structure in the space of orbits
of a subgroup of the gauge group acting on the space of connections in a
compact manifold was shown in [14].

2. RESULTS OF EARDLEY AND MONCRIEF

The following results can be found in the Appendix to Reference [4].
They will be needed in the sequel.

Let

be the Green’s function for the Laplace equation in 1R3. For every
p E H1(f~3, g) n L~’~5(~3, g), the convolution

is a solution of the equation

Annales de l’Institut Henri Poincaré - Physique theorique



283REGULARITY OF CONSTRAINTS IN YANG-MILLS-DIRAC THEORY

For 1  p  oo, and s = 3p/(3 - 2p), the following inequalities hold
for an appropriate choice of constants c:

where, for every normed vector space W , the space W ) is the weak
Lp space, see Ref. [15]. Let  denote the Euclidean measure in R3 defined

by the Euclidean metric. A map u : ~3 2014~ W is said to be in W )
if there exists a constant C  oo such that

For u E L~, (1~3, W ),

This implies that

Moreover,

and

Hence, H1(~3, g) D L~~(R~,0) is in the range of the Laplace operator
A acting on H3(~3, g). Moreover, the kernel of the Laplace operator
restricted to H3(~3, g) vanishes.
The last of the estimates from [4] needed here is

Similarly, we can prove

Vol. 70, n° 3-1999.
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3. PROOF OF THEOREM 1

For A E H2(R3, 00R3), E E H1(R3, g~R3), and 03A8 E H2(R3,C4~V),
all the bilinear terms in the constraint equation

are in H 1 ( (~ 3 , g ) . Moreover, estimates ( 10) and ( 11 ) imply that they are
also contained in L6~5(~3, g). Hence, if (~4,E,~) is in the constraint set
C, then dzv E is contained in

It follows that the constraint set C is the zero level of the smooth map

where P° is given by Eq. (3). For each (A, E, ~) E C and (a, e, ~) E P~

According to the Implicit Function Theorem C = F-1 (o) is a submanifold
of P° if, maps P° onto B for every (A, E, ~) E C and its
kernel splits, [ 10] .
Theorem 2 asserts that, for every A E H2(~3, g (g) 1R3), the covariant

divergence DivA, with respect to the connection A, given by

maps

onto B. Since

it follows that DivA maps D onto B. This implies that maps
P0 onto B.

Moreover, if ( a, e, ~ ) E P and

then div e E L6~5(~3~ g) and (~e,~) E P°. Hence, is
a closed subspace of P°. Since the L2-scalar product is continuous and

Annales de Henri Poincaré - Physique theorique
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non-degenerate in P°, it follows that the L2-orthogonal complement of
is closed in P° and its intersection with is

zero. Thus, the assumptions of the Implicit Function Theorem are satisfied
and C = F -1 ( 0 ) is a smooth submanifold of P~.

Clearly, the same results hold in absence of the Dirac fields. This

completes the proof of Theorem 1.

Since P° is a dense subspace of P, it may appear that the manifold

topology in C is finer than the topology in C induced by the embedding
C c P. This is not the case.

LEMMA 1. - The topology of C as a subset of P coincides with its
manifold topology.

Proof - The topology of C defined by the norm (4) is finer than

the topology induced by the embedding C c P. On the other hand, if

pn = (An, is a sequence in C convergent in P to p = ( A, E, ~ ) .
Since C is closed in P, as the zero level of a continuous function then,
then p E C. The constraint equation (2) yields

Taking into account the estimates ( 10) and ( 11 ) we get

Hence ~div(E - En)~L6/5(R3,g) ~ 0 as n ~ ~, which implies that the
sequence pn converges to p in the topology induced by the norm (4).
Therefore the manifold topology in C coincides with its topology induced
by the embedding C c P.

4. PROOF OF THEOREM 2

LEMMA 2. - For A E H2 (~3 ~ g @ 1R3), the map

is compact.

Vol. 70, n 3-1999.
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Proof. - It follows from ( 10) that .4,6 E ~(R~g 0 ~3) implies that
~A; e~ E L6~5(~3, g). Let be a bounded sequence in ~(R~ ~ 0 ~3)
with a bound M. Then, for every m, n E N,

Let U be a bounded domain in 1R3 with complement V, and xU and xy
the characteristic functions of U and V, respectively. Using the triangle
inequality and ( 10) applied to functions in domains U and V, we get

Repeating the argument in [ 12] we see that, for every n E N, there exists
Un such that  1/4cMn which implies that

Moreover, we may choose the sequence of domains Un such that U~ ç 

By the Rellich-Kondrachov Theorem, see [ 16], the embedding of

H2(U,z, g ~ 1R3) into is compact. This implies that, for
every n, the sequence has a subsequence {e~} convergent in
H 1 ( Un , g ® 1R3). We can choose this subsequence in such a way that, for
m  n, {e~} ç 

If n is chosen so that  1/2n, let
Nn be the integer such that, for all &#x3E; N~, 

Then,

The subsequence {[A;enNn]} of {[A;en]} is convergent in L6/5(R3,g).
This implies that the map ~(R~ 0 1R3) ---+ L6/5 (Q~3 ~ g) : e f---7 [~;e]
is compact. []

Annales de Henri Poincaré - Physique theorique
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LEMMA 3. - 1, and A E H ~ ( ~ 3 , g 0 (~ 3 ), the map

is compact.

Proof. - For k = 1, we follow the argument given in [ 12] . be a

bounded sequence in ~(tR~, g). By the Sobolev Imbedding Theorem, this
sequence is bounded in L~((~3, g), and there exists M &#x3E; 0 such that

For any bounded domain U C 1R3 with complement V = R3 - U,

Since is the limit of as U increases to 1R3, for every
k &#x3E; 0, there exists an open bounded set Uk C ~3 such that

where Y~ = 1R3 - U~ .
For a bounded domain Uk in R3, the Rellich-Kondrachov Theorem

implies that the embedding .F~ 1 ( I~3 , g ) -+ is compact, [16].
Hence the sequence consisting of the restrictions of en to U~,
has a subsequence convergent in Following the argument in the

proof of Lemma 2 we construct a subsequence of such that

converges in L~ ((~3, g).
For k &#x3E; 1, we can proceed as follows. be a bounded sequence

in We have

Vol. 70, n° 3-1999.
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In order to avoid a cumbersome notation, in the description of the norms
we have omitted the target space. Since A E H~ (~3 ), it follows that

E H1 ((~3) for 0  ~ ~ - 1. Similarly, E H1 (f~3). We can
apply the results for 1~ = 1 to each of the operators Hence,
there exists a subsequence of such that {[~4,6~]} is convergent
in H~ (1~3, g). This implies that the map ---+ H~-~ (1~3, g) given
by e ~ [A; e] is compact. []

It follows from Lemmas 2 and 3 that, for A E H2((~3, ,g 0 ~3), the
operator DivA : D -+ B : e ~ div e + [~4; e] is a compact perturbation of
the divergence operator div, where Band D are given by Eq. ( 12) and Eq.
( 13), respectively. Since the results of Eardley and Moncrief discussed in
Section 2 imply that the divergence maps D onto B, it follows that DivA is
semi-Fredholm. Therefore, the range of DivA is closed, [ 11 ] . It remains to
show that the annihilator of the range of DivA in the dual B’ of B vanishes.

Since B contains the Schwarz space S of rapidly decaying smooth
functions on 1R3, it follows that elements of the dual B’ of B are tempered
distributions. For each  E B’, and 03C6 E D,

where the last equality follows from the ad-invariance of the metric in g.
Hence  annihilates the range of DivA if and only if

in the sense of distributions.

The space Let B = L2(1~3, g) n L6~5(~3, g) be endowed with the norm
+ It is the completion of B with respect

to II f ~B.
LEMMA 4. - For A E H2((~3, g ~ 1R3), let ~c E B’ satisfy the distribution

equation grad  + [A, ] = 0. Then  extends to a continuous linear

functional on B .

~roof. - Since 0 is onto B, it follows that every f E B can be expressed
in the form f = where ~ = K ~ f E H3(R3, g). Hence,

where the last equality follows from the ad-invariance of the metric in g.
Moreover,

Annales de l’Institut Henri Poincare - Physique theorique
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Similarly, ( 10) yields

Since the norm in B is given by

it follows that

Taking into account 8 and the definition of the norm in B we set

Therefore,

which implies that  extends to a continuous linear form on B. .

LEMMA 5. - For A E H2(1~3, g @ 1R3), let ~c satisfy the distribution
equation grad  + [A, ] = 0. Then  == 0.

Proof - The Yang-Mills potential A defines parallel transports in B
and The distribution equation grad  + = 0 implies that  is
invariant under the parallel transport in B~.

Let f o be any smooth compactly supported function with values in g, and
a the diameter of the support of f o . For n &#x3E; 1, let Pnaf0 be the parallel
transport of f o by distance na in the direction of the x-axis. Define

Then

and

Similarly,

Vol. 70, n ° 3-1999.
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and

Hence, f E B.
On the other hand, since  is a continuous linear functional on B,

The invariance of  under the parallel transport implies that

Hence,

Since the series ~ n diverges, it follows that ~~c, == 0. Hence, the
distribution ~ vanishes on the space of all compactly supported functions
in 5B Since this space is dense in 5’, it follows that  = 0.

This completes the proof of Theorem 2.

5. PROOF OF THEOREM 3

LEMMA 6. - The action P 

Proof. - In [9] we claimed that the action of GS(P)o in P is free,
however our argument proved only that it is locally free. Let 03A6 E 
be in the stability group of p = (A, E, ~) E P. It follows from (5) that

that is I&#x3E; is covariantly constant with respect to the connection A. Hence,
for every x ~ 0 in 1R3, and t ~ 0,

For A E H2(1~3, 0 0 1R3) we can define a gauge transformation r such
that the transformed gauge potential

Annales de Henri Poincaré - Physique theorique
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satisfies the Cronstrom gauge condition

see [5] and [17]. Under this gauge transformation ~ 1--+ ~ = and

Eq. ( 14) implies that ~ is constant along the rays emanating from the origin.
Since at infinity 03A6 ~ identity E G, it follows that (x) = identity for
all x E 1R3. Hence, 03A6(x) = identity for all x E 1R3 which implies that 03A6 is
the identity in Therefore, the action of GS(P)a in P is free. []

Since the action of GS(P)o in P is free and proper, and the manifold
topology of C coincides with the topology induced by the embedding of
C into P, we obtain

COROLLARY 1. - The action C is free and proper.
Theorem 3 is a consequence of smoothness of the constraint set, the

properness and freeness of the action of in C and several results
which can be found in the literature. For each p ~ C, we denote by Op
the orbit of GS(P)o through p. Since the action of GS(P)o is free and

proper, the isotropy group of p is trivial.

LEMMA 7. - For each p E C,

Proof - It is a consequence of the equality of the constraint set and the
zero level of the momentum map V, Eq. (7), and the identity

established in [ 19] for momentum maps of equivariant actions of Hilbert-Lie
groups. []

LEMMA 8. - For each p E C, there exists a smooth submanifold S’P of
C through p such that

if q E Sp E gs(P)o, then

Proof. - This lemma is a special case of the Slice Theorem established
in [ 18] for actions of non-compact Lie groups. This result was extended

Vol. 70, n 3-1999.
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to Hilbert-Lie groups in [13]. In the case under consideration the result is
trivial. The extended phase space P = 7~(R~ g ® ~3) x H1(U~3, g @ 1R3) x
.H2 (~4 (~) V) can be considered as an affine space with a weak Riemannian
structure defined by the L2-scalar product in P. For each pEP, and a pair
of vectors ( a, e, ~ ) and ( a’ , e’ ~’ ) in TpP,

The action of GS(P)o in P is affine and it preserves this Riemannian
structure. Hence, we can take 5p to be an open neighbourhood of p in the
intersection with G of the affine subspace of P which is L2-orthogonal
to TpOp. []
COROLLARY 2. - It follows from Lemmas 5 and 6 that ker 03C9C is a

distribution on G and its integral manifolds coincide with the orbits of
C. The reduced phase space P is a quotient manifold 9/’C.

Since the action of in P is free, the fibres of p : C 2014~ P are

diffeomorphic to A proof that a smooth, free and proper action
of a Lie group Go on a manifold M gives rise to a Go-principal bundle
structure in M is given in [c-b]. It extends without any changes to smooth,
free and proper Banach-Lie group actions on infinite dimensional manifolds.

Hence, p : G ~ P is a GS(P)0-principal fibre bundle.
The weak Riemannian structure in P induces a weak Riemannian

structure in G which is preserved by the action of GS(P)o. Hence it gives
rise to a weak Riemannian structure in the quotient space P = G/G5’(P)o,
[ 14] . Similarly, the pull-back BC the 1-form 8 to G is preserved by the
action of GS(P)o. The tangent bundle spaces of the orbits of GS(P)o
are spanned by the vector fields ~p for ç E gs(P)a. Eqs. (6) and (7)
imply that ()c annihilates these vector fields. Hence 03B8C projects to a 1-form
9 in the reduced phase space P. Clearly, (~ = d8 pulls-backs under the
projection map p to the pull-back of 03C9 to G, and Lemma 5 implies that
(D is non-degenerate, [ 13] . Hence, W is weakly symplectic. This completes
the proof of Theorem 3.
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