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ABSTRACT. - While in a single non-relativistic gas the dynamic pressure
vanishes, it is of order 0 ( ~) in a relativistic gas. This was shown in
a previous paper [ 1 ] . In the present paper we show that the dynamic
pressure in a reacting gas is of 0(1), i. e. even a non-relativistic mixture
of gases has a non-vanishing bulk viscosity. The value of that viscosity is
determined by the mass-defect M, or the heat of reaction M c2, and the
thermal conductivity is also affected by the heat of reaction. In an example
of dissociation of iodine the bulk viscosity can be as big as 50% of the
shear viscosity and the thermal conductivity has twice the normal value.
The results of the paper may be of interest to the cosmologist who is
interested in the early universe. @ Elsevier, Paris .
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RESUME. - Tandis que dans un gaz non relativiste la pression dynamique
est nulle, elle est de Fordre dans un gaz relativiste, comme il a ete
demontre dans un article precedent [ 1 ] . Ici nous montrons que la pression
dynamique dans un gaz en reaction est de Fordre de 1, c’ est-a-dire, que
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310 G. M. KREMER AND I. MULLER

meme un melange non relativiste de gaz possede une viscosite de volume
non-nulle. La valeur de cette viscosite est determinee par Ie defaut de masse

M, ou par la chaleur de reaction Mc2 et la conductivite thermique est aussi
aifectee par la chaleur de reaction. Dans un exemple de dissociation de
Fiode la viscosite de volume peut atteindre jusqu’a 50% de la viscosite de
cisaillement et la conductivite thermique est Ie double de la valeur normale.
Les resultats de ce papier peuvent interesser les cosmologistes etudiant
l’univers primordial. @ Elsevier, Paris

1. PREVIEW AND DISCUSSION

In a mixture of reacting gases the transport coefficients depend on the
heat of reaction It is true that the shear viscosity is not affected,
but the thermal conductivity of a dissociating gas can be several times
the normal value. This was already known to Nernst [2], who formulated
a rough molecular argument to understand the effect, see also [3]. The
bulk viscosity is affected most, because - in contrast to a non-reacting
(non-relativistic) gas - it is non-zero in a reacting gas.

In this paper we calculate the shear viscosity J-L, the bulk viscosity and
the thermal conductivity in a binary reacting gas mixture. For simplicity
we consider a non-diffusive gas. The results for a non-relativistic gas are

as follows

1/B3, 1/B03C01 and 1l B4 are the relaxation times of stress deviator, dynamic
pressure 

~ and ’ heat flux respectively; they are of the order of magnitude of
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311THERMAL CONDUCTIVITY AND DYNAMIC PRESSURE: MIXTURE OF GASES

Table 1. - Effect of heat of reaction on bulk viscosity and thermal

conductivity.

the time of free flight of the molecules. m 2 1 are the molecular masses of

the constituents and ’r 1 are their stoichiometric coefficients. The particle
2

densities nE1 are equilibrium values as determined by the law of mass-action.
2

By inspection of (1.2) we conclude that the bulk viscosity is determined

by the heat of reaction In the limit of a single gas, i. e. for 0 or

n2 -~ 0, the bulk viscosity vanishes as it ought to in a non-relativistic gas.
In order to give an impression of the size of the bulk viscosity ~ in terms
of the shear viscosity we have calculated the quantity V = 
as a function of temperature. Note that we assume that Bf and B3 are
comparable in size; after all, both are related to the collision frequency of
molecules. V is represented in Table 1 which gives values - at p == 1 atm
- for the dissociation of iodine

Kp is the chemical constant taken from [4] and n j are the equilibrium
densities calculated from the law of mass-action. a~ in the table is the

extent of reaction

Inspection shows that, while V is small when one or the other constituent
dominates at low and high temperature, it comes up to the value of 0.50 at

Vol. 69, n 3-1998.



312 G. M. KREMER AND I. MULLER

intermediate temperatures. Therefore we expect the bulk viscosity to reach
up to 50% of the value of the shear viscosity.
Next we discuss the thermal conductivity. The equation ( 1.3) contains two

terms, one with Mc2 and one without. Thus it represents the dependence
of the thermal conductivity K, upon the heat of reaction. The ratio R of
these terms - the second one divided by the first - is represented in the last
column of Table 1 as a function of T for the dissociating mixture of iodine.

Inspection of the table shows that in the temperature range, where the
dissociation occurs, the thermal conductivity is more than doubled by the
heat of reaction. In the nearly pure constituents at low and high temperatures
the heat of reaction has no appreciable effect on the thermal conductivity.
The theory applies to chemical reactions and to nuclear reactions. It may

also be useful to the cosmologist who is interested in the early universe.
In the following chapters the results ( 1.1 ) through ( 1.3) and some further

minor results will be derived. The method used is relativistic extended

thermodynamics, a powerful theory described in the monograph [5]. The
field equations of relativistic extended thermodynamics are derived in full
generality for non-degenerate gases but the specific results on the transport
coefficients, viz. ( 1.1 ) through ( 1.3), are given only for the non-relativistic
limit.

Previously it has been argued that extended thermodynamics can only do
what the kinetic theory of gases can do better. With the present extension to
chemically reacting mixtures this observation is no longer true; or at least
we are unaware of any kinetic theory that could provide results as specific
as the results ( 1.2), and ( 1.3) of extended thermodynamics.

2. FIELDS OF RELATIVISTIC EXTENDED THERMODYNAMICS
OF CHEMICALLY REACTING NON-DIFFUSIVE MIXTURES

2.1. A Conventional Choice

We may say that it is the objective of extended thermodynamics of
reacting, non-diffusive binary mixtures to determine the 15 fields

Annales de l’Institut Henri Poincare - Physique theorique



313THERMAL CONDUCTIVITY AND DYNAMIC PRESSURE: MIXTURE OF GASES

These fields determine the particle flux vectors A~ and the energy-

momentum tensor We have

2.2. Absolute Temperature and Affinity

2.2.1. Thermodynamics Single Gas

In thermodynamics of a single gas we have just one particle density n
and the energy density e as variables. But the natural variables of statistical
mechanics are the fugacity 1 a and the absolute temperature T, because
statistical mechanics provides the equilibrium pressure of an ideal gas in
terms of a and T, viz. (e.g. see [5], p. 87)

m is the molecular rest mass, k the Boltzmann constant, the

modified Bessel function of the second kind and y is related to the Planck

constant: ~/ = 1~h3.

There is a one-to-one correspondence between the pair (n, e) and the
pair (a, T) and this is furnished by the equations

or inversely

It is true that the inverse functions e) and T(~, e) cannot be expressed
in analytical form, but they are known graphically or numerically.

Also statistical mechanics provides an explicit expression for the

equilibrium entropy, viz.

I 
a is equal to the chemical potential ~c to within a factor a = This definition

deviates slightly from the fugacity of chemical thermodynamics.

Vol. 69, n° 3-1998.
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2.2.2. Thermodynamics of a Binary Non-Reacting Mixture of Gases
In thermodynamics of binary mixtures we have two densities n~

~a = 1,2) and the energy density e as variables. We may replace these
by the fugacities aa and the absolute temperature T, the variables which
determine the partial pressures

In analogy to (2.4) and (2.5) we have

or inversely

The entropy reads, in terms of aa and T

The densities na and e are independent.

2.2.3. Thermodynamics of a Binary Reacting Mixture of Gases

The equations (2.7) through (2.10) are also valid in a reacting mixture
but there is a subtle difference: In equilibrium the two number densities are
not independent because the law of mass action requires

where the are the stoichiometric coefficients. Close to equilibrium we

may thus write in linear approximation, by virtue of a Taylor expansion

Annales de l’Institut Henri Poincare - Physique ’ théorique
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where

With the mixture fugaccity (cf. (2.11))

we may write

The derivatives. and I in (2.12) denote differentiation with respect to a
and InT respectively; stands for f l - f 2 .
As long as we stick to situations close to equilibrium it is possible, and

appropriate, to replace the two fugacities aa by the mixture fugacity ac, -
characterizing equilibrium, cf. (2.14) - and the chemical affinity

which represents a "driving force" toward equilibrium. By (2.11 ) we have
A = 0 in equilibrium.

In order to obtain aa in terms of 0394 we need an additional equation,
supplementary to (2.16). This additional equation results from the entropy
(2.12)4. Indeed, since the entropy must be a maximum in equilibrium, it

cannot depend linearly on (aa - and therefore the last term in (2.12)4
must vanish:

Between (2.16) and (2.17) we have a linear algebraic system for the
determination of aa from which we obtain

3-1998.
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These relations replace the two fugacities aa by a and .6.. Also, by (2.12)2,3,
and now become explicit functions of a, T which

are linear in A. The advantage of the new variables a, A over the old
ones is that in the former set equilibrium is characterized by the
vanishing of one variable, 

It is useful and customary to decompose the pressure P in (2.2)2 into an
equilibrium part ~ p~ and a dynamic pressure ~ such that

3. FIELDS EQUATIONS

3.1. Balance Laws

We may now rephrase the objective of extended thermodynamics by
saying that we wish to determine the 15 fields

which determine the particle flux vectors A~ and the energy-momentum
tensor A AB. We have

The necessary field equations for the fields (3.1 ) are the equations of
balance of masses, and energy-momentum and the flux balance, viz.

Annales de l’Institut Henri Physique - théorique
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.~ is the reaction rate density and the traceless tensor ~A~ is the flux

production. AABC is the flux tensor; it is fully symmetric and its trace is

proportional to ¿a so that (3.3)3 represents only 9 equations, instead
of 10.

A useful alternative form of the particle conservation laws (3.3)1 reads

In this set only the first equation has a production which is governed by
the mass defect of the reaction M = 03A303B1 03B303B1m03B1; the second equation is a
conservation law, representing the conservation of the number of atoms in
the chemical reaction, or the conservation of nucleons in a nuclear reaction.

3.2. Constitutive theory

In order to close the system (3.3) we need constitutive equations for

~ .~ - the reaction rate density,
2022 AABC - the flux tensor,
~ the flux production.

In extended thermodynamics the constitutive equations have the generic
form

where ~, A and I are constitutive functions.
If the constitutive functions are known, the set (3.3), - or (3.4) and

(3.3)2,3 - represents a set of 15 equations for the 15 fields a. ð, T, UA,
7T, qA. Every solution of this set is a thermodynamic process.

The constitutive functions are restricted by
~ the entropy principle,
~ the principle of relativity, and
~ the requirement of convexity and causality.

Vol. 69, n° 3-1998.
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3.3. Representations

The principle of relativity in the present context may be expressed by
saying that , AABC and AB are isotropic functions of their variables with
respect to all space-time transformations. This means, if we restrict the

attention to linear constitutive functions in the non-equilibrium quantities
A, 7T, and ~

All coefficients may depend on a and T and, of course, na in (3.6)2 is given
by (2.12)2, so that the term ~~ mana contains a linear dependence on A.

These representations are formulated so as to satisfy the trace conditions
indicated in (3.3)3.
The entropy principle will turn out to determine all coefficients C in terms

of the equation of state (2.15). This amazing definiteness of the entropy
principle is the hallmark of extended thermodynamics, - and its redeeming
feature. Because, indeed, were it not for its surprisingly specific results,
nobody would undertake the task of following the complicated procedure
of the evaluation of the entropy principle.

4. ENTROPY PRINCIPLE

4.1. Lagrange multipliers

The entropy principle states that the divergence of the entropy-entropy
flux vector hA - itself a constitutive quantity - be non-negative for all

thermodynamic processes

Annales de l’Institut Henri Poincaré - Physique - théorique
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Equivalent to this is the statement that the new inequality

holds for all fields The lambdas are Lagrange multipliers,
and AAB may be taken to be traceless, because of (3.3)s.

We introduce the vector potential

so that the inequality assumes the form

4.2. Lagrange multipliers as variables

Convexity and causality ensure that we may change variables

from to (4.5)

so that n~, AABC , the new set of constitutive quantities.
This new shift of variables is one of the tricks by which extended

thermodynamics manages to exploit the entropy inequality. Because in the
new variables the inequality is easily evaluated. Indeed, we have

and, since this inequality must hold for all variable fields, we obtain

Vol. 69, n° 3-1998.
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and there remains the residual inequality

We conclude that the quantities na, and in the new

constitutive set are all given by derivatives of h~ with respect to the new
variables, the Lagrange multipliers; hence the name "vector potential" for
h’A. l and IAB are restricted by the residual inequality.
The conditions (4.7), (4.8) incorporate all restrictions implied by the

entropy principle. Unfortunately these restrictions are largely formal. Indeed,
since the Lagrange multipliers have no physical interpretation in their own
right, we must convert the results (4.7) to statements on the physical
quantities This is a complicated process that
can only be performed for near-equilibrium processes.

5. LAGRANGE MULTIPLIERS

5.1. Determination of the Lagrange Multipliers

In equilibrium the productions .~ and 1~ must vanish, and therefore
(4.8) implies that A and also vanish:

This fact permits us to write the near-equilibrium representation of ~
as a function of We include second order terms in A and

AAB and obtain

Here the coefficients F may be functions of A and Go == AA and we
have defined

Annales de l’Institut Henri Poincare - Physique theorique .
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Insertion of (5.2) into (4.7) and linearization in a and AB provides linear
representations for

these, however, do not automatically satisfy the requirements that

For these requirements to be satisfied the r’ s must be interrelated.

Summarizing a cumbersome calculation we may write

This ensures the symmetry of A AB. The trace condition (5.4)s requires

and finally the condition for parallelism (5 .4) 1 requires

where Q is given by

B’bt.69,n° 3-1998.
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Insertion of hA from (5.5) into (4.7)1,2,3 gives linear relations of the form

From this set of equations we may, in principle, determine the

Lagrange multipliers in terms of a, T, ~, TIA, In practice this
is impossible, except in equilibrium and in linear approximation.

5.2. Lagrange multipliers in equilibrium

Sofar we have maintained a notation which emphasized the fact that

7~ are derivatives of p as in (2.12). This notation becomes impractical
now; we introduce

and use these quantities and their derivatives so as to provide always
the most compact form of equations. Of course, the fact remains that

p~ == Po; (a, T) determines all these quantities. In equilibrium we have from

(5.9)1,2,3 and (5.6), (4.3)

Annales de l’Institut Henri Poincaré - Physique 
’ theorique ’
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Thus we conclude

Combining these relations we obtain

and we compare this equation with a well-known thermodynamic relation
which involves the absolute temperature T and the fugacities a~

The comparison shows that we have to set (recall (2.14))

a being the mixture fugacity.
Therefore in equilibrium we have now identified all Lagrange multipliers.

We have

5.3. Linear Lagrange multipliers

We shall now use the equations (5.9) to calculate the Lagrange multipliers
as linear functions of A, and 7r. In order to linearize the system
(5.9) we introduce

Vol. 69, n° 3-1998.
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and neglect products of 11, T, cr, ~A and The vectors TA, ~A
and the traceless tensor are space-like 2.
We obtain linear algebraic equations for the linear contributions to the

Lagrange multipliers, viz.

It ought to be emphasized that all coefficients in this set are explicitly
related to the thermal equations of state (2.15). For and later r2 - this
is true, because we obtain from (5.6)1,2 by integration 3

From the solutions of (5.19) through (5.21 ) we obtain the linear

representations of the Lagrange multipliers

2 Note that the f’s in (5.9) have to be linearized in the deviations 11 and Go - ~ - - 2T ‘~
of their variables A and Go from their equilibrium values. Thus for instance on the R.H.S. of
(5.9) we have set, cf. (5.13)1, (5.16)

and analogous expressions for the other r’s and their derivatives.
3 Constants of integration have been set equal to zero, since nobody sofar has found them to

have physical significance.

Annales de l’Institut Henri Poincaré - Physique theorique
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where all coefficients are known functions of a and T given by the

determinants of the matrices in (5.19), (5.20). We do not exhibit these
functions, because they take up too much space.

6. FLUX TENSOR

The linear flux tensor follows from (4.7)4 by insertion of the vector
potential ~’~ in (5.5) and removal of all non-linear terms. Thus

This is AABC expressed as a linear function of the Lagrange multipliers.
Naturally, however, we want as a function of the physical variables
a, T, ~, 7T, UA, qA, and In order to get that we introduce

and replace all other r’s by their equilibrium values. Thus

Vol. 69, n 3-1998.
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Also we introduce (5.18) - always neglecting non-linear terms in ~, 7r,
qA, and A lengthy calculation provides the result

This expression is far from being explicit in the variables a, T, .ð, 7r, UA,
qA, and mainly because it still contains the Lagrange multipliers 11,
A, T, 7, TA, and These Lagrange multipliers may be calculated
from the algebraic system (5.19) through (5.21 ) and thus results AABC in
the form (3.6)2 with coefficients C which have the forms

Note that 11, and cr in (6.6) may be calculated from (5.19) as linear
functions of 7r and ~. Thus Cl and C° can be determined in terms of
~ rf, The explicit result is too complicated to be written down
in this paper.

Annales de l’Institut Henri Poincaré - Physique theorique
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7. PRODUCTIONS

We insert the representations (3.6)1,3 for the reaction rate density and
the flux production into the residual inequality (4.8). Also we introduce the
calculated expressions (5.23)i,4 into that inequality. Thus we obtain

and it follows that we must have

These are rather weak restrictions on the signs of the coefficients ~
Bi, B4 and .83. There is no more to be had on these coefficients
from extended thermodynamics, nor from any other macroscopic theory.
However, we shall proceed on the assumption that the leading terms of
these coefficients are "classical", i. e. of 0(1). After all, they are due to
intermolecular collisions and therefore they are expected to be of the order
of magnitude of the collision frequency.

8. RESULTS

8.1. Linear Field Equations of Relativistic Extended Thermodynamics

We summarize the results of the preceding sections by writing the

linearized forms of the field equations. There are four scalar equations, two
vectorial ones and a tensor equation. We have

Vol. 69, n 3-1998.
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In ( 8.1 ) X 1 == ¿a A03B1E03B1 and X 2 == ¿a These are fully
general results in the linear approximation. In particular, they are valid for a
relativistic non-degenerate mixture of gases at arbitrarily high temperatures.
The only unknown cofeficients are .~o, B°, .84 and B3 4.

8.2. Linear Field Equations
of Non-Relativistic Extended Thermodynamics

In the non-relativistic limit the coefficients C can easily be calculated
explicitly and we obtain

4 Note that the coefficients C1 , 03 and C5 on the L. H. S. of (8.1 ) through (8.3) occur
only for brevity. Indeed, these coefficients - as well as mnE, pE, etc. - are all determined by
the equations of state (2.15), as was explained before.

l’Institut Henri Poincaré - Physique theorique
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Note that Of and C° had to be calculated including terms of 0 (~ ),
because - by (8.1 ) - these coefficients have an explicit factor e2 .

The formulation of the non-relativistic limit must be done carefully, since,
because of the smallness of the mass defect M = ~~ the presence
of the order parameter c2 does not always indicate big terms. Indeed, Mc2
is the heat of reaction, an entirely non-relativistic quantity, inasmuch as
the conversion of mass into energy - which occurs in a chemical reaction
- can be called non-relativistic.

The linear field equations of non-relativistic extended thermodynamics
result by insertion of the coefficients C from (8.4) into the set (8.1) through
(8.3). Also in that system we replace the other matrix elements according
to the following list:

Vol. 69, n 3-1998.
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All of these expressions have been restricted to the relativistic order that
matters for non-relativistic equations.

8.3. Dynamic Pressure 7r and Reaction Rate Density .~

First we evaluate the scalar equations (8.1). It is useful to eliminate

aT and between these equations and thus obtain expressions for the

Annales de l’Institut Henri Poincaré - Physique theorique
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reaction rate density .~ and for the dynamic pressure 7r. With the definition

The equation (8.7) may be interpreted by saying that for a reaction to
proceed we must have expansion or heating or both.

The equations (8.7), (8.8) are equations of extended thermodynamics
where 7r is a variable. The reader may be more used to ordinary
thermodynamics, where 7r is a constitutive quantity, depending linearly
on U A and ð.. Such a constitutive quantity for 7r may be derived from
(8.8) approximately. The approximation is suggested by the Maxwellian
iteration of the kinetic theory of gases (e. g. see [6], [5]). This iteration is

adapted to the present case by subtracting equation (8.7) from (8.8) and by
replacing all quantities on the L. H. S. of the resulting equation by their
equilibrium values, i. e. by setting qA, 7r and A on the L. H. S. equal to
zero and thus obtain a first iterate for 1r, viz.

where

is the bulk viscosity.

Vol. 69, n ° 3-1998.



332 G. M. KREMER AND I. MULLER

Insertion of this expression for 1r into ~ _ + .~0 0 provides the
constitutive relation of ordinary thermodynamics for the reaction rate

density l, viz.

The equations (8.9), (8.11 ) are the "phenomenological equations" of linear
irreversible thermodynamics, linear relations between the

Among the "phenomenological coefficients" relating forces and fluxes
the most important one is the bulk viscosity ?? given in (8.10). The main
purpose of this paper is the determination of the bulk viscosity and its
"relativistic order", its dependence on n2 and on the mass defect M,
or the heat of reaction We are now in a position to discuss and
we itemize its salient features

. The bulk viscosity is proportional to which - by (8.8) - is
the relaxation time for the dynamic pressure. We know that in gases
relaxation times are of the order of magnitude of times of free flight
of the molecules. Therefore 1/ Bf is of relativistic order 0(1).

. Consequently the bulk viscosity in a reacting binary mixture is
of relativistic order 0(1). That means that a mixture of relativistic
gases - and of non-relativistic gases - has a bulk viscosity.

. The bulk viscosity 7/ depends on the mass-defect M, or the heat
of reaction explicitly. Without mass defect there would be no
bulk viscosity; nor would there be a reaction rate, as we have seen.

. If we proceed to the limit of a single gas by letting n2 (say) tend
to zero, the bulk viscosity in (8.9) vanishes. This agrees with the
observation that non-relativistic gases have no bulk viscosity while
the bulk viscosity of relativistic gases has terms of 0 ( ~) and of
smaller order, see [ 1 ] .

. Table 1 in chapter 1 shows for the dissociating gas mixture consisting
of molecular and atomic iodine how the bulk viscosity depends on
the temperature. In that case we have Mc2 = -148.7 x 103J/mol,
see [4] .

Annales de l’Institut Henri Poincaré - Physique theorique
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8.4. Viscosity and thermal conductivity

Complex equations of the type (8.2) and (8.3) for q‘~ and are

known in the kinetic theory of gases and they are boiled down to the

"phenomenological relations" of Fourier and Navier-Stokes by the first

step of an iterative scheme due to Maxwell. In that step all non-equilibrium
quantities on the L. H. S.’s of (8.2) and (8.3) are neglected so that equations
for qA and result which serve as first iterates, viz. , without terms

of 0 ( ~ )

The homogeneous equation in (8.12) may be used to eliminate hABa,B
from the non-homogeneous one and we obtain

Comparison of (8.13) and (8.14) with the classical equations of Navier-
Stokes and Fourier provides a definition of the shear viscosity and the
thermal conductivity viz.

1~B3 and 1~B4 are the relaxation times of stress and heat flux and they
are of the order of magnitude of the time of free flight of the molecules
of the gas.

Vol. 69, n° 3-1998.
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There is nothing remarkable about the viscosity (8.15). It looks exactly
as it does in a single fluid, at least in the given approximation of 0(1).
The thermal conductivity is more interesting. Indeed, it contains a term

that is proportional to the mass-defect M. Such an effect has been observed,
and as early as 1904 Nernst [2] developed a crude molecular model to
explain it.

Since the influence of the heat of reaction on the thermal conductivity
~ emerges here as a natural consequence of the systematic application of
extended thermodynamics, we make an estimate of the size of this effect
by forming the ratio R of the first and second terms in (8.16):

Table 1 in Chapter 1 represents specific values of R as a function of
temperature for the dissociation of iodine 12 2014~ 27. The value of R a
function of temperature is discussed in chapter 1.

In the limit of a single gas, i. e. for n2 -~ 0 the thermal conductivity
becomes

which agrees with the result given in [5], and - incidentally - to the result
of the kinetic theory of gases, see [7].
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