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ABSTRACT. - We give a necessary and sufficient condition on the existence
of quantum structures on a curved spacetime with absolute time, and classify
thèse structures. We refer to the geometric approach to quantum mechanics
on a Galilei général relativistic background, as formulated by Jadczyk and
Modugno. Thèse results are analogous to those of geometric quantisation,
but they involve the topology of spacetime, rather than the topology of the
configuration space. @ Elsevier, Paris
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RÉSUMÉ. - Nous donnons une condition nécessaire et suffisante sur

l’existence de structures quantiques sur un espace-temps courbe avec temps
absolu et classifions ces structures. Nous nous référons au formalisme

géométrique de la mécanique quantique sur un espace-temps galiléen
développé par Jadczyk et Modugno. Ces résultats sont analogues à ceux
de la quantification géométrique, mais ils dépendent de la topologie de
l’espace-temps plutôt que de la topologie de l’espace de configuration.
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240 R. VITOLO

INTRODUCTION

The problem of finding a covariant formulation of quantum mechanics
has been challenged by many authors. One way to solve this problem
is to start from a covariant formulation of classical mechanics and to

give a covariant procédure of quantisation. There are several formulations
of classical mechanics and the quantisation procédure based on a curved
spacetime with absolute time (see, for example, [4, 5, 15, 17, 24, 25, 26]).
Thèse formulations can inspire interesting investigations of the case of
Einstein’s général relativity (see, for example, [20]).

Hère, we consider a récent formulation of Galilei classical and quantum
mechanics based on jets, connections and cosymplectic forms due to

Canarutto, Jadczyk and Modugno [2, 9, 10] (see also [27]). This approach
présents analogies with geometric quantisation [ 14, 23, 7, 22, 31 ] but

important novelties as well. In a few words, spacetime is a fibred
manifold equipped with a vertical metric, a gravitational connection and
an electromagnetic field ; thèse structures produce naturally a cosymplectic
form. Moreover, quantum mechanics is formulated on a line bundle over
spacetime equipped with a connection whose curvature is proportional to
the above form.

This formulation is manifestly covariant, due to the use of intrinsic

techniques on manifolds. Moreover, it reduces to standard quantisation in
the fiat case, hence it recovers all standard examples of quantum mechanics.
In particular, the standard examples of geometric quantisation (i.e. harmonie
oscillator and hydrogen atom) are recovered in an easier way. Another
interesting feature of the above formulation is that it can be extended to
Einstein’s général relativity [ 12, 13, 28, 29].
The existence of quantum structures of the above quantisation procédure

is an important problem. In this paper, we give a theorem of Kostant-Souriau
type (see, for instance, [14, 23, 7, 19]), which states a topological necessary
and sufficient existence condition on the spacetime and the cosymplectic
form. Also, we give a classification theorem for quantum structures. As one
could expect, the results are analogous to those of geometric quantisation,
but involve the topology of spacetime, rather than the topology of the
configuration space.

Finally, we illustrate the above formulation and results by means of some
examples. As a conséquence, we recover a result of [27] in a simpler way.
Now, we are going to assume the fundamental spaces of units of

measurement and constants.
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241QUANTUM STRUCTURES IN GALILEI GENERAL RELATIVITY

The theory of unit spaces has been developed in [9, 10] to make the
independence of classical and quantum mechanics from scales explicit.
Unit spaces are defined similarly to vector spaces, but using the abelian
semigroup IR+ instead of the field of real numbers R. In particular, positive
unit spaces are defined to be 1-dimensional (over unit spaces. It is

possible to define n-th tensorial powers and n-th roots of unit spaces.
Moreover, if P is a positive unit space and p E P, then we dénote by
1 /p the dual élément. Hence, we can set p-1 :== P*. In this way, we
can introduce rational powers of unit spaces.
We assume the following unit spaces.
-T , the oriented one-dimensional vector space of time intervals;
-L , the positive unit space of length units ;
-M , the positive unit space of mass units.
The positively oriented component of T (which is a positive unit space)

is denoted by T+. A positively oriented non-zéro élément u° E T+ (or
u° E ( T+ ) -1 ) represents a time unit of measurement, a charge is represented
by an element q E T-1 @ IL 3/2 @ M1/2, and a particle is represented by a
pair (m, q), where m is a mass and q is a charge. A tensor field with values
into mixed rational powers of T, L, is said to be scaled. We assume the

constant ~ E @ 1L2 @ M.

We end this introduction by assuming manifolds and maps to be 

1. CLASSICAL STRUCTURES

In this section we présent an overview of Galilei’s général relativity, as
formulated in [9, 10], together with some results of [ 19] .

ASSUMPTION G.I. - We assume the spacetime to be a fibred manifold
t : E 2014~ T, where dimE = 4, dim T = 1, and T is an affine space associated
with an oriented vector space T . D

We will dénote with a fibred chart on E adapted to a time
unit of measurement We will deal with the tangent and vertical
bundles TE and VE := ker Tt C TE on E. We dénote by (9o, 9,), di )
and (d2) the local bases of vector fields on E, of 1-forms on E and of
sections of the dual bundle V*E 2014~ E induced by an adapted chart. Latin
indices i, j, ... will dénote space-like coordinates, Greek indices A, ~, ...
will dénote spacetime coordinates.
We will deal also with the first jet bundle t10 : J1E ~ E, i.e. the space

of équivalence classes of sections having a first-order contact at a certain

Vol. 70, n ° 3-1999.



242 R. VITOLO

point. The charts induced on J1E by an adapted chart on E are denoted by
the local vector fields and forms of J1E induced by are

denoted by (8~) and (dô ), respectively.
We recall the natural inclusion D : J1E ---+ T * T ® TE over E, whose

coordinate expression is D = d° ~ (80 -f- ~ô c~2 ) . We have the complementary
map id - D := 8 : J1E -+ T*E (g) VE. The map 9 yields the inclusion
9* : J1E x VE -+ J1E x T*E over J1E, sending the local basis (d2 ) into

E E

82 := (di - See [18] for more détails about jets and the related
natural maps.

A motion is defined to be a section s : T -+ E.

An observer is defined to be a section

An observer o can be regarded as a scaled vector field on E whose intégral
curves are motions; hence 9 yields a local fibred splitting E 2014~ T x P, where
P is a set of intégral curves of o. An observer is said to be complete if

the above splitting is a global splitting of E. An observer o can also be
regarded as a connection on the fibred manifold-E 2014~ T. Accordingly, we
define the translation fibred isomorphism associated with o

We have the coordinate expressions o = ~c" ® (80 + ==

(?/o 2014 @ 8i. A fibred chart is said to be adapted to an

observer o if it is adapted to local splitting of E induced by o, i.e. 3o = 0.
Next, we consider additional structures on our fibred manifold given by

spécial types of metrics and connections.

ASSUMPTION G.2. - We assume the spacetime to be endowed with a
scaled vertical Riemannian metric

We have the coordinate expression g == giji 0 j, with gij E

0 IR). We dénote by g the contravariant metric induced by
~. An observer o is said to be isometric if Lo~ == O.

DEFINITION 1.1. - ~ spacetime connection to 
linear connection

Annales de l’Institut Henri Poincaré - Physique théorique



243QUANTUM STRUCTURES IN GALILEI GENERAL RELATIVITY

on TE -+ E, such that

The coordinate expression of a spacetime connection I~ is of the type

where K~ 2 ~ E C~(E). ..
We can prove [10] that any spacetime connection K yields an

affine connection on J1E. The coordinate expression of such a

correspondence is == ~Â~. Moreover, the connection yields
a connection

on the fibred manifold J1E 2014~ T. We have the coordinate expression

We can interpret a spacetime connection K through an observer o. We
have the splitting of into its symmetric and antisymmetric part,
namely = 1/2 (E[o] + q&#x3E;[o]), with coordinate expressions

So, o allows us to split the spacetime connection K into the triple
( K, ~ ~o~ , ~ ~o~ ), where J~ are the restrictions of K and E[o]
to the fibers of E -+ T. The correspondence

turns out to be a bijection between the set of spacetime connections and the
set of triples constituted by a linear connection on the fibres of E 2014~ T, a
scaled symmetric 2-form on the vertical bundle and a scaled antisymmetric
2-form on spacetime. By the way, this proves the existence of spacetime
connections.

A spacetime connection K is said to be metric if == 0, where K’

is the restriction of K to the vertical bundle VE 2014~ E. The metric g does not
détermine completely a metric spacetime connection K, as in the Einstein
case; this is due to the degeneracy of g. More precisely, K coïncides with

Vol. 70, n° 3-1999.
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the Riemannian connection induced by g on the fibres of E ~ T and any
observer o yields the equality [o] = g o (Log). In coordinates adapted to
an observer o the above two conditions read, respectively, as

Remark 1.1. - The choice of an observer yields a bijection between the
set of metric spacetime connections and the set of scaled 2-forms of the type

This fact implies the existence of metric spacetime connections. D

Now, we introduce a geometric object which plays a key rôle in the
formulation of field équations and of classical and quantum mechanics.

DEFINITION 1.2. - Let K be a spacetime connection. The 2 form

where 7B is the wedge product followed by a-metric contraction, and 
the vertical projection complementary to said to be the fundamental
2-form on J1E induced by g and K. D

In what follows, we will indicate the dependence of 03A9 on the spacetime
connection by the symbol SZ ~K~ . It has been proved that is the unique
scaled 2-form on J1E which is naturally induced by g and K [ 11 ] . We
have the coordinate expression

Now, we postulate the gravitational field as a spacetime connection, and
we postulate the electromagnetic field as a 2-form on Next, we state
the field équations. Then, we will see how to encode the two fields into
a single spacetime connection.

ASSUMPTION G.3. - We assume that E is endowed with a spacetime
connection AB the gravitational.field, and with a scaled 2-form F : E 2014~
(IL 1/2 0 M1/2) /B 2 T*E, the electromagnetic field. 0

ASSUMPTION G.4. - We assume that KQ and F fulfill the following first
field equations:

1 This formulation of the electromagnetic field , is very similar to those 
" of [1, 16]

Annales de l’Institut Henri Poincaré - Physique " théorique
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Any particle (m, q) allows us to realise the coupling between the

gravitational and electromagnetic field as

The form Q turns out to be closed, i.e. dSZ = 0. Moreover, one can see that
o is non degenerate, i.e. 

DEFINITION 1.3. - We say H to be the cosymplecticform of E associated
with g, K and dt. D

It can be seen [9, 10] that there exists a unique spacetime connection K
such that Q = SZ [K] . The coefficients of K turns out to be

We can interpret the first field équation through an observer o [9, 10]. It
is easy to prove (e.g., in adapted coordinates) that p[o] = 2o*~[~]. Then,
the first field équation is équivalent to the system

So, K is a metric spacetime connection and ~[o] is closed.

Now, we show that the closed 2-form admits a distinguished
class of potentials. We will see that thèse potentials play a key rôle in the
quantisation procédure. We note that the constant m/~ yields the non-scaled
2-form it is natural to search the potentials of this 2-form.

Let o be an observer. We define the kinetic energy and the kinetic

momentum form, respectively, as

Moreover, we dénote " by a [0] : E 2014~ T’*E a generic local potential of
m/~ ~~o~, according § to 2da[o] = m/~ ~(o~.
THEOREM 1.1. - Let o be an observer. Then the local section

Vol. 70, n° 3-1999.
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is a , local potential ofmln according to 2dT = m/~ Moreover,
any other potential T’ ’ with values in T*E is of the ’ above type,
and the form

is a ’ closed form on E, rather than on JlE.
For a proof, see [ 19] . We have the coordinate ~ expression

DEFINITION 1.4. - A (local) potential of of the above type is
said to be a Poincaré-Cartanform associated with D

Remark 1.2. - We will not discuss the second field équations in détail.
For example, in the vacuum we assume the second field équations

where is the Ricci tensor of and div is the covariant divergence
operator induced by Kq (see [2, 9, 10] for a more complète discussion). D

Remark 1.3. - The law of particle motion [2, 9, 10] for a motion s is
assumed to be

with coordinate expression

Thé connection 03B3 can be regarded (up to a time scale) as a vector field
on J1E, hence a motion fulfilling the above équation is just an intégral
curve of 1. Moreover, it can be easily seen that 1 fulfills == 0; in [2,
9, 10] it is proved that 1 is the unique connection on J1E ~ T, which is
projectable on D and whose components 1i are second order polynomials
in the variables fulfilling the above équation. In other words, the law of
particle motion is given by the foliation ker(Q[7~]). D

Remark 1.4. - It is proved [ 19] that the form induces naturally
an intrinsic Euler-Lagrange morphism £ whose Euler-Lagrange équations
are équivalent to the the law of particle motion. The morphism ? is

locally variational, and there exists a distinguished class of Lagrangians
which induce £, and whose Poincaré-Cartan forms [6] turn out to be the
Poincaré-Cartan forms associated with D

Annales de l’Institut Henri Poincaré - Physique théorique
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2. QUANTUM STRUCTURES

A covariant formulation of the quantisation of classical mechanics of
one scalar particle has been developed starting from the above classical
theory in [9, 10].

In this section, we recall the geometric structures which allow to formulate
the quantisation procédure of [9, 10], namely the quantum bundle and the
quantum connection. Then, we will présent a necessary and sufficient

condition for the existence of quantum structures on a given background,
together with a classification theorem. Those results are inspired from the
analogous results in geometric quantisation [ 14, 23, 7]. Finally, we analyse
some examples of applications to exact solutions [28].

In this section, we dénote by the cosymplectic form on E
associated with g and I~. Also, we assume a particle (m, q) .

Quantum bundle and quantum connection

DEFINITION 2.1. - A quantum bundle is defined to be a complex line
bundle Q 2014~ E on spacetime, endowed with a Hermitian metric h. D

Two complex line bundles Q, Q’ on E are said to be equivalent if there
exists an isomorphism of complex line bundles f : Q 2014~ Q’ on E. If Q,
Q’ are équivalent Hermitian complex line bundles, then Q, Q’ are also
isometric, due to the fact that the fibres have complex dimension 1.

Let us dénote by ,C(E) the set of équivalence classes of (Hermitian)
complex line bundles. Then ,C(E) has a natural structure of abelian group
with respect to complex tensor product, and there exists a natural abelian
group isomorphism ,C (E) -+ H2 (E, ~ ) [7, 30].

Quantum histories are represented by sections ~ : E ~ Q. We dénote by

the Liouville form. on Q.

DEFINITION 2.2. - A quantum connection is defined to be a connection C

on the bundle J1E x Q -+ J1E fulfilling the properties:
E

(i) C is Hermitian;
(ii) C is universal (see [ 10, 18] for a définition) ;
(iii) the curvature of C fulfills:

Vol. 70, n° 3-1999.
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The universality is équivalent to the fact that C is a family of connections
on 6 2014~ E parametrised by observers. We remark that the first field équation
dSZ == 0 turns out to be équivalent to the Bianchi identity for a quantum
connection C.

DEFINITION 2.3. - A pair (Q, C) is said to be a quantum structure. Two
quantum structures (Q1, Cl), (Q2, C2 ), are said to be equivalent if there
exists an équivalence f : Q1 ~ Q2 which maps CI into C2. D

As we will see in next section, in général not any quantum bundle admits
a quantum structure. We say a quantum bundle Q to be admissible if there
exists a quantum structure (6?C). We dénote by

the set of équivalence classes of admissible quantum bundles.
Let [g] E as. Then we define to be the set of équivalence

classes of quantum structures having quantum bundles in the équivalence
class [g]. If [g’] E es and ~Q~ ~ [g~ then and are clearly
disjoint. So, we define

to be the set of equivalence classes of quantum structures.
The task of the rest of the paper is to analyse the structures of ~l3

and ~S. To this aim, we devote the final part of this subsection to some
technical result.

THEOREM 2.1. - For any star-shaped open subset U C E, chosen a
trivialisation of Q over U, we have

where C~ is the local flat connection induced by the trivialisation, and TU
is a distinguished choice (induced by C) of a Poincaré-Cartan form over
U associated with O.

Proof. - In fact, the coordinate expression of a Hermitian connection C
on JlE x Q -+ ~hE is

E

and universality is expressed by C? = 0. The result follows from the
coordinate expression of 1-~~C~. Q.E.D.

Annales de l’Institut Henri Poincaré - Physique théorique
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Now, we study the change of the coordinate expression of a quantum
connection C with respect to a change of chart. Let C E be two

star-shaped open subsets such that Ul D U2 ~ 0. and bl, b2 be two local
bases for sections Q over t/i, U2, respectively. Suppose that we have the

change of base expressions

on 7i n U2. Then, it follows from a coordinate computation that

Remark 2.1. - We have introduced the quantum structures on a Galilei

général relativistic background. We could proceed by defining an algebra of

quantisable functions, a quantum Lagrangian (which yields the generalised
Schroedinger équation) and an algebra of quantum operators [9, 10]. D

Existence of quantum structures

In this subsection we give a necessary and sufficient condition for the
existence of a quantum bundle and a quantum connection. A fundamental

rôle is played by the properties of the Poincaré-Cartan form.

We follow a présentation of the Kostant-Souriau theorem [ 14, 23] given
in [7]. See also [ 19, 29]. We dénote the Cech cohomology of E with values
in 7l (R) by H* (E, 7~) (7~(E,R)). We recall that the inclusion i : 7l -+ R

yields a group morphism

which is not necessarily an injective morphism. We also recall the natural

isomorphism ~(E,R) -~ Hde 
We observe that there is a (not natural) isomorphism 

due to the topological triviality of the fibers of JlE -+ E.

Anyway, due to the properties of the Poincaré-Cartan form, the closed form
H yields naturally a class in 

LEMMA 2.1. - The class E yields a class

Vol. 70, n° 3-1999.
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Proof - Let be a good cover of E, i.e. an open cover in
which any finite intersection is either empty or diffeomorphic to For any
2 E I choose a Poincaré-Cartan form Ti of 0 on the tubular neighbourhood
tô 
1 

( Ui ) . For any i, j E I such that Ui n 0, by virtue of theorem
1. l, choose a potential 21r fi~ E C°° (E) of the closed one-form T2 - T~
on E. We define a 2-cochain qs as follows : for each E I such that
Ui n U~ n let .- f2~ + It is easily proved that qs
is closed and the class [qs] depends only on the class Q.E.D.

THEOREM 2.2. - The following conditions are equivalent.
(i) There exists a quantum structure (Q, C).

(ii) The cohomology class E H2 (E, IR) determined by the (de Rham
class of the) closed scaled 2-form 0 lies in the subgroup

Proof - Let be a good cover of E. Suppose that the second
condition holds. Then, we observe that the morphism i : H2 (E, ~) ---+

is given as i(~qs~) _ [z(~)]~ where :== for
each E l with Ui n U~ n ~ / 0.

Hence, there exist functions like in the above Lemma such
that + E Z. Let us set

We have = hence is the cocycle of an isomorphism class
in /;(E).

Moreover, we have

hence, the one-forms iT2 @ i yield a global quantum connection.

Conversely, if the first condition holds, we use theorem 2.1 and équation
( 12) with respect to the the trivialisation over the good cover. In this way,
the functions give rise to the constant functions ~2~ + with
values in Z, hence to a class E Q.E.D.

Annales de l’Institut Henri Poincaré - Physique théorique
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Classification of quantum structures

In this subsection we will use a more général definition of affine space
rather than the usual one. Namely, the triple (A, G, ’) is defined to be an

affine space A associated with the group G if A is a set, G is a group and
’ is a free and transitive right action of G on A. Note that to every a E A
the map ra : G 2014~ is a bijection.
We start by assuming that the existence condition is satisfied by the

spacetime.

ASSUMPTION Q.I. - We assume that the cosymplectic 2- form 0 fulfills
the following integrality condition :

The first classification result shows the structure of 

THEOREM 2.3. - The set QB C .C(E) of quantum bundles compatible with
03A9 is the set

hence has a natural structure of affine space associated with the abelian
group keri C H2 (E, ~).

Proof - The first part of the statement comes directly from the proof of
the existence theorem ; the rest of the statement is trivial. Q.E.D.

Let ~Q, C~ , ~Q’ , C’~ C f : Q ---+ Q’ be an
equivalence and f * be the induced map on connections. Then we have

where D is a ctosed 1-form on E, and [S, C] = [(~ C’~ if and only if

where c : E -+ U ( 1 ) .

LEMMA 2.2. - There exists an abelian group isomorphism

Vol. 70, n° 3-1999.
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Proof - Using a procédure similar to the proof of the existence theorem
we can prove that

is isomorphic to i(Hl(E,7L)). A standard argument [30] shows that
i : H1 (E, Z) -+ H1 (E, IR) is an injective morphism. Q.E.D.

Now, we are able to classify the (inequivalent) quantum structures having
equivalent quantum bundles.

THEOREM 2.4. - Let [Q] E Then the set has a natural structure
of affine space associated with the abelian group

If [D] ~ H1(E,R)/H1(E,Z) and [Q,C] ~ QS[Q], then the affine space
operation is defined by

The structure of the set 6? is easily recovered from its definition and
the above two theorems. Let us set

p is a surjective map.

THEOREM 2.5. - There exists a pair of bijections (B, B) such that the
following diagram commutes

In concrète applications it is préférable to express the product group
in the above diagram in a more compact way. A standard cohomological
argument [7, 30] yields the exact séquence

where 81 is the Bockstein morphism. So, for every équivalence class
[6] ~ kerz the set ~i~([6]) has a natural structure of affine space associated
with 

Annales de l’Institut Henri Poincaré - Physique théorique
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COROLLARY 2.1. - The set of quantum structures is in bijection with the
abelian group U( 1 ) ). If E is simply connected, then there exists only
one equivalence class of quantum structures.

Proof. - The first assertion is due to the structure of the map bl.
The last assertion follows from the natural isomorphism .H~(E,!7(1)) ~

Q.E.D.

Examples of quantum structures

From a physical viewpoint, it is interesting to study concrète examples of
Galilei général relativistic classical spacetimes, and investigate the existence
and classification of quantum structures over such spacetimes.

Example 2.1 (Newtonian spacetimes). - The Newtonian spacetime has
been introduced in [ 10], hère we will just recall the basic facts. We assume
further hypothèses on E, g, Kb and F.
- We assume that E is an affine space associated with a vector space E,

and t is an affine map associated with a linear map t : E 2014~ T.
It turns out that trivial bundle, where P := ker t.
- We assume that 9 is a scaled metric g E L2 @ P* 0 P* on the vector

space P.

Dénote by the natural flat connection on E induced by the affine
structure. Clearly, we have = 0, where is the restriction of

to the bundle VE -+ E.

-We assume that the restrictions and ‘ of K ~ and to the

bundle VE 2014~ E coïncide.

-We assume F = 0.

The above hypothèses imply

where N : E 2014~ T* 0 VE, with coordinate expression N =
u° 0 u° ® Hence, the law of particle motion takes the form

in coordinates, ~00si = Ni o s.
In this case, E is topologically trivial, hence == {0}, so that

the integrality condition is fulfilled. Corollary 2.1 implies that there is only
one équivalence class of quantum structures. 0

Vol. 70, n° 3-1999.
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Example 2.2 (Spherically symmetric exact solution). - In [27] we found
that, in the case F = 0, under spherical symmetry assumptions on E, g
and K~, there exists a unique Galilei classical spacetime. Also, we found a
unique équivalence class of quantum structures under spherical symmetry
hypothèses.

Hère, we repeat some of the constructions and give a simplified and
improved version of the results obtained so far.
- We assume that E 2014~ T is a bundle, and s : T ~ E is a global section.
- We assume that each fibre of E 2014~ T endowed with the restriction of

g is a complète, spherically symmetric Riemannian manifold in the sensé
of [27].
The above assumptions on E and g imply that E 2014~ T is (not naturally)

isometric to T x P -+ T, where P is a Euclidean vector space, the isometry
being provided by a complète isometric observer. Let E’ . :== E B s (T) . Then
we have the natural splitting E~ IL x  where L represents the distance
from the origin in each fibre and S ---+ T is a bundle whose fibres represent
space-like directions. Now, by recalling remark 1.1, we implement the
intuitive idea of spherically symmetric gravitational field as follows.
- We assume that there exists a complète isometric observer o (which

is said to be a spherically symmetric observer) such that ~[(9] is a scaled

2-form on L x T.

As a solution of the field équations in the vacuum we obtain a unique
spherically symmetric gravitational field Kq defined on E’. Namely, we have

where I~~~ is the natural flat connection on E’ and Nq = k where
k : :. T -+ T-2 0 L3 and r is the space-like distance from the origin.
Moreover, we have the coordinate expression

By the way, there exists a unique spherically symmetric observer.
We can easily généralise the above result to the case F ~ 0, obtaining

a Coulomb-like field.

Now, by a comparison with the classical Newton’s law of gravitation,
if we assume that the field I~b is generated by a particle (m, q), then we
can assume k = where l~ E (T+)-2 ® l3 0 M* is the gravitational
coupling constant (the minus sign is chosen in order to have an attractive
force).
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We choose the global potential ~[o] = of the form

according to = and introduce the quantum
connection

on the quantum bundle E x C, where

The integrality condition is clearly fulfilled, and, by Corollary 2.1, there
is a unique équivalence class of quantum connections.
The result is the same obtained in [27], but with weaker hypothèses.

There, we made hypothèses of spherical symmetry on the quantum bundle
and the quantum connection; hère, we did not need this. Moreover, the
results can be easily generalised to the case of a spherically symmetric
(Coulomb) field F ~ 0. D

Example 2.3 monopole). - Usually, Dirac’s monopole is defined
to be a certain type of magnetic field on Minkowski spacetime. Hère, we
define and study it in the Galilei’s case.

- We assume on E and g the same hypothèses of the Newtonian case;
moreover, we assume that E is endowed with the flat gravitational field

K11.
- We assume an inertial motion s : T ~ E, i.e. a motion which is also

an affine map.

The motion s induces a complète isometric observer o by means of the
translations of E, hence an isometric splitting E ~ T x P, where P is a
Euclidean vector space, and an isometric splitting

where L represents the distance from the origin and S is the space of

directions. The manifold S has a natural metric such that any l E IL yields
an isometry of S with the unit sphère in P. The scaled multiples of the
volume form v on S are natural candidates of electromagnetic field.
- We assume a particle (m, q). Moreover, we assume the magnetic field

where ~c E IL 1/2 @ M1/2 is assumed to be the magnetic charge of the

monopole.
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The coordinate expression of F with respect to polar coordinates turns
out to be

Of course, we have dF = 0, and a direct computation shows that
divq F == 0.

We have

A computation [8, p. 164] shows that if E l~ fulfills
the integrality condition.

Being spacetime topologically équivalent to R x (R3 B {0}), Corollary
2.1 yields that for any E 7 there exists a unique équivalence class
of quantum structures compatible with F.

It is interesting to note that if // E (g) M 1/2 with ~c ~ // and
E Z, then the respective quantum bundles are not isomorphic;

the same holds by considering another particle (rrL’, q’), with q  q’ and
( q’ ~) / ~ E Z. In particular, if q  0, then the class of quantum bundles
compatible with F is not the trivial class. So, this is a first example of
non-trivial quantum structure on a spacetime with absolute time.
We remark that there exists a purely gravitational example of such a

non-trivial situation provided by the nonrelativistic limit of the Taub-NUT
solution, and leading to quantisation of mass [3]. D
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