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ABSTRACT. - We investigate numerically a one-parameter family of twist

mappings acting on a discrete lattice on the two-dimensional torus, and

subject to a perturbation whose magnitude has the same size as the lattice
spacing. These maps mimic the effects of (invertible) round-off errors on
the orbits of an integrable twist map. We explore resonant and non-resonant
behaviour in the limit of small lattice spacing, and find a dynamics rich in
arithmetical and statistical features. @ Elsevier, Paris

Key words: hamiltonian chaos, discrete twist map, round-off errors, periodic orbits,

complexity.

RESUME. - Nous etudions numeriquement une famille a un parametre
d’ applications « twist » integrable. Nous explorons les comportements
resonnants et non resonnants, dans la limite des petites mailles, et nous
exhibons des comportements dynamiques riches tant du point de vue
arithmetique que statistique. @ Elsevier, Paris

1. INTRODUCTION

The study of hamiltonian systems with discrete phase space has been
the focus of research for many years. Following the pioneering work of

* Permanent address: Centre for Nonlinear Complex Systems, Yunnan University, Kunming
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Rannou [15], discretization has been introduced for the most varied reasons:
to mimic quantum effects in classical systems [5], to achieve invertibility in
a delicate numerical experiment [8], to characterize hamiltonian chaos

arithmetically [14, 1, 6], to explore various phenomena connected to

numerical orbits [9, 16, 7, 17, 11, 13].
An important property of all the hamiltonian systems mentioned above, is

that discretization was performed in such a way as to retain invertibility. This
requirement is necessary for consistency with symplectic geometry, in the
sense that an invertible discretized system can be viewed as the restriction
to a discrete set of some simplectic map of the continuum, although
not necessarily of the original one. (Dissipative discrete representations
of symplectic maps have also been considered, mainly in the context of
round-off errors [2, 18, 10].)

In the simplest instances, discretizing amounts to restricting a continuum
system to an invariant discrete set, in which case invertibility is achieved
automatically. More often however, one truncates real coordinates. When
this process preserves invertibility, one has a small canonical perturbation
of the original continuum system, which generates fluctuations but no

dissipation. Then, if the phase space is finite, all discrete orbits are periodic.
If it is infinite, some orbits may escape to infinity in both time directions. The

problem of stability under discretization is a prominent one, particularly if
the continuum system is stable.

The present work is devoted to a numerical exploration of a family of

invertible twist maps of the Chirikov-Taylor type [4], acting on a discrete

doubly-periodic lattice (Z~~VZ)2, which is obtained by reducing integer
coordinates modulo a (large) integer N.
The maps are defined as follows

with

Here A is a real number, is the fractional part of The

perturbation function (2) has unit magnitude, and its dependence on x is

periodic if A is rational and quasi-periodic if A is irrational. The effect of
the perturbation is to displace the y-coordinate by the ’atomic’ distance
between lattice points. The invertibility of 03A603BB is easily verified.
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Without perturbation, the map ( 1 ) is a linear integrable twist, which
depends on the single parameter N, determining the coarseness of the
discretization. In spite of its simplicity, the unperturbed system already
possesses non-trivial features, which are found -for instance- in the

asymptotics (N ~ oo) of some orbit-counting functions. One finds

interesting scaling properties, together with fluctuations of arithmetical

origin [13].
The functions Ea defined above have been chosen to satisfy three

requirements: to have a bounded magnitude, to depend regularly on

coordinates (the meaning of ’regular’ will be clarified below), and to

have a vanishing average

These properties feature -for instance- in perturbations resulting from
round-off errors, and we shall regard this as one motivation for the study of
the above system (even though we make no claim that our system describes
round-off errors realistically). In addition, Ea never vanishes, a property we
have introduced in order to maximize the instabilities generated by such
small perturbations. Independently from the round-off problem, the model
( 1 ) may also be viewed as a prototype for small nonlinear interaction on
a lattice.

The information stored in the perturbing function Ea may be quantified
by considering the number Ck of all possible k-subsequences of the doubly-
infinite sequence x ~ ~03BB(x), x G Z. The function Ck is sometimes referred
to as the ’complexity’ of the sequence. Regular and irregular behaviour in a
sequence over a finite symbol space, is then associated to the growth rate of
Ck being polynomial or non-polynomial in k, respectively. In our case, the
complexity of is linear: Ck  2 k, for any choice of A (cf. also[12]).

In this paper we explore two extreme regimes, corresponding to A
approaching zero (the ’most rational’ number), and the golden mean (the
’most irrational’ number), respectively. The former case will be dealt with
in sections 2 and 3, where we consider the parameter values A = 
for large N. We find that the dynamics displays some familiar features of
perturbed twist maps with divided phase space (Figure 1 ). In particular,
these mappings may support stable librations at resonance, which form
oval regions filled with periodic orbits. Their existence, size and detailed
dynamics depend in a delicate manner on the rotation number, and on the
discretization size N. Our main result is the arithmetical characterization
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of such dependence, and the formulation of conditions for the stability of
librations at resonance.

By contrast, the case of quasi-periodic perturbation (A = (1 + V5) /2)
lacks geometrical features, and will be described statistically (see section 4).
We have analyzed numerically the growth of the period of the longest

orbit on a given N-lattice, showing that in the limit of large N, such period
grows quadratically, meaning that long orbits occupy a finite portion of
the phase space.
The characterization of the transport in the ’action’ variable y proved

more difficult, due to large fluctuations and slow convergence. Nonetheless,
we shall offer some evidence of the existence of a diffusion coefficient.

Finally, we have estimated the complexity of the sequences t ~ =

Yt+ 1 - yt, which determines the possible time-evolutions of the action.
We find that initially the complexity grows exponentially Ck = 2~, i.e.,
all sufficiently short binary subsequences are represented. The exponential
growth is followed by an algebraic one after a ’breaktime’, for which we
have obtained some preliminary numerical estimates.
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2. LOCAL MAPPINGS

In this section we consider the behaviour of the mapping ( 1 ) in

correspondence to values of A near zero (Figure 1 ). Letting A = 
in (2), we obtain a periodic E-function, of period N, given explicitly by

where [’J is the floor function. Here the periodicity of A matches the
periodicity of the lattice. This is done to minimize the total flux ~~=o~ 
which would otherwise produce a net drift in y.
We consider the local behaviour of in the vicinity of the m/n

resonance, where m and n are coprime integers. From ( 1 ) we have

We define local coordinates

where x* and y* are to be determined. In what follows we shall assume
that n   N, to ensure that the discretization is sufficiently fine to support
motions near the resonances of order n. The analysis divides into three
cases:

i) Elliptie-type behaviour. Let n be odd, and let x* = N/2. Then
if IXI is sufficiently small, we have ~~6(~) = 0, and from (4) and
(5) we obtain

There exists a unique integer y* such that

Vol. 68, n° 4-1998.
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which corresponds to the m/n resonance, that is, y* : With such
choice of y* we obtain, after introducing the rescaled time s = nt (the
return time to a n-th order resonance)

The shift a, which depends on Tn, n and N, is the least non-negative
solution to the congruence

where

From (9) we have

where we have used the fact that if t runs through all non-zero residue
classes modulo n, so does s = mt, since m is relatively prime to n, and
then we have re-arranged the sum. Because n is odd, 2 has an inverse
modulo n, and we have

and finally, from (8)

ii) Hyperbolic-type behaviour. Let n be odd. The choice ~* = 0 yields
the local map for unstable motions
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where a’ is now given by

iii ) Parabolic-type behaviour. Let n be even. We have Et = 0, and

proceeding as above we obtain

where a is given by

This time the local mapping describes the behaviour near, x* = L N /2 J +
lV~(2 n~.
We are interested in the instances in which the local dynamics may

support bounded invariant sets, since the latter can be realized in the global
mapping, by choosing N sufficiently large.

For hyperbolic-type motions ( 15), one verifies that all local orbits escape
to infinity. This case is of little interest to us.

In the local parabolic mapping (17) all orbits escape if a &#x3E; 0, while
for a = 0 the entire X-axis is fixed. The corresponding global invariant
set consists of n segments, joined at the boundary by (possibly) a step of
unit magnitude in the y-direction. These invariant sets are the analogue of
encircling invariant sets of the KAM type, and will be called quasi-tori.
A quasi-torus can exist only when a = 0, for otherwise the line of fixed
points Y = 2014r/n does not occur at an integer value of Y, and therefore
it is not realized on the integer lattice.
The richest dynamics is found in the local elliptic motions (7), which we

shall study in the next section. A key local parameter is the shift cr, whose
value depends on the global rotation number m/n as well as on the size N
of the discretization, according to (14). The following result characterizes
a sequence of lattices for which the correspondence between global and
local dynamics is particularly simple.

PROPOSITION 1. - Let n be odd. Then if N is any suficiently large multiple
of n, all n-order resonances of the mapping (1) have a distinct normal form,
corresponding to all values of a relatively prime to n.
(The meaning of ’sufficiently large’ will be discussed in the next section.)

Vol. 68, n° 4-1998.
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The above result follows readily from (14). If n divides N, the equation
has precisely one non-zero solution m for each

choice of a prime to n. In particular, if n is prime, then a can be chosen
arbitrarily. On the other hand, if n does not divide N, then in general the
mapping m ~ a( m) is not invertible modulo n, so that the local dynamics
at distinct rotation numbers may be the same. Each allowed value of a will
be realized for infinitely many values of N, corresponding to arithmetic
progressions modulo n.

3. STRUCTURE OF DISCRETE RESONANCES

In this section we study the geometrical properties of the elliptic-type
resonant motions of the local mapping (7). The main tool is the associated
return mapping F of the non-negative X-axis, which is crossed repeatedly
by every orbit. Such mapping is obtained as the composition of two
transformations, F = F- o F~ carrying the orbit from non-negative values
of X to negative ones, and vice-versa. We find

and

where ~~~ is the ceiling function. Composition of the two mappings yields

For every n and (J’, the half-way return maps F~ are discontinuous’, in
the sense that they have unbounded variations F~ ~ X + 1 ) - F~ ( X ~ . There

Annales de l’lnstitut Henri Poincaré - Physique théorique



515DISCRETE TWIST MAP

are infinitely many jumps, occurring in correspondence of the discontinuities
of the ceiling function in (19) and (20). These jumps are the root cause of
the complicated dynamics of discrete resonances.

We define the index I (X ) of a point X to be the period of the orbit of F
at X. Thus a bounded orbit of (7) has finite index, while a capture-escape
orbit has infinite index. The index is (essentially) the number of loops the
orbit performs around the origin, although this concept is not well-defined
in the vicinity of the origin (0  X  n - a).

When a is equal to zero, one verifies that all orbits of (7) have index 1

(one has u- = u+ in (21 )), that is, every point is a fixed point of the return
mapping. Some orbits of this type are displayed in Figure 2 (left), for a
resonance of order n = 17. The overall structure is regular, even though
the dynamics is not entirely trivial. The orbits are placed asymmetrically
with respect to the origin, and intersect each other.

The case of non-zero shift is more complicated (see Figure 2, right).
The orbits typically have index greater than 1, and perform large radial
excursions. Some of our findings on the behaviour of the index function
are summarized in the following conjecture

CONJECTURE 1. - If n is not divisible by 4, then the index of every orbit
of the mapping (7) does not exceed n. Moreover, if n is prime, then, for all
sufficiently large X, all orbits have index n.

Vol. 68, n° 4-1998.
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For the sake of completeness, we have included the case of even n, even
though for such values the mapping (7) is not the local map of the original
mapping ( 1 ) at resonance.

From the above conjecture it follows that when n is not divisible by
4, all orbits are bounded. The most interesting dynamics take place at

resonances of prime order, for which the index eventually attains a limiting
value (see Figure 2, right). The (maximal) critical amplitude characterizes
the amplitude of librations at which the asymptotic regime sets in. It is
defined as the largest integer e for which ~(0) 7~ n. Likewise we define
the minimal critical amplitude to be the smallest value of () for which the
index I (B) is equal to n.

Critical amplitudes have a very irregular dependence on the order n of
the resonance and on the value a of the shift, although several features
depend only on the ratio a /n. The largest values of 8 (Figure 3, left) occur
at the two primary peaks 1/4, and 3/4, which we have found to
exist for every prime we have examined. The secondary peaks are located
at a /4b, for a and b coprime integers, but not all values of a and b
do necessarily give rise to a peak, even when a and b are small (we call
b the order of the peak). Moreover, the existence of a high-order peak at
a given location was found to depend on n.

However, whenever a peak existed for a sufficiently large prime n, we
verified the following scaling law:
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suggesting the existence of a limiting value, to be taken along a suitable
infinite sequence of prime values of n. A similarly irregular dependence on
the shift is displayed by the minimal critical amplitude (Figure 3, right).

In the case of a large prime order n, and a value of the shift corresponding
to the primary peaks of the critical amplitude, the normalized index 
reveals a comb-like structure, shaped by a smooth envelope (Figure 4).
Each tooth in the comb corresponds to points whose index is not maximal.
We believe that this envelope reaches a limit functional form, which
is independent of the prime chosen, and which describes the universal

pre-asymptotic behaviour of resonances of large prime order.

Finally, we characterize the extent to which the stability of the global
motions can be inferred from the local dynamics. We consider the

intersection of a local invariant set with the X axis, and define its radius
to be the absolute value of the point of this set which is furthest from

the origin. Let H(X) be the largest invariant set of radius not exceeding
X. We associate to O( X) two positive integers, namely its (outer) radius
R(X) = and its inner radius r(X), the latter being the radius
of the largest interval enclosing the origin, which is contained in 

Translating the above definitions in terms of global dynamics, we
conclude that the largest invariant set which is contained in the central

island of the m/n resonance (for odd n), and which has a local counterpart,
has radius not exceeding R(N/2n) (measured from the centre of the island).
Points located futher away will not evolve according to the local map, and
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are expected to escape from the neighbourhood of the resonance. By the
same token, the closest approach to the centre of the island for an orbit non
describable in local terms is given by r(N/2n).

In Figure 5 we display the X-dependence of outer and inner radii, for
some resonances of prime order n = 11. The behaviour is step-like, with
an overall linear growth. For a = 0, we have ~(~C) ~ r~X ~ ~ X, which
explains the large size and regular boundary of resonances of this type.
An example is given by the resonances appearing in Figure 1, for which
a = 0, from formula (14). When the shift is non-zero, we typically have
r(X)  R(X), and the inner radius’s growth rate is strongly dependent
on the resonance parameters. One finds r(X) = 0 for X  Q(~,r), and
moreover the growth rate of r decreases with increasing critical amplitude.
Thus the larger the critical amplitude, the deeper an orbit can penetrate
inside a resonant domain.

4. A QUASI-PERIODIC PERTURBATION

In this section we consider the case in which the perturbation Ea is

quasi-periodic, in correspondence to the golden mean parameter value
A = (1 + ~/5)/2.
We begin by addressing the problem of periodicity. For each N &#x3E; 1, let

T = T(N) be the period of the longest periodic orbit of 03A6 on the N x N
lattice. As a rule, functions of this type feature very large fluctuations
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[9, 3, 17], and ours is no exception. A logarithmic plot of T(N) is

displayed in Figure (6) (top).
The lower envelope is linear. The upper envelope is quadratic, with

coefficient very close to unity (0.92...) indicating that the orbits with
maximal period invade a large portion of the phase space. To suppress
fluctuations, we consider the average order (T) of T, given by

which is represented by a thick solid curve. In Figure (6) (bottom) we

plot its normalized value. Comparison between domain and range shows
that, asymptotically, (T) is dominated by a quadratic term, although the
persisting fluctuations are (at best) a warning of slow convergence.

Next we consider the time-evolution of the action

in the limit of large N. The main question concerns the existence of a
diffusion coefficient, that is, the long-time limit of the normalized variance

where the average is computed over all points of a sufficiently long orbit.
The results of Figure 7 were computed using three distinct orbits, each of
period greater than 105, and each occupying at least 30% of the phase space.
In spite of the large size of the averaging sample, the dependence of D on
the choice of the orbit remains considerable. These data are consistent with

the existence of a diffusion coefficient, but the large fluctuations prevent
us from making any firm speculation. It is worth noting that the relaxation
times of D(t) are here much longer that those observed for round-off
diffusion in a linear planar rotations [17].
We finally address the problem of determining the growth rate of the

complexity Ck of the sequence t ~ as computed along orbits of
sufficiently long period.

For comparison, let us first consider the complexity Ck for the doubling
map on the circle, with the usual binary symbolic dynamics. The orbits of
maximal period T = N - 1 occur on certain prime lattices N (determined
by the condition that 2 be a primitive root modulo N). These orbits enjoy a
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complete uniformity in phase space, and support all subsequences of length
k, for all k not exceeding Llog2(T + 1)J. We define the ’breaktime’ k*(T)
of a binary sequence of period T to be the largest positive integer k for
which Ck = 2k. We have

independently from the initial condition (provided the latter is non-zero).
For k*  k  T, the complexity Ck grows slower than exponentially, to
saturate to the value Ck = T for k &#x3E; T.

Returning to our mapping, the function C was computed using the longest
orbit on each lattice. For small values of k, the complexity typically grows
exponentially, Ck = 2~, with all subsequences of length k appearing,
roughly with equal frequency. After a breaktime k* = &#x26;*(T(7V)), the

exponential regime is followed by a polynomial one, which eventually
saturates due to periodicity.
The scattered data in Figure 8 represent the breaktime computed for

a large number of orbits of increasing period. For comparison, we also
plot the average breaktime for the doubling map (solid line). The broken
line is an average taken over several orbits of approximately the same
period. In spite of large fluctuations, this results suggests that the breaktime

Vol. 68, n° 4-1998.
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grows slower than logarithmically, consistent with a picture of short time
noise superimposed to long-time correlations. The question of whether k*
saturates to a limit value remains open.
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