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Relativistic and nonrelativistic elastodynamics
with small shear strains

A. Shadi TAHVILDAR-ZADEH*

Princeton University

Ann. Inst. Henri Poincare,

Vol. 69, n° 3, 1998, Physique théorique

ABSTRACT. - We present a new variational formulation for relativistic
dynamics of isotropic hyperelastic solids. We introduce the shear strain
tensor and study the geometry of characteristics in the cotangent bundle for
the relativistic equations, under the assumption of small shear strains, and
obtain a result on the stability of the double characteristic manifold. We then
focus on the nonrelativistic limit of the above formulation, and compare it
to the classical formulation of elastodynamics via displacements. We obtain
a global existence result for small-amplitude elastic waves in materials
under a constant isotropic deformation and a result on the formation of
singularities for large data. @ Elsevier, Paris

RESUME. - Nous presentons une nouvelle formulation variationnelle

pour la dynamique relativiste des solides isotropes hyperelastiques. Nous
introduisons Ie tenseur de deformation de cisaillement, nous etudions la
geometrie des caracteristiques dans la boule cotangente pour les equations
relativistes, sous l’hypothèse des petites deformations de cisaillement,
et nous obtenons un resultat sur la stabilite de la variete doublement

caracteristique. Puis nous nous concentrons sur la limite non-relativiste
de cette formulation et nous la comparons a la formulation classique de
l’élastodynamique obtenue a 1’aide des deplacements. Nous demontrons
1’ existence globale pour les ondes elastiques de petite amplitude dans les
materiaux soumis a une deformation homogene isotrope, et nous obtenons
un theoreme sur la formation de singularites pour de grandes donnees.
@ Elsevier, Paris
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276 A. SHADI TAHVILDAR-ZADEH

1. FORMULATING RELATIVISTIC ELASTODYNAMICS

1.1. The Classical Formulation

Elastodynamics concerns itself with the time-evolution of elastic
deformations in a solid body. Its classical formulation is based on the
concept of displacements, i.e., elastic deformations of a solid away from a
"totally relaxed" or "undeformed" reference state: R x J1~ --~ 1~3, ~ _

~/) be a smooth deformation evolving in time of a material which in
its undeformed state occupies the region N C R3. Let F = Dy03C6 be the
deformation gradient. The stored energy W of an isotropic hyperelastic
material depends on F through the principal invariants 1,2,3 of the (left
Cauchy-Green) strain tensor B = In the absence of body forces, the
equations of motion, which can be derived from a Lagrangian, are

This is a second-order, quasi-linear, and (under the right assumptions on
W) hyperbolic system of partial differential equations.
Now let ~(t, ~/) := y~ - ~ be the displacement field. When ~ is

infinitesimal, the equations of linear elasticity provide a good model for the
dynamics of the body. These equations arise from the expansion around the
trivial solution ~ = ?/ of equations ( 1.1 ) and ignoring the higher order terms:

where Cl &#x3E; C2 &#x3E; 0 are the propagation speeds of longitudinal and transverse
waves, respectively:

with Wk and Wmn denoting the first and second partial derivatives of W
with respect to the invariants 2k, evaluated at the unstressed reference state
zi = 3~22 == 3~23 == 1.

1.2. Nonlinear and Relativistic Dynamics

Nonlinear elasticity comes in when finite displacements are considered.
For a typical solid three-dimensional body whose linear dimensions are
comparable, say a metallic cube, the displacements cannot get too large
without ceasing to be elastic displacements. This is because most solid
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277RELATIVISTIC AND NONRELATIVISTIC ELASTODYNAMICS

materials, rubber being a notable exception, have a small elastic limit,
accumulation of strains beyond which point will cause the material to

crack, either immediately or eventually after going through a plastic phase,
and in any case leaving the domain of applicability of the elasticity model.
The hypothesis of small displacements is thus natural and reasonable when

dealing with three-dimensional bodies with comparable linear dimensions.
In the classical nonlinear theory of elasticity, large displacements are mostly
considered when the elastic body in question has a special geometry that
allows the displacements to accumulate and become large in a certain
direction, while the strains are still small. This is the case for rods and plates,
and more generally, for objects of modest size but with non-comparable
linear dimensions.

One situation where it is natural to consider strains which are not

uniformly small is in geophysics and astrophysics, where the solid bodies
under study have comparable dimensions but are of a celestial scale in
size, so that because of self-gravitation, the isotropic pressure in the interior
of these bodies is enormous. Linear elasticity clearly does not apply to
these bodies since they are very far from being relaxed. In studying the
elastic response of such media to a disturbance, e.g. quakes on Earth
or in a white dwarf star, one has to bear in mind that the shear forces

produced by any feasible disturbance will be very small compared to the

hydrostatic pressure in the background. Therefore the correct perturbative
analysis involves linearizations not around a state of no stress, but rather
around a state of very large isotropic pressure which is a nontrivial static
or stationary solution of the equations of motion.

Astrophysical applications of elastodynamics necessitate the inclusion
of relativistic effects in the theory. While special-relativistic effects in

mechanics are commonly thought of as becoming apparent only when
material velocities reach an appreciable fraction of the speed of light, there
is another way for these effects to show which is perhaps more relevant
to the dynamics of a solid body: It is when the material density becomes
so high that the speed of sound waves travelling in the body begins to
approach the speed of light. This is indeed the situation in a typical neutron
star, with a radius of only about 10 km and a mass equal to 1.4 solar

masses. In this case of course, the gravitational field is also very strong and
general-relativistic effects must be taken into account.

In a truly relativistic theory of elastodynamics, the classical notion of
displacement has to be put aside, since there is no invariant way of defining
either a displacement vector or an undeformed state. This is because there
is no reference frame in which gravity can be switched off. Starting with

Vol. 69, n° 3-1998.



278 A. SHADI TAHVILDAR-ZADEH

Souriau [15], there have been many attempts, successful and otherwise, to
present a Lagrangian formulation of relativistic elastodynamics which does
not refer to displacements and is free of any assumptions on the existence
of a globally relaxed state 1. Recently, Kijowski &#x26; Magli [ 10] proposed
their formulation, which is based on mappings from the spacetime into
an abstract material manifold. Independently, D. Christodoulou succeeded
in generalizing his formulation of relativistic fluid mechanics [4] to the

completely general case of the adiabatic dynamics of perfectly elastic,
aeolotropic media in presence of dislocations and electromagnetic fields
[5]. When reduced to the special case of isotropic solids, Christodoulou’s
formulation, described below, agrees with that of Kijowski &#x26; Magli up
to the definition of the strain tensor, but is more general since it includes
some thermodynamics as well.

1.3. The Variational Formulation

The dynamics of a body are described by a mapping f from the 4-
dimensional spacetime manifold (M,g) into an abstract 3-dimensional
Riemannian manifold m), called the mat-erial The differential
of the mapping is required to have maximal rank, with the 1-dimensional
null spaces being timelike at every point. The inverse image of a point
y ~ N under f is thus a time like curve in M which is the world-line
of the particle labeled g in the material. The material velocity u is the
unit future-directed tangent vector field of these curves. The orthogonal
complement of ux in is a hyperplane E,c, the simultaneous space at
x, on which the metric of spacetime 9 induces a Riemannian metric ~y,

The (relativistic) strain h is defined to be the pullback of the material
metric m under the mapping f ,

and is thus a symmetric 2-tensor living on The velocity ~x is
an eigenvector of h with eigenvalue zero. The other three eigenvalues,

have to be positive since m is positive definite and is an

isomorphism between 03A3x and which is taken to be orientation-

preserving. The Lagrangian density L of a homogeneous, isotropic, perfectly
elastic solid in general must be a function of h which is invariant under the

1 See Maugin [ 12] for a critique of some of these formulations.
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279RELATIVISTIC AND NONRELATIVISTIC ELASTODYNAMICS

orthogonal group o 0(3) acting j on ~~, i.e. a function of the three invariants

Thus for a solid we have

where s : .M 2014~ IR+ is the entropy per particle, defined as a function on
M which is independent of the spacetime metric g. Fluid dynamics can be
thought of as a subcase, where jC depends only on q3 and s.
The eneygy-momentum-stress tensor T of the material can now be

computed from the formula

Letting Nj’ be the hyperboloid of unit future-directed timelike vectors at
x, we define p, the energy density at x by

Then it is easy to see that in our case we have p == L, the velocity u is the
eigenvector of T corresponding to eigenvalue p, and that

where S‘ is the stress tensor,

The stress tensor satisfies = 0 and thus is a symmetric bilinear form
living on 03A3x. The eigenvalues of S relative to 03B3 are called the principal
pressures pi,p2?P3. which unlike the case of a perfect fluid, do not have
to be positive or equal. The positivity condition for the energy momentum
tensor implies that 03C1 ~ max{|p1|, |p2|, |p3|}.
Vol. 69, nO 3-1998.



280 A. SHADI TAHVILDAR-ZADEH

The equations of motion for a solid body are 2

which express the conservation laws of energy and momentum. ( 1.6) is
a direct consequence of the spacetime metric g satisfying the Einstein
equations,

where is the Ricci curvature of the spacetime metric R is its
scalar curvature, ~ is 41r times Newton’s constant of gravitation and c the
speed of light. This is because = 0, in view of the twice-contracted
Bianchi identities.

To equations ( 1.6) we need to append the equivalent of the equation of
continuity for solids, which here takes the form

where R denotes the Lie derivative. This is a consequence of ( 1.3). In a
coordinate frame ( 1.8) reads

Let

denote the number density of the material in physical space, i.e., the

number of particles (or equivalently, the number of flow lines) per unit
volume of Let 03C9 denote the volume form of (N, m), and let v be
the volume 3-form induced by g on ~x, i.e., va~,~ _ ~c~’ Eaa~.~ where E is
the volume 4-form of (A~,~). Then it is clear that = nv, and hence

d( nv) = = = 0. We thus have the law of conservation

of particle number

(This can also be derived from ( 1.8) and therefore is not a new equation.)
If we regard the spacetime metric g as a fixed background metric (the
test-relativistic case), then (1.6) and (1.8) together form a complete system

2 Throughout this paper Greek indices run from 0 to 3 and Latin ones from 1 to 3. All

up-and-down repeated indices are summed over the range.

l’Institut Henri Poincaré - Physique theorique



281RELATIVISTIC AND NONRELATIVISTIC ELASTODYNAMICS

of 10 equations, where the 10 unknowns are the entropy s, the velocity
field ~ which is subject to the normalizing condition

and the strain tensor h which is subject to the condition

If the effects of the dynamics of the solid on the gravitational field are
not negligible, then g is also unknown and we need to add ( 1.7) to the

system of equations.
Finally, it can be shown (see [4] ) that for C1 solutions, the component

of ( 1.6) in the direction of u is equivalent to the adiabatic condition:

1.4. The shear strain tensor

Let 03C3 be the symmetric 2-covariant tensor defined by

Thus cr measures the deviation from isotropy. We call it the shear strain

tensor. From the definition it is clear that 7 is like ’Y and h a tensor living
on 03A3x. Let 03C31, 03C32 ,03C33 be the eigenvalues of 03C3 restricted to 03A3x. Since

we must have

and thus only two of the 03C3i are independent. Let lal :== 
and let

be the invariants of r. Then T + ~ + 8 = 0 and thus we only need to
consider T and 8. Moreover,

Vol. 69, n° 3-1998.
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The invariants of h and 03C3 are related in the following way:

Let

be the energy per particle. The constitutive equation of the material is the
specification of e as a smooth function of the thermodynamic variables:

Substituting this in ( 1.4) and ( 1.5) we obtain

where

In astrophysical applications, e.g. the case of a white dwarf or a neutron
star, the shear strains are much smaller than the hydrostatic compression,
which is due to self-gravitation. To study small deviations from an isotropic
background state, we can expand e around 03C3 = 0:

where ei are smooth functions on R+ x In particular, eo is the energy
per particle of the background isotropic state, and e2 can be thought of
as the modulus of rigidity.
We make the following assumption regarding the constitutive equation:

every , fixed s &#x3E; 0 and n &#x3E; 0, e has a unique local minimum = 0.

(1.18)
This is already reflected in (1.17) by the absence of a first order term in cr,
and (since T &#x3E; 0 for ~2 small) by the requirement that

However, we do not need to impose this a priori since, as we shall see later,
it is a necessary condition for the hyperbolicity of the system of equations.

Annales de l’Institut Henri Poincaré - Physique " théorique
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2. THE GEOMETRY OF CHARACTERISTICS

2.1. The Characteristic Set

The symbol o y of the system ( 1.6, 1.8) at a given covector ~ E 
is a linear operator on the space of variations (s, ic, h). It is obtained

by replacing all terms of the form in the principal part of the

equations with where F°‘ is any one of the unknowns. The set of

covectors ç such that the null space of o-~ is nontrivial is by definition the
characteristic set C; in the cotangent bundle.
We note that the algebraic constraints (1.11, 1.12) on u and h imply the

following constraints on the variations tt, h:

To calculate the components of the symbol, we choose as a basis for
Te.A/( the orthonormal frame of vectors with Eo == u~
and ~2 the eigenvectors of ~r. We take the dual basis for In this

frame we have

Hence the symbol of (1.9) is

We will also need the symbol of the adiabatic condition (1.13):

Let u denote the component of ~ in the direction of (the cotangent vector
dual to) ~c. Thus ~ = = ~o in the frame we have chosen. Let ~ E C~
and assume ~.~ = 0. Then from (2.2) we see that ici = 0. Moreover, (2.3)
implies that s is arbitrary. This means that the 3-dimensional spacelike
plane IIo == {~ E == 0} is part of the characteristic set. The

remaining equations, obtained by setting the symbol of (1.6) equal to zero,
will be three equations for the six variations and it is easy to see that

the null space of o-~ for ~ E IIo is four-dimensional.

Now suppose ~ E C; i- 0. Then s = 0 and from (2.2) we have

3-1998.
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In studying the symbol of ( 1.6) we can ignore the terms with  = 0 since
we already know that this component of the equation is equivalent to the
adiabatic condition. Consider first the term v = 0, ~c = i. This gives us

while the terms v = j, ~c = i give

where ~ = + + etc. To calculate n, we take the symbol of
( 1.10), which is + Thus we have

From this, ( 1.14) and (2.4) we can calculate (7 and ~2 in terms of ic. Let
us define (,?? E 1R3 as follows:

We then have

These formulas in turn allow us to compute

Thus substituting in the above for all the variations in terms of  and
regrouping terms, we have that for a ç E C; with ~o 7~ 0, a vector

ic E Null ( (7~) satisfies

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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where P = P(~) is the following matrix-valued quadratic form in ~:

where ~ . : :== ~k~k, := Çkçk, and

Using now that the frame we have chosen consists of eigenvectors of cr,
we can rewrite P in a more concise way:

where

and

The system (2.5) has a nontrivial solution  if and only if det P = 0.
= det P. Then Q is a homogeneous polynomial of degree six

in which is actually cubic in the squares of the with coefficients

that depend on x, and we have

2.2. Hyperbolicity

Let P denote the vector space of quadratic forms in 1R4 with real 3 x 3
matrix values. is hyperbolic with respect to Eo = (1,0,0,0) if

Vol. 69, n° 3-1998.
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0 and the zeros of 03BB ~ det P(AEo + ç) are real for every ç E 1R4.
It is clear that if P is hyperbolic then

is a linear, second-order, constant-coefficient differential operator acting on
vector-valued functions / : R x R3 2014~ 1R3 and is hyperbolic in the sense of
the characteristic speeds being real in every direction (see e.g. [8]).

For the system of partial differential equations (1.6-1.8) to be hyperbolic
the quadratic form in (2.6) must be hyperbolic for all x. We can
obtain necessary conditions for hyperbolicity by looking at the zero-order
terms in P: If we set O’i = 0 in (2.6) we obtain

where

9p~
Here 03C10 = ne0 and p0 = n~03C10 ~n - 03C10 are respectively the energy density
and hydrostatic pressure of the background isotropic state, q0 = 2ne2 and

a0 = + 3 q . The characteristic surface for P0 is the set of 03B6 e 
satisfying

with

where = 2014- (at constant s). If real, ~0 i s the s ound s p eed in the

background state. Since P = P0 + O(|03C3|), it is clear that a necessary
condition for the hyperbolicity of P is that ci and ~2 be real. Thus we
arrive at the following natural assumptions about the equation of state (1.17):

For the above theory to be consistent with Relativity, we also need causality
to be satisfied, i.e., the characteristic set C~ must lie outside the light cone

Annales de l’Institut Henri Poincare - Physique théorique
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ÇÕ == in the cotangent space This implies that C1  1 and C2  1.

Thus we have the additional condition

From (2.8) we see that the nonplanar portion of the characteristic set

C~, up to first order terms in o-, consists of three spherical cones, two
of which coincide. The coincident cones carry the shear waves (transverse
waves) travelling with speed c2, and the single cone carries the compression
waves (longitudinal waves) travelling with speed C1 &#x3E; This is the

classical picture of linearized elasticity, i.e., the characteristics of ( 1.2).
Conditions (2.9) guarantee the hyperbolicity of However, the presence

of a double root for Q° in (2.8) indicates that P, considered as a perturbation
of P°, might still fail to be hyperbolic, since a double root can in general
be perturbed into two roots or into none at all. In other words, we are

looking at a perturbation of a non-strictly hyperbolic operator If this
were a general, non-symmetric perturbation, there would be no reason for
P to be hyperbolic.
However, from (2.6) it is clear that both P and P° are symmetric:

Pi~ = This is a consequence of the equations of motion being derivable
from a Lagrangian. If we let D denote the diagonal matrix with entries
Di and define P == D - ~ ~ 2 P D -1 / 2 , then on the one hand for small

det P == 0 if and only if det P = 0, and on the other hand

so that for each fixed ~ E S2, the roots of the polynomial Q(A) :==
are the square roots of the eigenvalues of the symmetric

bilinear form

Now,

is positive definite provided q0 &#x3E; 0 and q0 + a0 &#x3E; 0, which are guaranteed
to hold by the assumptions (2.9). Thus for small enough, is

positive definite as well, which implies that P is hyperbolic.
Having shown the hyperbolicity of P, we can now move on to the

question of the geometry of the characteristic surface Q == 0. Here the
kind of perturbative analysis around P° done in the above is no longer

Vol. 69, n° 3-1998.
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helpful, since the characteristic surface corresponding to P°, although of
very simple geometry, is highly degenerate in the sense that because of the
coincident shear cones there is a double characteristic in every direction.
We expect this picture to be very unstable with respect to perturbations. In
the next section we introduce another operator, PB which corresponds to
the case where e = eo + Te2. We will obtain the characteristic surface for
P1 and then show that its shape is s~able under further perturbations.

2.3. The slowness surface in John materials

Consider a hyperelastic solid material with the following constitutive
equation:

where e0, e2 are smooth functions satisfying the hyperbolicity (2.9)
and causality (2.10) conditions, but otherwise arbitrary. I propose to

call materials with a constitutive equation of the above form John
Materials, in honor of Fritz John’s (1910-1994) fundamental contributions
to mathematical elasticity. The energy tensor of a John material is therefore
of the form

where

Let ç E C*x with 03B6u ~ 0 and let u E Null(03C303B6). Then ic satisfies = 0
where

with

We note that p110"=0 == ~ hence P1 is hyperbolic for r small enough.
Let Q 1 == det P1. We will now show that the characteristic set

Annales de l’Institut Henri Physique théorique
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contains only four double characteristics, by deriving the Kelvin form of
the equation (see [6]). Let

and we define

Then

so that the equation for the characteristic surface is

Note that S2 == 0 is the equation for an elliptical cone ~ in T~.M, whose
trace on the hyperplane ço = 1 is an ellipsoid 0 of revolution with semiaxes
ri and 0 si,

where

Let us first assume that we are in the generic case where the principal
shears are distinct, and in particular, o-1  T2  0-3 . Then since

r2 is a monotone function of ~2, we have r3  r2  r1 and 33  32  sl.

Moreover, b1  0, b2 &#x3E; 0 and b3  0, so that 81 &#x3E; T1, 32  r2 and

83 &#x3E; r3. Also

and similarly r2 &#x3E; s3. We therefore conclude that the three ellipsoids 03B4i = 0
are mutually disjoint, so that for any ~, at most one of the 8i(ç) can be zero.

Vol. 69, n° 3-1998.
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Since Q1 is a homogeneous polynomial, is a conic subset of

RB and its geometry is therefore determined by a slice

Sx is called the slowness surface at ~r. Now = 0.

Suppose that ~(~) = 0 for some 1 :s; i  3. Then = 0 for 

distinct, and thus by the above we have ai = 0, which implies (since ai &#x3E; 0)
that ~2 = 0, and hence the three disjoint and mutually orthogonal circles

are part of the slowness surface.

If, on the other 0 for í = 1, 2, 3, then from (2.12) we have that

Let A :== 1//çI2 and ~ :== ç/lç-/. Define

Then (2.13) is equivalent to

For a given ~ E 5)2, the values of A for which (2.14) is satisfied are the
abscissae of the intersection points of the line cp = 1 with the curve

We note that

and 0 in particular B1 &#x3E; B2 &#x3E; B3. It is now clear that if none of the Ai
are 

" 

zero, then the curve 03C6 # = # has three vertical asymptotes at a = Bi

Annales de l’Institut Henri Poincare - Physique ’ théorique ’
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which separate the intersection points with cp = 1, and in this case there
can be no multiple roots for (2.14) (see Figure 1 ).
Thus if has multiple points, they have to be on a coordinate plane,

where one of the A2 vanishes. If A2 - 0, then the vertical line A = Bi
is no longer an asymptote but a branch of the curve 03C6 = 03C6(03BB). Thus the
intersection points with the line cp = 1 are still separated, unless a = Bi is
bet~ween the other two asymptotes, in which case a multiple point is again
possible (See Figure 1 ). To be more precise, on a coordinate plane 03B6i = 0,
the characteristic equation (2.12) factors into a quadratic and a quartic:

The quadratic curve 03B4i = 0 is the circle Ci. The quartic curve

cannot have a multiple point, at least for small cr, since

Thus the only possibility for a multiple point is that the quartic curve
= 0 intersect the circle Ci. Moreover, only one of the two branches

of the quartic can intersect the circle, since at o- = 0,  1/c~ = r2,
and thus there are at most four double characteristics in this case. In fact
it is not hard to see that

so that the directions in which we can have a double root are close to the

following four directions in the coordinate plane ~ == 0:

/ol.69,n° 3-1998.
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For these directions to be real, it is necessary for o-, to be the middle
eigenvalue of r, i.e., i = 2.

In the exceptional case when two of the principal shears coincide, the
slowness surface ?~ is a surface of revolution. To see this, suppose that
~2 = ~3 = o- 7~ 0, so that cri = 1/(1 + ~) 2 - 1. We then have

where

Therefore,

where, introducing cylindrical coordinates 1~2 == ~ + ~3 , Z = Ç1 we have

and thus the surface Q = 0 is cylindrically symmetric with respect to the
Once again, this quartic surface cannot have any multiple points

since at o- = 0 its sheets are well-separated, hence the only possible multiple
points would be the intersections of the outer sheet of this surface with the
sphere b = 0. But then from the above we must have 1-~ = 0 at the multiple
points, so that in this case there are only two double characteristics, located
at 0, 0).
The following theorem summarizes all that can be concluded from the

above analysis regarding the geometry of the characteristic set of P1:

THEOREM 2.1. -

l. The characteristic set Cx (P1) = {ç I Q1 (ç) = 0} is a conic set in
the slice Çu = 1 of which is a 2-dimensional algebraic surface

in 1R3 with three real sheets. The innermost sheet of this surface is

strictly convex and is separated from the two outer ones.
2. In the generic case when the three principal shears are distinct, the

two outer sheets touch at only four points. These points lie on a

plane 03B6 . E = 0, where E is the eigenvector corresponding to the
middle eigenvalue. Moreover, in the coordinate frame given by the
eigenvectors of ~, the slowness surface possesses reflectional symmetry
with respect to the three coordinate planes. The trace of the surface
on a coordinate plane Çi = 0 is comprised of a circle Ci of radius
ri centered at the origin, together with a non-self-intersecting quartic

Annales de l’Institut Henri Poincare - Physique thearique
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curve which is a small perturbation of two concentric circles with radii

1/c1 and 1/ C2 centered at the origin.
3. In the exceptional cases when two of the principal shears coincide, the

slowness surface is a surface of revolution whose axis of symmetry is
the eigendirection corresponding to the other eigenvalue. The two outer
sheets, one of which is a sphere, touch only at two points on that axis.

Figure 2 shows the positive octant of the surface in the generic and the

exceptional cases.

Fig. 2. - The Slowness Surface.

2.4. Stability of the characteristic surface

We now return to the general case of a material with an arbitrary
constitutive equation (1.17) which is subject only to conditions (2.9-2.10).
The corresponding operator P, defined in (2.6), can be thought of as a

(symmetric) perturbation of the operator P1 introduced in the previous
section: P = P 1 + We want to show that for small |03C3|, the

characteristic set of P has the same qualitative shape as that of PB i.e., P
has only four non-degenerate double characteristics close to those of Pl.

The study of perturbations of non-strictly hyperbolic 3 x 3 systems
was taken up by F. John in [8], where he studies the neighborhood, in
the space of all second-order, linear, constant coefficient operators, of a

specific non-strictly hyperbolic operator J with four non-degenerate double
characteristics :

Vol. 69, n 3-1998.
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which he calls the "modified elasticity operator." He shows that for a general
(nonsymmetric) perturbation of J to be hyperbolic, it has to satisfy certain
identities, since the space of all hyperbolic operators in that neighborhood
has a positive codimension. From his proof it follows that any hyperbolic
perturbation of J must necessarily be non-strictly hyperbolic, and in fact
has exactly four non-degenerate double characteristics close to those of J.
We note that the slowness surface of John’s elasticity operator J looks just
as in Figure 2, which justifies naming the material after him 3.

Expanding on John’s work, the following general result on the stability
of non-degenerate double characteristics was later obtained by Hormander
[7], and also independently by Bernardi and Nishitani [ 1 ] . We recall that a
nonzero vector 03B60 E 1R4 is called a characteristic of if det P(03B60) = 0.
~ is simple if the zero of det P~~) at ç == ÇO is of order one, and double

if it is of order two. It is easy to see that at a double characteristic, the
rank of the Hessian of det P is at most 3. If this rank is 3 then the double

characteristic is called non-degenerate.

THEOREM (Hörmander). - Let be hyperbolic and have a non-
degenerate double characteristic at 03B60, with dim ker P(03B60) == 2. Let 
be close enough to P. 7/’ P is hyperbolic, then it also has a non-degenerate
double characteristic, which is close to 03B60.

Thus in our case, we need to examine the Hessian of Ql at the multiple
points. It will turn out that in the generic case, the rank of the Hessian is
indeed 3, and thus we can conclude that P has four double characteristics
close to those of In the exceptional case however, the rank of the
Hessian is one, and thus the addition of higher-order terms to P1 can
change the shape of the characteristics.
We recall that Q1 {~~ is a homogeneous polynomial of degree six in çp,

~c == 0,... ,3. Since the Hessian B72Ql is also homogeneous, it is enough
to find the rank of its restriction to ço == 1. Let

3 The origin of John’s operator remains a mystery. John himself is silent about this matter
in [8], except for mentioning that in the excluded case where the Ei are equal, J becomes the
linear elasticity operator Hormander believes [7] that John arrived at this operator by taking
the Lame operator of crystal optics for the case of a biaxial crystal and replacing the planar
portion of the characteristic set with a light cone. Indeed, the Fresnel surface does come up
in [8]. However, in view of the similarities between J and PB a direct motivation from 3-D
elasticity, or perhaps from crystal acoustics, cannot be ruled out. It is interesting to note that
the relativistic constitutive equation p == q2 for an elastic solid will also give rise to the same
structure, i.e. the Fresnel surface with a unit sphere added inside [3].
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Let us assume that we are in the generic case, where the principal shears (J’i

are distinct. By renumbering the axes we can arrange that (J’3 is the middle

one, so that the double characteristics set is

where Q 12 is the quartic defined in (2.18). Since Q1 is in fact cubic in the
squares of the ~, there are no terms in H which are linear in ~3, so that

Thus to show that H is rank three on D~ it is enough to show that at the
double characteristics, N33 7~ 0 and that the rank of H is at least two.

Let H be the 2 x 2 submatrix in the lower right corner of H. Then

9~(Q(1,~2,0)), i,j = 1, 2. It then suffices to show that [ is

nonsingular. Now,

Therefore

which is rank 2 if 03B6 and ~Q12 are linearly independent, i.e., if the

intersection of the quartic curve Q12 = 0 with the circle 03 is transverse.
It is easy to compute that at an intersection point,

which is nonzero since we have assumed 7i ~ 03C32. Hence H is nonsingular.
To calculate N33, we note

so that, from the expression (2.12) for Ql we have

which is again nonzero since we are in the generic case. We have thus
shown that the four double characteristics of P1 are non-degenerate, so that
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by the above theorem of Hormander, any hyperbolic perturbation of P 1
must also have exactly four double characteristics which are close to those
of P1. We have thus established the following:

THEOREM 2.2. - At a point x E M where the three principal shears 03C3i

are distinct, the hyperbolic operator whose symbol is P defined in (2.6) has
exactly four non-degenerate double characteristics which are 
to the following four directions

3. NONRELATIVISTIC ELASTODYNAMICS

3.1. Nonrelativistic dynamics and the
relationship between the two formulations

Corresponding to the system (1.6, 1.8), there is a first-order system of

equations for the nonrelativistic dynamics of a solid body, which can be
obtained through the following well-known procedure: One begins with the
Minkowski metric for the spacetime M:

and introduces the Newtonian time coordinate t := the Newtonian

velocity ~/ i : - and the internal energy 4 ~ : := p - nc2, where c
denotes the speed of light in vacuum. Taking the limit c 2014~ oo in ( 1.6,
1.8), one then obtains:

where ,5‘ is the stress tensor

4 Here we are assuming that the material is made up of only one kind of (macroscopic)
particle, the rest mass of which is normalized to be one.
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with ek := The equation of continuity is a consequence of (3.2):

Using it, the momentum equation (3 .1 ) can also be written in the form

The adiabatic condition (3.3) is satisfies by C1 solutions. More generally,
the energy equation is satisfied:

The above nonrelativistic equations can also be put in the same context as
the relativistic ones by letting f be a mapping from the Galilean spacetime
~, with coordinates ~~, ~i), into the material manifold which is now
taken to be a region the three-dimensional Euclidean space, and let f t
denote its restriction to the time slice {t} x R3 C g. We define h to be the
pullback of the Euclidean metric 8 under i.e.

where x) == Jif. The internal energy per unit deformed volume
e is then assumed to be a function of the three principal invariants ql, q2, q3
of h, as well as depending on the entropy 5.

We thus have two different formulations for nonrelativistic elastody-
namics : The one given in the beginning of this paper, which leads to
a second-order system for the displacement field, and the one described
above which gives a first-order system for the velocity and strain fields
(reminiscent of the Euler equations of fluid dynamics). The relationship
between the two formulations becomes clear when we note that the

deformation ~ : ~ x A/* -~ 1R3 is the inverse of the mapping f :

Thus, with F denoting the deformation gradient as before, Fa = 
from (3.6) we have that

Therefore, the matrix h is the inverse of the classical right Cauchy-Green
strain matrix. Since and have the same eigenvalues, we conclude
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that the eigenvalues of h are the reciprocals of the eigenvalues of B, and
hence the following relations hold between the principal invariants of B
and h:

Moreover, by comparing the expressions for the energy integral in the
two formulations we can find the relationship between W and e:

The integrand in the last integral above must be equal to the energy per
unit deformed volume e(x), and hence W o ft = In other words

It should be stressed that in the general-relativistic case one cannot use a
formulation based on displacements, and thus the variational formulation is
the only one available, while for nonrelativistic dynamics, either of the two
formulations can be used, and it is conceivable that for a given problem,
one is more appropriate than the other. Later on in this section we will
have the opportunity to use both of these formulations.

3.2. Characteristics in the nonrelativistic case

We can calculate the symbol of the nonrelativistic equations (3.1-3.3) in
a similar way. By going into a Galilean frame moving with the body we can
set v~ = 0 at the point that the symbol is calculated. Taking variations we
then obtain, with (r, Ç") in the cotangent bundle to the Galilean spacetime,

Moreover, the symbol of the continuity equation (3.4) is

Once " again, r = 0 is a characteristic, and if r 7~ 0 then s = 0 and we obtain
that it = We can now introduce the shear tensor a by setting
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hij == n2/3(03B4ij + Once again it follows that = p03B4ij + + 
with p, q, w as before. Continuing the calculation as in the relativistic case,
we obtain that if (r,~) belong to the characteristic set, then 

for some nonzero , where

where is exactly as in the relativistic case. Thus the only difference is
that the factor of the relativistic case is here replaced by n. This does
not affect the above analysis concerning the geometry of characteristics, and
all the above conclusions are thus valid in the nonrelativistic case as well.

3.3. Elastic waves in pre-stressed materials

In order to show that the formulation developed in the above for

relativistic dynamics is not without application to the nonrelativistic case,
we present here two results on the propagation of elastic waves in materials
which are under a constant isotropic deformation. The results are easy
extensions of two theorems by Sideris, one on the global existence of
small-amplitude waves in hyperelastic materials [ 14], and the other on the
formation of singularities for compressible Euler equations [13].

3.3.1. Small-Data Global Existenee

In [ 14], Sideris considers the problem of global existence of nonlinear,
isentropic elastic waves in an isotropic, homogeneous, hyperelastic material
which is initially stress-free and is filling the whole space. He shows that if
the stored energy function W satisfies certain conditions --called the null

conditions, then the Cauchy problem for the displacement admits globally
regular solutions, provided the initial data is sufficiently small in some
high Sobolev norm. The null conditions are algebraic relations between the
derivatives of W evaluated at the stress-free reference state. Previously,
John had shown [9] that if these conditions do not hold, then at least in the
spherically symmetric case singularities will develop from arbitrary small
data after a very long time.
Here we provide an extension of Sideris’s result to the case where the

solid material under study is not initially stress-free but instead subjected
to an initial constant isotropic deformation ~/ )2014~ A~/ for some fixed A &#x3E; 0.
The proof consists of repeating Sideris’s argument while keeping track
of the factors of a, and thus will be largely omitted. It suffices to say
that, following his method, analogous null conditions can be derived in
which A appears as a parameter. If we accept that global existence of
nonlinear waves should not depend on the exact amount of pre-stress, then
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these conditions have to hold for all 03BB in some interval, which makes them
differential equations in A. By making suitable assumptions about the stored
energy function, we can solve these equations to obtain the general class of
materials for which the global existence result holds. In this way we hope
to shed some light on the null conditions of Sideris.
We use the classical formulation of elastodynamics, as in [ 14], and start

with the system ( 1.1 ). We consider small displacements off a pre-stressed
state by letting

denote the perturbation. Here A  1 corresponds to initial compression and
A &#x3E; 1 to the initial extension of the material. Let G := Dy u = F - A7
and C := B - ~2I = ~ ~G --~ + Let ~1, ,~2 ~ ,~3 denote the principal
invariants of C. We have

We can thus regard tV as a function of the k instead of the defining

Hence

Moreover, up to fourth-order terms in G,

so that, upon Taylor-expanding 03A3 in powers of k around k = 0 and

substituting in ( 1.1 ), keeping only terms of up to second order in u and its
derivatives 5, we obtain the following equation for the displacement ~:

5 It was shown by Klainerman [11] that cubic terms in the nonlinearity do not affect the
small-data global existence in elastodynamics.
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where N denotes the quadratic terms, and L is the linear elasticity operator
defined in ( 1.2), with the two propagation speeds

Here and later on E~ etc. denote the partial derivatives of ~

with respect to the evaluated at the isotropic background state

Jl == J2 =~3=0.
In Sideris’s work [ 14, §4], the quadratic nonlinearity ~c~ is analyzed

in order to identify the terms in it with bad decay. Those terms are then
eliminated by putting conditions on ~. Following that procedure, it is not
hard to see that in our case, the null conditions of Sideris have the form

We note that here, 03A311, 03A312, 03A3111 are functions of the parameter a. The

extension of Sideris’s result is therefore the following:

THEOREM 3.1. - Assume that the stored energyfunction of a hyperelastic
solid material satisfies the null conditions (3.11 ). Then the eorresponding
Cauchy problem for (3.9) with initial data that are small enough 

6 has a

unique global solution.
Our task is now to identify a class of materials where the null conditions

are satisfied. In the above we have assumed the perturbation ~c to be

small, while no smallness assumption has been made about the background
isotropic pressure. we are thus in a situation where the strains are not

uniformly small. This motivates us to use the nonrelativistic version of the
shear strain tensor o-:

so that cr = 0 if F is a multiple of the identity. The invariants of Band
~ are related as follows:

and we have n == z3 l2 as before. Note that ~1 =: J2 = J3 = 0 corresponds
now to T == 8 == 0, i.e. the isotropic background state. Moreover, by (3.8),

6 See [14, Thm. 5.1.] for the precise smallness condition.
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where eis again the energy per particle 7. If we assume as before that e

has an expansion of the form (1.17), then we can calculate explicitly the
partial derivatives of 03A3 that appear in (3.10) and (3.11 ) in terms of the

parameter A. The remainder term in the expansion ( 1.17) will not affect
this calculation since only derivatives of up to the third order are needed:

Setting n = ~1-3, the null conditions (3.11) thus take the form of two
ordinary differential equations for three unknown functions:

Thus e~ and e3 can be found in terms of eo:

with c an arbitrary constant. The arbitrary function eo is subject to further
conditions to ensure the hyperbolicity of equations, or equivalently, the
linear stability: The propagation speeds Cl and c2, have to be real, with
ci &#x3E; C2 &#x3E; 0. This implies that there must exist a constant C &#x3E; 0 such that

7 Since we are ’ in the isentropic case ’ the dependence ’ on the entropy is suppressed o throughout
this section.
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In addition, it is reasonable to assume that the stress-free state n = 1, r =
8 == 0 is a minimum of the energy, so that

We thus arrive at the following:

PROPOSITION 1. - If the stored energy function ~ of a homogeneous,
isotropic, hyperelastic solid satisfies ( 1.18), then the null conditions (3 .11 )
hold for 03A3 if and only if the coefficients ei in the expansion ( 1.17) satisfy
(3.12-3.15).

Remark 2. - It should be noted that conditions (3.14-3.15) are overly
restrictive. In particular, they do not allow for 
contrary to what is often assumed about stored energy functions. In fact,
by integrating (3.14) it is easy to see that the following is a necessary
condition for eo :

2. - As a simple example of materials satisfying the null

conditions, we may consider the class of Hadamard materials, where W
has the following form

It is then easy to see that W satisfies the null conditions (3.11 ) if and only if

where

The corresponding coefficients in the expansion (1.17) are as follows:

The two speeds of propagation (measured with respect to coordinates in
the undeformed state) are thus

3-1998.
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and hence the hyperbolicity requirement is

3.3.2. Large-Data Blowup
In this section we provide an example of a Cauchy problem for the

nonrelativistic system (3.1-3.3), whose C1 solutions cannot have infinite
lifespan. This is an extension to elastodynamics of Sideris’s large-data
blowup result [ 13] for compressible Euler equations, and the proof follows
his original argument very closely. We consider solid materials with a
constitutive equation of the form

where e2 satisfy the following conditions:

Let 9 denote the corresponding stress tensor. We define the "pressure":

and assume that

(M4) p(n, s) is an increasing, convex function of n, for each s &#x3E; 0.

(M5) p(n, s) is a non-decreasing function of s, for each n &#x3E; 0.

We propose initial data that represent a compactly-supported perturbation
of some quiet background isotropic state, i.e., we assume that

(Dl) There exists &#x3E; 0 such that ~(0~) = 0, ~(0, x) - and
= so, for ~~~ &#x3E; Ro, where no and so are positive constants.

By a Domain of Dependence argument, it follows that as long as the
solution remains CB

where

and c~ is the speed of propagation of longitudinal waves in the quiet
background, i.e.
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Let

be the total radial momentum, which is finite by (3.18). Let po denote the

background pressure,

and let So denote the background stress tensor,

By (3.5) we then have

Let

Then by (3.4) we have dM/dt - 0, so that M is conserved: M(t) -
M(0) ==: Mo. Our further assumptions on the initial data are that

(D2) Mo &#x3E; 0.

(D3) s(0, x) &#x3E; so for all ~.

The adiabatic condition (3.3) shows that the entropy s remains constant

along the flow lines, and thus (D3) implies that .5(~) &#x3E; so for t &#x3E; 0 as

well. Hence, by (M4) and (M5),

It then follows that

so that we have
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Therefore Q is an increasing function of t. In particular Q(t) &#x3E; 0 for all
t &#x3E; 0 if Qo := Q(0) &#x3E; 0. On the other hand

so that we arrive at the following differential inequality:

Integrating this, we have

This contradicts the positivity of Q provided our last assumption on the
initial data holds, i.e., if

(D4) Qo &#x3E; c01( roo -2014201420142014.201420142014- ) . The contradiction implies that
there exists a certain T*  oo by which time a C1 solution has to develop
a singularity. In particular, the domain-of-dependence may break down at
an earlier time, perhaps because a shock discontinuity forms. We have
thus proved:

THEOREM 3.2. - Suppose that the constitutive equation hyperelastic
solid is of the form (3.17) and satisfies (MI-M5). Then the corresponding
Cauchy problem for (3.1 )-(3.3) with initial data satisfying (DI-D4) cannot
have a global-in-time C1 solution.
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