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Classical limit of elastic scattering
operator of a diatomic molecule

in the Born-Oppenheimer approximation
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ABSTRACT. - In this paper, we use the Born-Oppenheimer approximation
to study the elastic diffusion operator 5~, for a two-cluster channel a of
a diatomic molecule. Under a non-trapping condition on the effective

potential, we compute the classical limit of acting on quantum
observables and microlocalized by coherent states, in terms of a classical
diffusion operator. This work is a continuation of [KMW 1 ], in a sense,
where the channel wave operators were studied. @ Elsevier, Paris.

RESUME. - Dans ce travail, on utilise 1’ approximation de Born-

Oppenheimer pour étudier l’opérateur de diffusion élastique pour
un canal à deux amas a d’une molecule diatomique. Sous une condition
de non-capture sur le potentiel effectif, on determine la limite classique
de agissant sur une observable quantique et microlocalisée par des
états cohérents, en terme d’un opérateur de diffusion classique. Ce travail
prolonge en quelque sorte [KMW 1 ], dans lequel les opérateurs d’onde de
canal étaient étudiés. © Elsevier, Paris.

Mots clEs : .’ Approximation de Born-Oppenheimer, limite classique, estimations micro-
locales de propagation, etats coherents, diffusion.

1 Present address: Fachbereich Mathematik MA 7-2, Technische Universitat Berlin, strasse
der 17 Juni 136, D-10623 Berlin, Germany. E-mail: jecko@math.tu-berlin.de

Annales de l’Institut Henri Poincaré - Physique théorique - 0246-0211 1
Vol. 69/98/0 I/O Elsevier, Paris



84 Th. JECKO

Contents

I Introduction ............................... 84

II. Parametrices for the operator P~ ................. 88

III. Propagation estimates for P~ .................... 101

IV. Classical limit for the operator 5~~ ................ 117

Appendix .................................. 128

References .................................. 130

I. INTRODUCTION

In this work, we study the two-cluster scattering operator for a diatomic
molecule. Since the nuclei are much heavier than the electrons, one expects
to observe a behaviour which would be close to the classical scattering
of two particles. This is known as the Born-Oppenheimer approximation
(cf. [BO]). Under suitable conditions, we justify this approximation for
the elastic scattering operator of some two-cluster channel a. To this end,
we study the classical limit (when the nuclei’s masses tend to infinity)
of the scattering operator acting on a quantum observable and
microlocalized by coherent states. We introduce the adiabatic operator SAD,
which approximates but is of a simpler structure. Then we compute the
classical limit of this adiabatic operator in terms of the classical scattering
operator (defined in e.g. [RS3]).

In [KMW1] the classical limit of the cluster channel wave operators
for such a channel cà was derived. The present work is a continuation
of [KMW 1 ] under the same assumptions. Concerning other mathematical
works on the Born-Oppenheimer approximation, we refer the reader to the
references quoted in [KMSW] and [J]. For the classical limit see e.g. [W3],
[RT], and [Y].

Studying a diatomic molecule with No electrons, it is known from

quantum mechanics that its dynamics is generated by its Hamiltonian, the
following self-adjoint operator acting in the Hilbert space ~(tR~~"~),

(the electronic mass and Planck’s constant are set equal to unity). The
respective mass of the two nuclei, ml and m2, are then large compared
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85CLASSICAL LIMIT OF ELASTIC SCATTERING OPERATOR

to unity, the real-valued functions ~~ represent the two-body interactions
between the particles. More generally, the configuration space of a single
particle is assumed to be I~n for n &#x3E; 2, so that the previous operator acts
in L~(R~+2)~

Let a - (A1, A2) be a decomposition of {1,’’ -, N0+ 2} in two clusters,
such that j E Aj, for j E {I? 2}. Then each cluster contains a nucleus.
Using a suitable change of variables and removing the center of mass
motion, the Hamiltonian is replaced by the following operator:

acting on (see Section II for the precise expressions of 
and The positive number h given by (11.1) is the small parameter
in this problem, the operator is the sum of the Hamiltonians of each
isolated cluster, and the intercluster potential Ia (h) takes into account the
interactions between particles of different clusters. The variable x E IRn
stands for the relative position of the cluster’s centers of mass so that the
energy of this relative motion is given by the operator -h20394x. Temporarily
ignoring this term, we consider the family ~Pe (x; h) , x E ho ~ of
operators defined by

for some ho small enough. The Hamiltonian 0) is the Hamiltonian
of a system of No electrons, which interact with one another while they
are moving in an external field generated by the nuclei. This external field
depends on the relative position x of the two clusters. The operator Pe (x; h)
is called the electronic Hamiltonian and one has:

The two-body interactions appearing in these operators are functions
V E such that, for some p &#x3E; 1, they obey

We are interested in thoses states of this system, whose evolution is

asymptotically close to the free evolution of bound states in Al and A2.
This later evolution is generated by the operator

Vol. 69,n° ° 1-1998.



86 Th. JECKO

restricted to some proper subspace of Using the free evolution
generated by Pa (h), the operator SAD will be the scattering operator of an
adiabatic operator whose construction is given as follows.

Considering the system for h = 0, we suppose that the bottom of the
spectrum of the operator P"(0) is a simple eigenvalue Eo, that there is

exactly one "curve" ~ t2014~ A(x; 0), where 0) is also a simple eigenvalue
of 0) and such that it converges to Eo as Ixl - 00. Furthermore,
suppose that the map, x - 0), assuming its values in the spectrum

0) ) of 0), is globally defined in Let IIo (0) be the spectral
projector of P"(0) associated to Eo, and, for all x E let II(r ; 0) be the
spectral projector of Pe(x; 0) corresponding to 0).

DEFINITION 1.1. - Assume that there exists a constant eo such that, for
one has 0) &#x3E; eo. For a positive number 8, we set

e(x) = 0) + 8 and ~(~) - 0) + 28. Assume that we can find
a positive number hb such that one has, for h  hs~

The gap condition is close to the assumption (1.8) in [KMW2]. For
the same 8, we assume that there exists &#x3E; 0 and hs &#x3E; 0 such that, for
all ~~~ &#x3E; Ro and h E [0, one has:

denotes the characteristic function of the interval] - ~, e(x)[).
Finally, the following condition is also assumed:

If these assumptions (Hs~, (Hs~’, and (H) are satisfied, for some 8 &#x3E; 0,

we will say that, for Eo, the semiclassical stability assumption (H S ( h) )
is satisfied.
Under this assumption on Eo, one can find a h-independent

family of complex contours such that encircles 0) for all x and
such that one has:

Making use of these contours, one can express the projectors and

0) by means of the Cauchy integral formula (see section II). For h

Annales de l’Institut Henri Poincaré - Physique théorique



87CLASSICAL LIMIT OF ELASTIC SCATTERING OPERATOR

small enough, one can also define a spectral projector IIo (h) (respectively
h,)) of (respectively Pe(x; h)) by the same Cauchy formula.

Using a direct integral, we define a fibered operator II(h) by

We can now introduce the adiabatic part of P(h)

and the wave operators

In [KMW 1 ], the existence and the completeness of these wave operators is
proved, enabling us to define an adiabatic scattering operator SAD by:

Recall that a channel ~ with decomposition a is given by (a, ~~(h,)),
where ~~x(h,) is a normalized eigenvector of Pa(h) associated to the

eigenvalue 
Let us consider the channel c~ = (a, Eo(h), whose energy Eo(h)

tends to Eo 0. According to [KMW1], the wave operators 
approximate the following channel wave operators

in an appropriate energy band. More precisely, one has

under a suitable condition on the support of the cut-off function x E
R) (see Theorem IV.I). Thus the operator SAD (h) is close

to the elastic scattering operator

which is well defined for short-range interactions (cf. [SS]).

Vol. 69, n° 1-1998.



88 Th. JECKO

From this fact, the study of the classical limit of the scattering operator
(h) (see Section IV) allows us to obtain the main result of the present

work:

THEOREM 1.2. - Assume (DP~, p &#x3E; 1, for the potentials, and the
semiclassical stability assumption (HS(h)) for the simple eigenvalue Eo
(cf Definition /.1). Let x E +00[; R) be non-trapping for the
classical Hamiltonian 1Ç-12 + 0) (cf Definition I1.2) and such that its
support satisfies:

Let (xo, o) E with ~ ( ~ ~~ ~ 2 + Eo) = 1. For the ehanhel cx =

(a, Eo(h), and for all bounded symbols c, valued in =

we set:

where the coherent states operators ~o) and the h-pseudodifferential
operator c(x, hD), with symbol c, are defined by (IL 13) and (IL 12)
respectively. Denote by the classical scattering operator associated
to the pair of classical Hamiltonians ( ~ ~ ( 2 , ( ~ ~ 2 -~ ~ (~; ~ ) - Eo ) (cf (IV.1 )).

In ~2 ~~~ ~ ~2 the following strong limit exists and is given by:

This work is organized as follows. In Section II, some notation is
introduced and the construction in [KMW1] of parametrices (see [IK]) for
PAD is recalled. Microlocal propagation estimates for this operator are
obtained in Section III. The proof of Theorem 1.2 follows directly from
Theorem IV.2 in Section IV, which proves the existence and gives the
value of the classical limit for the adiabatic scattering operator 

II. PARAMETRICES FOR THE OPERATOR 

In this section, we recall the contruction in [KMW1] ] of parametrices
(see [IK]) for distinguishing incoming and outgoing regions. These
parametrices will be used in the Sections III and IV. The potentials satisfy
the condition (Dp), for p &#x3E; 1.

Annales de l’Institut Henri Poincaré - Physique théorique



89CLASSICAL LIMIT OF ELASTIC SCATTERING OPERATOR

First, we give the exact expression for the operators and h).
Let us call y the dynamic variable in Denoting by A~ the set of the
electrons in the cluster Ak, by I its cardinal, and by Mk = mk + I
the total mass of the cluster Ak, for k e {1,2}, the small parameter h
is given by

Then, one has:

and:

where fk == are h-dependent, for k E {1,2}. For l  j, we
have set = Denote by Phe the following Hughes-Eckart
term :

(the scalar product of the gradients is meant here).
Let us now recall some properties of the projectors h) and IIo(h),

especially in view of the fact that they admit an asymptotic expansion
in increasing powers of h with coefficients in H = Under

the assumptions of the introduction, one can express these projectors by
the following Cauchy formula, provided 8, h8 are small enough. Then,
for h E [0, hs~,

Vol. 69, n ° 1-1998.
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where

For all x E one also has:

Note that we may always choose = for Ixl large enough.
Thanks to the exponential decay of the eigenfunctions of the operator

associated to the eigenvalue Eo (cf. [A]), these projectors have the
following properties:

PROPOSITION The functions 1 - h) 
£(L2(RnN0y)) are C°° and verify:

uniformly w. r. t. h E [0, hs small enough. Furthermore, for all natural
numbers N, one has

with 03C00k E H, for all k = 1, ... , N. Again for all N, one has, uniformly
w.r.t. ~ E [Rn

where the functions IRn :1 x ~ 03C0k(x) E H are C~ and 

VCY e ~D03B1 &#x3E; 0; Vlt e  (11.5)

Furthermore, the operators 03C00k and have rank at most 1 (multiplicity
of Eo).

Proof - For the first estimate (11.2), one may follow the proof of Theorem
2.2 in [KMWl]. We show now the second one (11.3). For z ~ f( (0) and
h small enough, one has

Annales de l’Institut Henri Poincaré - Physique théorique
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For all k, define the following bounded operator

Then, for all N, one has

Using the relation

we obtain the asymptotic expansion of IIo (h), to all orders. Furthermore,
the coefficients of this expansion are at most rank-one operators, because
they all contain a factor no(0).

For the operator II(x; h), we use a slightly different argument because
we do not know how to control the following quantity

To avoid this difficulty, let us project first onto and onto

Ranll(x; 0). For all x, the difference

is given by

Vol. 69, n° 1-1998.
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Using a Taylor expansion, we obtain, for all N,

where the terms 0) are 0~~~~-P-~~, thanks to the stability
assumption and the exponential decay of eigenfunctions (cf. [J]). For all N
and uniformly w.r.t. x, it follows that

In the same way, we also obtain the following expansion to all orders
and with the same operators ilk

Writing

it follows from (11.6) and (11.7),

On the right side of (11.8), we replace each h) by the expression
given by (11.8). Then we obtain a new expansion of the difference

h) - 0), where the coefficient of order h2 does not contain

h) anymore. Repeating this trick a finite number of times (depending
on N), we arrive at the following formula which holds uniformly w.r.t. x:

with at most rank-one coefficients, since they all contain a factor II~x; 0).
We then have proved (11.4). Furthermore, these factors are C°° functions

Annales de l’Institut Henri Poincaré - Physique théorique
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of x. In the Taylor expansions above, we may write the remainders as
integrals h). These remainders of order N, which are also

regular functions of x, can be controlled by the following estimates:

uniformly w.r.t. h and for all a E (cf. [J]). Thus the last estimate (11.5)
follows from the first one (11.2). D

Let us denote by Eo(h) the simple eigenvalue of which tends to

Eo as h 2014~ 0, denote by 0) the simple eigenvalue of 0) which
tends to Eo as oo and denote by h) the simple eigenvalue of

Note that A(~;h) verifies:

uniformly w.r.t. x (cf. Proposition 3.1 in [KMW 1 ] ) and:

uniformly w.r.t. h, for h small. The simplicity of these eigenvalues implies
that we may write:

where Tr stands for the trace operator in H = Along the
lines of the proof of Proposition II.1 we obtain, for all N,

and

uniformly w.r.t. x. Furthermore, the functions [Rn 3 x ~ are smooth

and verify:

Before recalling some results from [KMW 1 ], we introduce some more
notation. Recall that H = L(L2(RnN0y)). For 03B4 &#x3E; 0 and m E R, we consider
the class ~~C) of symbols a E ?-C~ which have the property:

Vol. 69, n° 
° 1-1998.
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The class of bounded symbols is simply denoted by 5~). A
family a(h) E S~"(~-L) is called h-admissible if there exists an asymptotic
expansion of the form

where the coefficients aj E ~ ~(7~). For a given phase function

~ : 2014~ R and a given h-admissible family of symbols a(h) E 
we introduce the Fourier integral operator (FIO) defined by

where f E S ( l~~ ; ~2 ( I~~ ~° ) ~ . As a special case, the h-pseudodifferential
operator a(x, hD; h), with D = -2~~, is defined by the same formula
where the phase function ~ is given by ~(~,~) = ~ ’ ~. For the phases
4&#x3E;-:1:. we introduce below, we denote the corresponding FIO by J~ (b), for
a given symbol b.

Let us also define incoming (-) and outgoing (+) regions in the phase
space by

for E, d, R &#x3E; 0, and spaces of symbols supported in these regions by

Set:

We also consider real-valued symbols, just replacing by R in the previous
definitions.

Now we introduce the coherent states operators. For (xo, o) E x

Ri B ~0~, we define :

where Uh is the isometry of given by

Annales de l’Institut Henri Poincaré - Physique théorique



95CLASSICAL LIMIT OF ELASTIC SCATTERING OPERATOR

and where D~ = -i8x. To see how these operators act, we apply them to
the h-pseudodifferential operator b(x, hD) associated to a bounded symbol
b E S(H). Then, we observe that

By cpt (respectively we denote the Hamiltonian flow of the Hamilton

function p(~) = + A(x; 0) - Eo (respectively po(~) = lçl2) and
we set:

DEFINITION IL2. - For an energy E E I~, we denote by p-1 (E) the energy
shell

The energy E is non-trappang for the Hamilton funetion p(x,03BE) =
~~+A(~;0)-~o ~

where ~ ~ ’ II denote the norm of An open interval J is non-trapping for
the Hamilton function p(x, ~) _ ~ ~ i 2 ~ ~ (~; 0) - Eo if each E E J is. A
function x E Co R) is non-trapping if its support is included in a finite
reunion of non-trapping open intervals.
Thanks to the short-range property of the potential ~ (~; 0) - Eo,

the classical flow satisfies the following properties.

PROPOSITION II.3. - We use the previous notation.
1. For all E, d &#x3E; 0, there exist positive constants C, &#x3E; 0 such that, for

all R &#x3E; Ro and all (~, ~) E one has:

for all ::I:t &#x3E; o.

2. Let I be a compact interval included in some non-trapping interval, w. r. t.
the flow Let E, d, R &#x3E; 0. For all 0  E’  E and for all Ro &#x3E; 0, there
exist do, C, T &#x3E; 0 such that, for all (x, ~~ E W:r (E, d, R) n p-1 (1),

Vol. 69, n° 1-1998.
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for all ::I:t &#x3E; T.
3. For all E, Ro &#x3E; 0, there exist do, T &#x3E; 0 such that

implies that

for ::I:t &#x3E; T.

Proof. - These results are probably not new but we did not find a reference
in the literature where they are precisely proved. Then we propose a proof
in appendix. D

Furthermore, the classical wave operators

exist (cf. [RS3]).
In order to compute the classical limit of the operator SAD (h), we need

to establish suitable microlocal properties of the propagator of
To this end, we follow the WKB method developed in [KMW 1 ] for

the construction of parametrices (see also [IK]). Recall that the adiabatic
wave operators are given by

The main point is the approximation, for ::I:t large, of the wave operators
by operators of the form

where is a suitably chosen FIO. In others words, we require
that

On a formal level, we obtain

Annales de l’Institut Henri Poincaré - Physique théorique
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Demanding that the integral is small, this suggests that we should choose
the phases and the amplitudes in such a way that they obey:

Trying

as an ansatz, we see that the symbols a:r (h) must verify:

We expand as an asymptotic sum of symbols in increasing order
of powers of h:

Using the expansions in powers of h of Eo(h), h) and h)
(cf. (11.9), (11.10) and Proposition 11.1), one may rewrite the condition

(11.19) in the following form:

Requiring that all these symbols c3 vanish, we arrive at the following
so-called eikonal equation for the phases 

and the following transport equations for the amplitudes 

for k &#x3E; 1 and where the symbol bk only depends on the (¿j,:r for j  k.

In [KMW 1 ], these equations are solved in the regions d, R), for
E, d, R &#x3E; 0 and R large enough. The phases C° ( I~ 2n ) are constructed

Vol. 69, n° 1-1998.
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such that they satisfy the eikonal equation in the region d, R) and that
they obey: for all ~i, ~ &#x3E; 0, with 81 + 82 = p - 1, and for all a, j3 E N",
there exists a contant ca &#x3E; 0 such that

For R large enough, in particular, the maps x - ç) are global
diffeomorphisms and we denote their inverses by ~±(-,~). This may be
expressed in terms of the following identity:

Likewise, for large R, the maps ~ ~ are global
diffeomorphisms and we denote their inverses by ~±(~ -). The analogous
identity is:

Let us define the maps:

These diffeormorphismes 1i1,:r’ /~2,± and their inverses "conserve" incoming
and outgoing regions in the following sense: for all 0  e§  60,

0  do  do and 0  Ro, we can find R large enough such
that, 

and

Annales de l’Institut Henri Poincaré - Physique théorique
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The Hamiltonian flow $~, associated to the Hamilton function ~~~2+~(.x,; 0),
has a similar property:

for Ro large enough (cf. (11.15)). The diffeomorphisms and ~2,:r also
allow us to express the classical wave operators. For all (x , ~) in the region

(2E, 2d, 2R), we have:

and if (x, ç) E 2d, 2R) n in particular, we can invert this
relation:

On the other hand, the amplitudes a~ (h) are h-admissible symbols in the
class (E, d, R; ~C~ given by

where the functions xt E satisfy:

Their principal symbols verify the following relation for (~, ~) E

2d, 2R) :

for R large enough and with ~) E H. Furthermore, for all E’ &#x3E; E,

d’ &#x3E; d, R’ &#x3E; R, there exists C &#x3E; 0 such that, for (x, ~) E d’, 
the operators G~ ~x, ~) satisfy:

where I stands for the identity operator The choice of R

implies in particular their invertibility (See [KMW 1 ] for more details about

Vol. 69, n ° 1-1998.
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the operators G~(.r, ~)). In order to control the error terms, let us consider
the following symbols:

The family of is uniformly bounded in (E, d, R; 7~)
and verifies: 

in the region 2d, 2R) . By we mean

for all N E N. Finally, we remark that the

operator-valued symbols

have the same properties as ç; h) and ç; h), according to

Proposition II.1.
Thanks to the phases and the amplitudes one has:

PROPOSITION II.4. - ( f KMWl J) Choose E, d &#x3E; 0 and let denote

the characteristic function of the interval ]2d, +00[. Let R = d) large
enough. For the phases and for a symbol b(h), we denote b(h) )
(cf (//.12)) simply by 
1. On the range of the operator one has:

with:

where + 

2. Furthermore, for all functions f E one has:

Annales de l’Institut Henri Poincaré - Physique théorique
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where the functions are uniformly bounded in d, R; H)
and have the property (//.29) in the region 2d, 21~).

3. Considering a symbol

there exists T &#x3E; 0 such that

Here hD) is the h-pseudodiflerential operator with symbol 

Proof - see [KMW 1 ] . D

Making use of Proposition 11.4, the action of the wave operators 
on quantum observables and on coherent states is studied in [KMW 1 ]
(cf. Theorems 5.3 and 5.4 in [KMW 1 ] ). In Section IV, some equivalent
results are obtained for the adiabatic scattering operator ( h) .

III. PROPAGATION ESTIMATES FOR PAD.

In this section, we establish some estimates on the adiabatic propagation
that we use in Section IV. The potentials still verify the condition (Dp) for
p &#x3E; 1. Our results are similar to those in [Wl], [W2], and [W3], and we
will essentially use the same arguments as in these references.

Except the pseudodifferential operators, the FIO we consider in this

section, are constructed with the phases introduced in Section II, and
we denote them by for a given symbol b (cf. (II.12)).
We first recall that one has a semiclassical control on the boundary value

of the adiabatic resolvent of h) _ (PAD(h) - 
THEOREM 111.1. - Under assumption (Dp), p &#x3E; 0, for the

potentials and assumption (H~S’(h~~ for the simple eigenvalue Eo (cf
Definition /.1), let E E]Eo; -I-oo[ be a non-trapping energy for the Hamilton
, function ~ ~ ~ 2 + A(~ 0) (cf Definition II. 2). For all s &#x3E; 1 ~2, one has:

uniformly w. r. t. ~ close enough to E and h small enough.

Proof. - See Theorem 3.2 and Corollary 3.3 in [KMW1]. D

Vol. 69, n ° 1-1998.
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We also need a semiclassical Egorov Theorem (cf. [W4]) for the

propagator e -ih which essentially results from the arguments
in [Ro] (see also [W4]).

THEOREM IIL2. - Let c E S(H) be a bounded symbol. Denote by ~~ the
flow associated to the Hamilton function ~ ~ ~ 2 + ~ ~ x; 0). Under assumption
(Dp) with p &#x3E; 1 for potentials, the operator

is an h-pseudodifferential operator with bounded symbol h) E 
for all t. Furthermore, this symbol may be expanded asymptoticaly as

where the support of the bounded symbols E satisfy supp c

supp(c o I&#x3E;t). Finally, the principal symbol is given by 
II(x; 0)( c 0 ~~) (~~ 0).

Proof. - See [Ro].

Remark III.3. - With the same proof, one obtains a similar result for
the operator In fact, this is well known since 

(-h2~~ + (cf. [W4] and [Ro]).
On the other hand, we will also use some composition properties of

FIO and pseudodifferential operators (cf. [W 1 ] ), which are collected in the

following proposition:

PROPOSITION III.4. - Let ~~ be the phases constructed in Section II and
recall that we simply note a FIO b) by for a given symbol b.
For all 0  ~o  EO, 0  do  do and 0  Ro  Ro, one can find R large
enough such that the following properties holds.

Let b:r E ( ~0, do, Ro ; H) h-admissible symbols. There exists h-
admissible E ~’~,1 (EO, do ~ ~o ~ ~) such
that

Annales de l’Institut Henri Poincaré - Physique théorique
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We use the subscript 0 for the principal symbol. For each symbol
= d~ (h), and for all N E N, we write:

For = g~ ~x, hD) or J~ (g~ (h~ ~, according to the considered
composition, one has, for all k E 7~,

uniformly w. r. t. h.

These composition properties still hold for bounded symbols in ,S’(~C~. In
this case, the remainders are:

uniformly w.r.t. h.

Remark 111.5. - Recall that, for bounded symbols, pseudodifferential
operators and FIO are bounded operators on the weighted spaces
.Ls(~n; ~C~ - L2(~~; ~C; 

P~oof. - The arguments of [WI] ] still hold if we replace real-valued
by operator-valued symbols (cf. [Ba]). The control on supports is ensured
by (11.21) and (II.22). About the bounded symbols the arguments in [Ro]
apply. D

Now let us give propagation estimates uniformly w.r.t. h.

PROPOSITION 111.6. - Let x E +00[; IR) be non-trapping for the
Hamilton function |03BE|2 + 0) (cf Definition II. 2).
1. Then, one has:

for all t ~ ~, uniformly w. r. t. ~.
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2. For all symbols b:r E (IR), for all one has:

for all ::I:t &#x3E; 0, uniformly w. r. t. h.

3. For do, R± &#x3E; 0 and 61, E2 &#x3E; 0 such that El + E2 &#x3E; 2, we consider symbols
2. For all kEN, one has:

for all &#x3E; 0, uniformly w. r. t. h. The condition E 1 + E2 &#x3E; 2 implies that
the symbols and b2,~ have disjoint supports.

Remark III.7. - We remark that the estimates (IIL3) and (III.4) in

Proposition III.6 still hold if a microlocalisation hD) is replaced
by a FIO Indeed, if we have b:r E then,
for all 0  E~  E~  EO, 0  do  do, and 6  ~  Ro  Ro,
we can find a symbol T~ E ~ 1(6~, d~, R~; IR) with value 1 in the region

Thanks to Proposition 111.4, we have:

where the family of symbols is uniformly bounded in the space
do, for all N. From the estimates of Proposition III.6 for

T(x, hD), we deduce the same estimates for thanks to

Remark 111.5, and thus for 
- For the same reason, these estimates (III.3) and (III.4) still hold for

7~-valued symbols.

Proof. - We follow the proof in [W2]. Let us first prove the first estimate
(111.2). Using the operator = II(h)A(jc)II(h) where

we have, according to Proposition 11.1,
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where the operator is of the form:

uniformly w.r.t. h and with p &#x3E; 1. Pointwise in we

may write:

and, therefore,

is given by

For a real A, with |03BB| large enough, one can verify that the operator
conserve domain (cf. [J]). Using the functional

calculus of Helffer and Sjostrand (cf. [HS]), we infer that the operator

is bounded. Thanks to Theorem 111.1, the operators ~:~~-~ and

h) for p &#x3E; 1/2 are locally on the support
of x (cf. [RS4]). Then there exists a h-independent constant C, such that

for all functions f E ~2 ~~~ ; L2 ~~y No ~ ~ . It follows from (II1.5) that,
uniformly w.r.t. h,
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Now we choose a non-trapping function 0 E +00[; R) such that
x = x9. The operator

is bounded (cf. [J]). This yields the first estimate (III.2).
According to [Wl], one has, under the conditions of Proposition III.6,

similar estimates as (III.3) and (II1.4) for the free propagator, i.e., for all
integers k, Z &#x3E; 0, one has:

and:

for all ::I:t &#x3E; 0, uniformly w.r.t. h.

Next we prove the second estimate (III.3) in Proposition (III.6). Let

6~ E do, Choose E, d &#x3E; 0 small enough such that 3E  6o

and 2d  do. Let

Pick R large enough such that the properties of Section II hold and that
Proposition III.4 applies. Thanks to the ellipticity of the principal symbol

in the region 2d, 2R) (cf. (II.2fi)), there exist (cf. proof of Lemma
4.5 in and Proposition 111.4 in the present work) bounded symbols

in do, Ro; H) such that, for all N, one has:

with:
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and where the operators verify the property (III.1), i.e.:

for all k; E Z. By the definition of the symbols (cf. (II.28)),

Using the functional calculus of Helffer and Robert (cf. [HR]), we can
show that the operator is an h-pseudodifferential operator with
symbol in (cf. [WI]). The operators and 
are bounded on the weighted spaces ~-l), for all s E ~. Thus, for all
kEN, one has, according to (III.6) and to Remark III.7,

for ::I:t &#x3E; 0. Thanks to the first estimate (III.2) in Proposition 111.6 and to
the property (111.1), the term

for all N &#x3E; k + 1, is less than

for ::I:t &#x3E; 0. To evaluate the integral in (111.9), we write:

where is supported in ~~ (2E, 2d, 2~~, the second term

~~,2 ~~V; h) in
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and where the support of the third term ~~,3 (lV ; h) neither intersects

nor

In particular, the operator h)~~~~ is thanks

to (II.29). The symbols h) are uniformly bounded in

S~i(2 - 3E, 2d, 2R). Due to the choice of E and 6~ we have 2 - 3e + 6~ &#x3E;

2. The compactly supported symbols h) are uniformly
bounded.

Now we use Remark III.7 and the property (II1.6) to obtain:

for ~t &#x3E; 0, j = 1,2 and N &#x3E; k + 3. Applying (III.7) to the symbols
h-l~x~~~,3(lV; h) and h), we deduce the estimate (IIL11) also for .
j = 3. Thanks to the first estimate (II.2) in Proposition 111.6, we obtain,
for N &#x3E; k + 3,

for ::I:t &#x3E; 0 (we have used (s) -1 (t - s) -1  c~t~-1). This finishes the proof
of the second estimate (III.3).
We come to prove the third estimate (II1.4) in Proposition 111.6. We use

the "factorisation" (111.8) for b2,± and we choose E, d, R &#x3E; 0 as before. For

we consider symbols E such that the

decomposition (111.8) is valid for b2,~.
Since the second estimate (II1.3) in Proposition 111.6 also holds for the

adjoint operator, we have, for all k G N,
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for all ::i::t &#x3E; 0, uniformly w.r.t. h. For N &#x3E; 2k + 1, this yields, due to (111.1),

for all ::I:t &#x3E; 0.

Now we write (III.9) for &#x26;2,±. Due to Proposition 111.4, we have:

where the operators verify (111.1). Choosing R larger if

necessary, we may suppose (cf. Proposition 111.4) that bl,~ (N; h) E

5~ i(6~do/2~/2) for some Ei  El with E~ + 6~ &#x3E; 2.

For all k E N and all N &#x3E; 2k + 1, using (111.1) for and (III.6),
this yields:

for all ::I:t &#x3E; 0. Thanks to inequality E~ + 6~ &#x3E; 2, we may apply (II1.7) to
h) and h). This gives:

for all ~ t &#x3E; 0.

We now have to evaluate the contribution of the integral in (111.9). We
split the symbol h) according to (III.10). Because of (111.6), we
obtain, for all k ~ N and all N &#x3E; 2k + 5,

where ::I:t &#x3E; 0 and j = 1, 2. Due to (III.7) and the choice of E, Estimate
(III.13) is still valid for j = 3. Thus one has, thanks to (111.12), for
N &#x3E; 2k + 5,
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for ::I:t &#x3E; 0 and uniformly w.r.t. h. This finishes the proof of

Proposition 111.6. D

COROLLARY 111.8. - Assume the same conditions as in Proposition 111. 6.
1. For N E N, we have:

for all t and uniformly w. r. t. h.

2. For all symbols b:r E and for all k, N E N, we have:

for all ::I:t &#x3E; 0 and uniformly w.r.t. h.

3. For do, R:r &#x3E; 0 and E2 &#x3E; 0 such that E 1 + E2 &#x3E; 2, assume that the

symbols E do, R~ ; ~ ), 1 :S j  2. Then, for all k, N E 1B1,
we have

for all ::I:t &#x3E; 0 and uniformly w. r. t. h. Remark III. 7 is valid for the

previous estimates.

Proof. - The purpose is to improve the decay properties w.r.t. t. Let

ql, e E +00[; be two non-trapping functions such that x = x ~
and 03C6 = 03C603B8. Putting

we write:

Using arguments from [Wl], we show that, for all 0  63  E3 and for all

N, we can split into the following form:
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where the symbols E verify:

and where the operator SN satisfies Estimate (III.1 ). Thanks to (III.17),
(III.18), and Proposition III.6, we mimick the induction in the proof of
Theorem 5 .1 in [W 1 ], and then we arrive at the claim. D

For the next section, we need upper bounds of the form ~t~ -~ ~ .
Adapting arguments from ~W 1 ], [W2] and [W3] to the present situation and

using the symbols and we are going to prove the following
proposition:

PROPOSITION III.9. - Let x E be non-trapping for the
Hamilton function |03BE|2 + 03BB(x; 0) (cf Definition II.2).
1. Let do, R:r &#x3E; 0 and £1, E2 &#x3E; 0 such that E2 &#x3E; 2. Let E

1 :S j :S 2. Then, for R+ + R- large enough and
for all N E N, we have:

for all ±t ~ 0. 
’ ’

2. Let &#x3E; 0 and denote the set of all functions
~ E Cü(1R2n; R) such that

Then, there exists R1 &#x3E; 0 such that, for all 03C8 E B(Ro), for all

b:r E and for all N E N, we have:

for all ::I:t &#x3E; 0. 
’ ’

Remark III.7 is valid for the previous estimates.

Proof. - Again, similar estimates hold for the free operator 
( - h2 0~ + and we refer to [w 1 j for the proofs. Precisely, we
have, for all symbols b+ E (R), for all N E N, and for ::I:t &#x3E; 0,
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uniformly w.r.t. h, and Estimates (111.19) and (III.20) in Proposition III.9
hold if we replace by Pa(h)IIo(h). Under the conditions of

Proposition 111.9, we then have, on one hand,

for all N E N and for :l::t &#x3E; 0, and

for all N and for all ::I:t &#x3E; 0, on the other hand.

First, we prove Estimate (II.20). Let 6~ E (EO, R). To this
end, choose E, d &#x3E; 0 small enough such that 3e  60 and 2d  do. Let

Pick R large enough so that the properties of Section II hold and
that Proposition III.4 applies. Let Rl &#x3E; 2R and R[ E]2R;Rl[. Using
the ellipticity of the principal symbol of a±(~), in the region
Bl1:r (2E, 2d, 2R) (cf. II.26)), and the proof of Proposition III.6, we can find
bounded symbols

in ~,1(~0~0~~~) such that, for all N, the "factorisation" (III.8) holds
and where the operators verify:

Due to the definition of symbols ~~ ~h) (cf. (IL2$)), we may write (111.9).
Using the functional calculus of Helffer and Robert (cf. [HR] ), the operator

is seen to be an h-pseudodifferential operator whose symbol
belongs to (cf. [W 1 ] ). According to’ Proposition III.4, we then have:

where the symbols ~ ~(~) are supported in the compact set 
and where the operator satisfy (III.24). Taking Ri also 

large enough, this yields, thanks to (III.22),
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Now we consider (III.10) again. Recall that the operator

is that the symbols h-1 ~x~~~,3(N; h) are uniformly bounded

in ~(2 - 3E, 2d, 2R), with 2 - 3E + E~ &#x3E; 2, and that the compactly
supported symbols h-1 ~~~~~,2 ~N; h) are uniformly bounded (cf. proof of
Proposition III.6).
Making use of Remark 111.7 and Property (111.21), we obtain the

following estimate:

Due to (III.22), for Ri large enough, it follows that

Using (III.23) for jR~ large enough, we obtain the estimate

Since 1j; is compactly supported, we deduce from the first property (111.14)
in Corollary 111.8, with k = 0, the following estimate:

where the constant C’ neither depends on h nor on t (we have used

(~-2~ _ ~~-2 ~ ~t~-2). Thanks to (III.21) and to (II.24) for 
on one hand, and thanks to the first estimate (III.14) of Corollary 111.8, for
k = 0, and to (III.24) on the other hand, we can write, for N &#x3E; 3,
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and

uniformly w.r.t. h (we have used again Remark III.7). Due to (111.8) and
(III.9), these estimates imply Estimate (111.20) in Proposition III.9.

Next, we prove Estimate (111.19). Assume that it holds if R+ and R- are
large enough. Then we fix ~ and choose ~ and l~~ large enough such
that Estimate (111.19) is valid (we treat the cases of upper and lower indices
simultanously). For E do, R. ; we write = 

with and

Thus Estimate (111.19) holds for et b2,:r. Choosing l~~ large enough,
we obtain the second estimate (III.20) in Proposition 111.9 for 03C8 and 63 ±.
This yields the first estimate (III.19) for fixed ~=p. So we just have to prove
it for R+ and R- large enough.
We use the "factorisation" (111.8) for &#x26;2,± again. For

we consider symbols E ~’~,1 ( E2 , do, R£ ; H ) such that the

decomposition (111.8) holds for b2,~ and we choose E, d, R as before.
We shall show that

We write (III.9). First, we evaluate

To this end, we remark that, for 0  E 1  61, the operators

have the following form:
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where A~,~ ~h) satisfy (III.24) and where the symbols 3)(N; h)) are

supported in some region ~~ ~E1, da, I-~~ ), with

As before, the operators A~_~ (h) verify (III.2f ). Since E~ + E; &#x3E; 2, (III.23)

applies if R~ is chosen large enough. The contribution of these two terms
is then seen to be 

To control the other term in (II1.9), we use the decomposition (111.10).
Again for R~ large enough, but now using (III.15) in Corollary III.8 with
k = 0, we obtain as before Estimate (III.25), where ~ has been replaced
by bl,~. This yields Estimate (II.27).

Writing the second estimate (III.15) of Corollary 111.8, with k = 0, and

using it for the adjoint operator, we obtain:

for ::i::t &#x3E; 0. Using (III.24), this leads to

We deduce from (111.8) again and (III.9) the first estimate (111.19) in

Proposition III.9 for N - 1. D
In Proposition III.9, the symbols &#x26;2,± and &#x26;~ must be supported

in a region where |x| is large. Such a condition is not appropriate for
the situation we consider in Section IV. However, we can get rid of this

condition by trading it for |tI large. This is precisely the purpose of the

following proposition:

PROPOSITION III.10. - Let x E +00[; R) be non-trapping for the
Hamilton function |03BE|2 + 03BB(x; 0) (cf Definition II.2).
1. For all functions ~2 E Co R), there exists T &#x3E; 0 such that, for

all I &#x3E; T and for all N E N, we have:

" /

2. For all functions ~ E and all symbols b:r E there

exists T &#x3E; 0 such that, for all :í:t &#x3E; T and all N ~ N, we have:
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3. Let &#x3E; 0 and E1, E2 &#x3E; 0 such that E1 + E2 &#x3E; 2. Let E

do, 1 :S j  2. There exists T &#x3E; 0 such that, for all
::I:t &#x3E; T and all N E N, we have:

We point out that Remark III. 7 is valid for the previous estimates. 
’

Proof. - First we take a non-trapping function 8 E +oo[; R) such
that x = x8. Using the functional calculus of Helffer and Robert (cf. [HR] ),
one can show that the operator is an h-pseudodifferential
operator whose symbol is supported in the support of where

p(~~) = + 0). Then we can write:

where b E and where VN satisfies:

Because of Egorov’s theorem (Theorem III.2), we obtain:

where VN,T verifies the property (111.31), uniformly w.r.t. T, and where the
support of the symbol bT is contained in the support of For some

Ro &#x3E; 0, the symbol b is supported in

For all Ri &#x3E; 0, there exists, thanks to (II.17), some Ti &#x3E; 0 such that,
for all T &#x3E; Tl, we have:

for some do &#x3E; 0. This yields:

Choosing Ri large enough, we deduce, from (III.20) in Proposition III.9,
the following estimate:
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for all t Since VN,T and VN verify (111.31), their contribution is also

0(~(~’~ according to (III.14) in Corollary III.8. This yields Estimate
(II.28) for positive t. For negative t, it suffices to consider the adjoint
operator.
We come now to the second estimate (III.29). Let b:r E Ro)

for EO, do, Ro &#x3E; o. We proceed as before. We have:

where bT,:r is supported in the support of For all Ri &#x3E; 0, we

deduce from (II.16) that, for some d &#x3E; 0, (Eo/2, d,1~1 ), for all
::l:t &#x3E; T, provided T is large enough. Choosing Ri large enough and using
(II.20) in Proposition III.9, we obtain (III.29).
To prove (III.30), we follow the same lines. We still have:

with the same properties as before. For all R1 &#x3E; 0 and 0  6~  El, we

have, thanks to (11.16), d, for ::I:t &#x3E; T and for T large
enough, for some d &#x3E; 0. Choosing E in order to have 60 &#x3E; E and taking Ri
large enough, we obtain, from the first estimate (III.19) in Proposition III.9,
the third and last estimate (III.30). D

IV. CLASSICAL LIMIT FOR THE OPERATOR SAD

The goal of this section is to obtain Theorems IV.2 and IV.3 dealing
with corresponding to Theorems 5.3 and 5.4 in [KMW1] for

cluster wave operators. Then we outline how Theorem 1.2 derives from

Theorem IV.2. To this end, recall that the potentials satisfy the condition
for some p &#x3E; 1. Using the results of Section III, we can describe

the action of SAD (h) on quantum observables and coherent states. The
result is expressed in terms of a classical scattering operator 5~ which
we define below.

As in Section II, the Hamiltonian flow associated to the Hamilton function

1Ç-12 + 0) is denoted by and we set:
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We consider now the following subset of the phase space:

In fact, is the set of phase space points which are non-trapping for
the Hamilton function ~ ~ ~ 2 + A (x; 0), according to Definition 11.2. Since the
eigenvalues A(x; 0) are simple for all x, the function R" 3 x - A(x; 0)
have the properties of the function II(x ; 0) (cf. Proposition 11.1).
Thus, the classical wave operators (II.18) exist and are complete (cf. [RS3]).
In particular, we have the following two inclusions:

so that we can define the scattering operator

by

As mentioned in the introduction, we have the following approximation:
THEOREM IV.1. - Under the assumption ~DP), p &#x3E; 1, for the

potentials and the assumption (HS(h)) for the simple eigenvalue Eo (cf
Definition /.1), let x E +00[; IR) be non-trapping for the Hamilton
function ~ ~ ~ 2 + ~1 ~x; 0) (cf Definition //.2) and such that its support verifies:

(these are the conditions of Theorem L2). Then we have:

Theorem 1.2 then follows directly from the following main result of
Section IV:

THEOREM IV.2. - Assume the assumption (Dp) with p &#x3E; 1 for the
potentials and the assumption for the simple eigenvalue Eo
(cf Definition Let x E R) be non-trapping for the
Hamilton function ~ ~ ~ 2 ~ ~ (x; 0) (cf Definition l.1 ~. Let ço) E p~2n
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such that + Eo) = 1. For all bounded symbols c E S(7-L~, where
~-l = we set:

The operators are given by (IL 13) and the h-pseudodifferential
operator c(x, hD) is defined by (IL~2).

In L2 ~~~ ~ ~2 ~~yNo ~~~ the following strong limit exists and is given by

To obtain Theorem 1.2, we just have to pick a function X E

Co (]Eo ; satisfying x = xx and non-trapping + ~ (x; 0 ),
to use the interwining property of the wave operators !1~ (h) and (h) ,
and to apply Theorem IV.l and Theorem IV.2..
We shall derive Theorem IV.2 from the following Theorem:

THEOREM IV.3. - Under the assumptions of Theorem IV.2, for all symbols

and for all bounded symbols c E ~~~C), we set:

For T large enough and for all t &#x3E; T, the operator is an admissible

h-pseudodifferential operator with principal symbol given by

where ~S‘ai (~, ~~ _ (SZai + ~ -1 o is the classical scattering
operator. Setting (q- , = (x, ç) and (y, r~~ == (x, ~), the symbols
Gt E valued in = are given by

See Section II for the definition of the operators G~, et r~2,~.
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Remark IV.4. - In contrast to Proposition II.4 in [KMWl], we need here
a non-trapping condition. This is not a surprise according to the definition
of the classical scattering operator 
- Notice that the proof of Theorem IV.3 would be easier if we require

that the observable c belongs to 5~ i(?Y) U Indeed, using
Proposition II.4, we may directly replace, in this case, each operator SZ+~ ~ h)
by W+ (t; h) in CAD ~h), up to an error of order In the general case,
the same replacement is allowed by the propagation estimates established
in Section III.

Proof (of Theorem IV.2 admitting Theorem IV.3~. - We follow the

arguments in [KMWl]. Let ~ E satisfying x = ~~.
By the interwining property of the wave operators S~~D ~h), we may write

It suffices to study the limit on the dense subset 

Let xi E be such that x 1 = 1 on the unit ball. We define

x~ ~~~ _ For f E we have (1 - 0,
for h small enough. Since the functions are uniformly bounded
w.r.t. h and since, for g E L2 ~I~~ ; 

it follows that

As already remarked in (II.14), we have:

Since the symbol (x, ç-) r--7 xi (x - + Eo(h)) belongs to

Cü(1R2n; we may apply Theorem IV.3 to the following operator:
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Then it is an admissible h-pseudodifferential operator with principal symbol
given by

for t &#x3E; T and for T large enough, since x = ~x. Furthermore, we have:

But we also have:

This leads then to:

Since is t-independent, we can take the limit as t - +00.
Recall + Eo) = 1. Because of the non-trapping condition and
the behaviour of ~_(x; ~~ when Ixl is getting large (see (II.20)), one can
see that the space points q(~t; q_, p_ ), x_ (x - 2~~) and q(t; ~, r~) all

go to infinity. The behaviour of the function x - II(x; 0) at infinity (cf.
Proposition 11.1) and those of G±(~) for large I (cf. (I.27)) yield the
claim. D

Proof (Theorem IV.3). - We consider a function x E R)
such that x = ~~. Due to the interwining property of wave operators,
we can write:

Let E, d, R &#x3E; 0. We shall choose them precisely later. We first impose
to R to be large enough such that the operators and ~2,± are global
diffeomorphisms (cf. Section II). Since we have b1 E we can find

some E &#x3E; 0 small enough such that we have the decomposition bi = b1 
with b1 E 5~ ~(46,4d,4R; R) and such that ~ is supported in
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Applying successively Proposition 11.4 to b1 and to 1jJ, we can find some
T &#x3E; 0 large enough such that, for all t &#x3E; T,

where the operators W~(t; h) are defined in Proposition II.4. Thanks to the
assumption on the symbols bi and b2, we shall show that we may replace
each by W+(t; h) in the previous expression.
We choose d small enough in order to have

Due to Proposition II.4, we can write, for all functions f E L2 ~ f~~ ~y +1 ~ ),

and

First, we prove that there exists T &#x3E; 0 such that, for all m &#x3E; 0 and for
all t + s &#x3E; T,

We split the symbols r+(h) and r- ( h ) according to (III.10). Thanks to
(IL28) and Corollary 111.8, the contributions of and r_,1 (h) in
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(IV.4) are 0(/~(~+ ~)’~). Because of (111.29), the contributions in (IV.4)
of (r+,3(~),r_,2(~)) and of (r+~)~3(h)) are To

check those of (r+,2(h), n_,2(h)) and (r+,3(h), r_,3(h)), we use (III.28)
and (111.30) respectively and we obtain the same estimate. We have proved
(IV.4).
Now, we use (111.6) for k = 0 if bi E 5~i(R) and the fact that (III.14)

is also true for the free operator if bl E Cü(1R2n; R). Thanks
to (IV.4), this yields

for t &#x3E; T (as in the proof of Proposition 111.6). Due to (IV.2) and (IV.3),
this means that

According to Proposition III.4, one can write

where is for all N, the symbols a_(h) are

uniformly bounded in and:

The contribution of J~(r~.(~)) in (IV.5) is seen to be O(h°). Next, we
prove that, for T &#x3E; 0 large enough,

for t &#x3E; T.
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We split r+ (h) again, according to (III.10). The contribution in (IV.6) of
r+,1 (h~ is because of (IL28) and of (111.15) if bl E 
of (111.14) if b1 E Co(1R2n; R). To compute the contribution of r+ 2(~), we
use (111.29) if bi E ,S‘+,1~~~ and (111.28) if bi E Co(1R2n; For r+,3(h),
we choose E small enough and use (II.30) if bi E and (111.29) if
bi E In each case, we obtain the same estimation for t large
enough. This yields (IV.6).
We obtain that the right side in (IV.5) is in fact Thus we can

replace in CAD(h), up to an error of the first operator 
by W+(t; h), for t &#x3E; T. The same arguments show that we can also
the second operator by W+ (t; h), for t &#x3E; T. We then have, for
b1, b2 E [S0+,1(R) ~ S0-,1(R)]~C~0(R2n;R),

and the first term may be written as follow:

Using now Theorem 111.2 and Proposition III.4, we are sure that we are
dealing with an admissible h-pseudodifferential operator. To finish the proof
of Theorem IV.3, we just have to calculate its principal symbol.

First we remark that the operator

is an h-pseudodifferential operator with principal symbol 
(x, with c~,o (~, ~~ _ x2(1ç-12 + Eo)c(x, Ç-), due to the functional

Annales de l’Institut Henri Poincaré - Physique théorique



125CLASSICAL LIMIT OF ELASTIC SCATTERING OPERATOR

calculus of Helffer and Robert (cf. [HR]). According to Egorov’s theorem

(cf. Remark 111.3), the operator

is an h-pseudodifferential operator cl (x, hD) with principal symbol
Furthermore, Proposition III.4

gives

where the principal symbol of c2 is given by

The operator J+(c2)J+(a+)* is an h-pseudodifferential operator C3 (x, hD)
with principal symbol

For (~, ç-) E such that ~x, ~+ ~x, Ç-)) E W +(2E, 2d, 2R), we have:

thanks to (I.25) and (II.26). Because of the properties of the phase (~
(cf. (II.22)), the previous relation (IV.7) is, in fact, valid for ~~, ~) e
Bl1 + (3E, 3d, 3R) n For j E {1,2}, we set:

Then we have, in W + (3E, 3d, 3R) n 
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due to (II.25). According to Theorem III.2 and the functional calculus of
Helffer and Robert (cf. [HR]), the operator

is an h-pseudodifferential operator c~(T;, hD) with principal symbol

for (x, ~) E such that ~2~ ~x, ~~ E ~~ (3E, 3d, 3R) . We note that the
interwining property of wave operators implies that

and

The h-pseudodifferential operator

has, thanks to (II.24), the following principal symbol:

for (x, Ç-) E ~_ (3E, 3d, 3R) and we have, according to ~II.26),

If (x , Ç-) E ~- (4E, 4d, 4R) and ~2t o ç-) E W +(3E, 3d, 3R) ,
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with p(x, ç) == 1~12 + 0) and

thanks to (IV.8) and (II.24). But

due to the interwining property of the classical wave operators. Thanks to

Egorov’s theorem (cf. Remark III.3) again, the operator

is an h-pseudodifferential operator c~(x, hD) with principal symbol c6,o.
Choosing 6, d &#x3E; 0 small enough, we can ensure that, for t large enough,

Indeed, we deduce (IV.9) from (11.16) and (II.17), since 

U Co (1~2n;1~~. But we also have bl, b2 E ,S‘~,1(I~~ U G’o (1~2n; 
Using (11.21), (II.22), and (I.23), we obtain, for t large enough,

which yields (IV.10).

Putting all together, we derive that, on the set supp b1,=f n supp &#x26;2,±. the
symbol c6,o is given by

with

because of the interwining property of the classical wave operators. To
arrive at the claim, it suffices to note that poSZ~l _ ~~, ~) _ ~ ~ ~ 2 + Eo, that
we can write: 

due to conservation of energy, and that x = 
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APPENDIX

We have used some properties of the classical flow associated to a

Hamilton function with short-range potential. We give here a proof of these
properties.

Proof (ofProposition IL 3). - We only give the arguments for the indice
+. One can recover the other case in a similar way. We denote the potential

0) simply by 
First, we show (II.15). We observe that, if we choose Co &#x3E; 1 such that

2C-20  E, then we have, for all t &#x3E; 0,

for all (~) E ~+(E, d, .1~~. Let C = 4Co. Using the integral formula

we see that there exists some to &#x3E; 0, such that, for t E [0; to] , we have:

for all (~) E ~+ (E, d,1 ) . Thanks to the short-range assumption (11.11)
and to (2), we can choose some Ro &#x3E; 0 large enough such that

for all E W+ (e, d, R) and all R &#x3E; Ro. Because of this improvement,
we see that, in fact, (3) holds for all t &#x3E; 0, for all (x, ~) E ~+ (E, d, R),
and all R &#x3E; Ro. Furthermore, we clearly have, for (x, ç) E W+(e, d, R)
and t &#x3E; 0,

Using now the integral formula

we can show that, for Ro large enough,
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for all t &#x3E; 0, for all (~) E ~+~E, d, R), and all R &#x3E; Ro. Now, we note
that the angle between x + 2tt;, and ç decrease i.e.

for t &#x3E; 0 and (x, ç) E {0}) . For Ro large enough, we deduce from
(2) (respectively (4)) that q(t; z, ~) (respectively p(t; x, ~)) is approximated
by x + 2t~ (respectively ~), uniformly on and for R &#x3E; Ro.
Then (5) yields

for all t &#x3E; 0, for all (x, ~) E BIt +( E, d, R), and all R &#x3E; We have

proved (ILlS).
We come to prove (II.16). Since V is a bounded function, x, ~) ~ I

must remain bounded, uniformly w.r.t (x , ~) E p~(7) and t. Thus the non-
trapping assumption implies that the position q(t; x, ç-) must go to infinity.
But we need some uniformity. Since the set

is compact, we have the following property: for all Ro &#x3E; 0, there exist
d, to &#x3E; 0, such that, for all t &#x3E; to,

Choosing Ro large enough, (11.15) yields (11.16) on the set

Due to (6), we can find C &#x3E; 1 and to &#x3E; 0, such that, for t &#x3E; to, (3) holds on
P(Ro) . Thus we can follow the proof of (11.15) to derive (II.l6) on P(Ro).
But the angle between x + 2tç and ~ may be as small as one wants,

uniformly on P(Ro), as soon as t is large enough. This is precisely what
(11.17) means. We prove it now.

Due to (6), we can find d, &#x3E; 0 and to &#x3E; 0, such that
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Using (2) and (4) again, we can show that, for all 6~ &#x3E; 0, there is T &#x3E; 0
such that,

(with £ = holds on A. But since x remain bounded in A, we have,
for t large enough,

Therefore,

where the first term on the right hand side tend to 0, uniformly on A. For
T large enough, we then obtain, for all t &#x3E; T,
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