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ABSTRACT. - Dynamical Localization theory has drawn attention to

general spectral conditions which make quantum wave packet diffusion
possible, and it was found that dimensional properties of the Local Density
of States play a crucial role in that connection. In this paper an abstract
result in this vein is presented. Time averaging over the trajectory of a
wavepacket up to time T defines a statistical operator (density matrix).
The corresponding entropy increases with time proportional to log T, and
the coefficient of proportionality is the Hausdorff dimension of the Local
Density of States, at least if the latter has good scaling properties. In more
general cases, we give spectral upper and lower bounds for the increase
of entropy. © Elsevier, Paris

Key words: Quantum chaos, dynamical loalisation, fractal, Hansdorff dimensions, local
density of states.

RESUME. - La theorie de la localisation dynamique a permis de souligner
les conditions sous lesquelles la diffusion des paquets d’ ondes quantiques
est possible et on a montre que les proprietes dimensionnelles de la
densite d’etat locale y jouent un role crucial. Cet article foumit un resultat
abstrait dans ce contexte. La moyenne temporelle sur une trajectoire du
paquet d’ onde j usqu’ a l’instant T defmit un operateur statistique (matrice
densite). L’ entropie correspondante croit proportionnellement a Log(T) et le
coefficient de proportionnalite est la dimension de Hausdorff de la densite
d’ état locale, au moins si cette derniere suit une loi d’ échelle convenable.
Dans le cas general, nous donnons des bomes spectrales superieures et

inferieures sur l’accroissement de cette entropie. © Elsevier, Paris
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492 I. GUARNERI

1. INTRODUCTION

B.V.Chirikov is one of the initiators of Quantum Chaos: the research
area centered about the basic question, which of the distinctive marks
of chaotic classical systems survive in the quantal domain. His attention
was mainly focused on dynamical, directly observable aspects, and on
deterministic diffusion in particular, which is probably the most concrete
manifestation of chaos in classical hamiltonian systems. The Kicked Rotor -
a quantum version of the Standard Map, to which Chirikov’s name is tightly
associated - revealed that quantization tends to suppress classical diffusion
[ 1 ], and brought into light the phenomenon of Dynamical Localization,
so called in view of its formal similarity to Anderson localization [2].
From the mathematical viewpoint, this discovery brought the quantum
dynamics of chaotic maps into the realm of mathematical localization

theory, thus significantly enlarging the scope of the latter ; from the
physical viewpoint, it established a bridge to Solid State Physics, which
led to identify the Localization Length as a fundamental characteristic scale
of quantum dynamics, in the presence of a classical chaotic diffusion. The
quasi-classical estimate for the localization length found by Chirikov and
co-workers [3] is based on a heuristic argument - the so-called Siberian

argument [4] - which is in fact a relation between dynamical and spectral
properties, built upon the Heisenberg relation. Crudely handwaving though
it may appear to a mathematical eye, the Siberian argument has a depth, the
exploration of which has led to nontrivial mathematical results. Properly
reformulated, it shows that quantum one-dimensional unbounded diffusion
is only possible, if the spectrum (whether of energy or of quasi-energy)
is singular; where by diffusion we loosely mean any type of sub-ballistic
propagation, with the spread of the wavepacket over the relevant domain
(position or momentum) increasing with some power of time less than 1.

Attention was thus drawn to the dynamical implications of singular
spectra [5], and of singular continuous spectra in particular; for, although
pure point spectra can also give rise to unbounded growth of expectation
values of observables, due to non-uniform localization of eigenfunctions,
they do not lead to any unbounded spread if the latter is measured by
"intrinsic" quantities such as inverse participation ratios or the like.

Spectral analysis of the kicked rotor reveals a qualitative scenario

somewhat similar to the one appearing with quasi-periodic Schrodinger
operators, such as the Harper (or almost-Mathieu) operator. Its spectral
type sensitively depends on the arithmetic nature of an incommensuration
parameter linked to the kicking period and to the Planck constant. For

’ 
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493DYNAMICAL MEANING OF SPECTRAL DIMENSIONS

"typical" irrational values there is evidence of pure-point spectrum; on
the other hand, for rational values absolute continuity of the spectrum is
proven. It follows that for a set of "not too irrational" values, presumably
of zero measure, but nevertheless of the 2nd Baire category, there is still a
continuous spectrum [6], which is suspected, but not proven, to be singular.
This issue is closely connected to localization, for, if the latter could be

proven for a dense set of irrationals, then purely singular continuity of
the spectrum on a 2nd category parameter set would follow from Simon’s
Wonderland Theorem [7].

Generally speaking, there are two kinds of problems associated with
singular continuous spectra. The first one is physical: what is their physical
relevance in general, and in Quantum Chaos in particular. The second is
mathematical, and includes the analysis of their dynamical implications.

Concerning the physical relevance of singular continuous spectra, and
their connection to classical chaos, the situation is still unclear. Such

spectra have been proven to occur in models, which are directly relevant
to mesoscopic physics: e.g., electrons in quasi crystals, and cristalline
electrons in magnetic fields. Still, physicists often tend to repress them as
mathematical curiosities, encouraged in that by their instability: they easily
collapse into pure point spectra under tiny perturbations. Such arguments can
be reversed, because point spectra which lie "infinitely close" to singular
continuous ones may be expected to have highly nontrivial dynamical
properties ; it looks likely that, prior to entering the final localized state, the
wavepacket dynamics will display features that may be better understood
by assimilating the spectrum to a "fractal", much in the same way that
fractal analysis of certain sets which are not fractal is still instructive on
not too small geometric scales.

How does the diffusion which is produced by a singular continuous
spectrum compare with classical chaotic diffusion - when the latter is

present in the classical limit? This question cannot be posed for the best
known examples of singular spectra such as the Harper model, because
those have integrable classical limits. For this reason the Kicked Harper
model was invented [8], which is intermediate between the Harper and
the Kicked Rotor model, sharing quasi-periodicity with the former and
classical chaoticity with the latter. It turns out that the time scale over
which quantum diffusion. mimics classical chaotic diffusion is distinct
from the one where quantum "fractal" diffusion becomes manifest, with
qualitative and quantitative differencies from the former [9]. On the grounds
of such findings it appears that the two types of diffusion bear scarcely
any relation to each other. This may reflect a qualitative difference between

Vol. 68, n° 4-1998.



494 1. GUARNERI

their underlying dynamical mechanisms: whereas quasi-classical diffusion
proceeds by excitation of all states around the initial one, "fractal" diffusion
is brought about by a coherent chain of quasi-resonant transitions (however,
the reader should be warned that there are certain risks of over-simplification
in this qualitative picture). In any case, the role of classical chaos in the
parametric "band dynamics" which eventually leads to multifractal spectra
has been recently demonstrated on numerical results [10].
From the mathematical standpoint, some exact results have been proven,

which connect asymptotic dynamics to spectral quantities related to

"multifractality" of the spectrum (or, more precisely, of the LDOS, Local
Density of States). These results consist in estimates for the power-law
decay of correlations [ 11 ], and in lower bounds for the spread of wave
packets [4, 12, 13]. These results rest on asymptotic estimates for Fourier
transforms of fractal measures [4, 14]. The problem of finding upper bounds
( or possibly exact estimates) for the asymptotic spread of wavepackets is
still open (non-rigorous approaches have been implemented, though [15,
18, 19]).

Upper bounds appear to require more detailed information concerning the

specific structure of the Hamiltonian, and its (generalized) eigenfunctions.
Improved lower estimates exploiting both spectral and eigenfunction-related
information have been obtained, heuristically [27] and rigorously [16]
- the latter on a special model, which has the striking peculiarity of
displaying ballistic propagation, even with LDOS of arbitrarily small

positive Hausdorff dimension. In spite of such findings, the search for

purely spectral bounds is not yet doomed to failure, at least within the class
of discrete Schrodinger operators; for in that class there is a somewhat

rigid connection between spectral measures and eigenfunctions, so that

information about the latter is certainly encoded in the LDOS itself [17].
An additional problem with this class of operators is the role of dimensional

properties of the global Density of States (DOS), for which there are

contrasting indications. On the one hand, the DOS can be smooth even
in the presence of localization; on the other, in some quasi-periodic cases
with fractal spectra there are numerical indications [18] that transport is

tightly determined by DOS, though numerical analysis shows significant
differences between the multifractal structures of DOS and LDOS even in

such cases. [20].

In summary, no exact one-to-one relation has been as yet established

between spectral dimensions and asymptotic properties of the dynamics;
with the only exception of the "correlation dimension", which is known
to rule the decay of correlations [ 11 ] . In this paper an abstract result is

Annales de l’lnstitut Henri Poincare - Physique théorique



495DYNAMICAL MEANING OF SPECTRAL DIMENSIONS

proven, which identifies the information dimension with the coefficient of

logarithmic growth of a dynamically defined entropy, thus providing that
dimension with a direct dynamical meaning. Indications will also be given,
that upper bounds should be sought in terms of fractal (box-counting),
rather than Hausdorff, dimensions; an abstract example will in fact be

given, of a zero-dimensional LDOS with fractal dimension 1, which leads
to ballistic propagation.

It is also worth mentioning that the dynamical role of dimensional
properties of singular continuous spectra may be an interesting issue in
a purely classical context, too. Classical dynamical systems which have
a singular continuous spectrum (in the orthocomplement of constants) are
known long since to make up a quite large subset in the class of measure-
preserving transformations [21] ; they often lie close to the bottom of the
ergodic hierarchy, as they may display weak mixing as maximal ergodic
property. Beyond that, not much is known about their dynamical properties,
and about the role of spectral dimensions in particular. It is in fact difficult
to find concrete examples, in which "transport" can be meaningfully
investigated. Certain substitution systems are rigorously known to have
a singular continuous spectral component [22], but, to the best of the

present author’s knowledge, no explicit example of a classical dynamical
system with a purely singular continuous spectrum (in the orthocomplement
of constants) is rigorously known. Good candidates are certain polygonal
billiards [23]; another system, which can be assigned to this class on the
grounds of numerical evidence, is the "driven spin model" [25], which is
a classical dynamical system that also admits of a quantum interpretation.
This model is a member in a class of skew-products for which singular
continuity of the spectrum is established as a generic property [22]. Both
for the case of billiards, and of driven spins, a multifractal analysis of
spectral measures has been numerically implemented, and results have been
dynamically interpreted [24, 25].

In closing this Introduction, it may be necessary to underline that it is
far from comprehensive on some of the general issues touched in it, which
go beyond the study of dynamical implications of dimensional properties
of spectra.

This study has found motivations , among others, from the search for a
quantum counterpart of deterministic diffusion; in contributing this paper it
is a pleasure to acknowledge Boris Chirikov’s tutorial explanations of the
Siberian argument, to which the results presented below can be ultimately
traced back.

Vol. 68, n° 4-1998.
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2. ENTROPY OF TIME-AVERAGING, AND ITS GROWTH

Consider discrete-time evolution of a quantum system with states in a

separable Hilbert space ~-l: the state at time t E Z is  ( t) = where

U is a fixed unitary operator. While the discrete-time formulation used here
does not set serious restrictions on the elaborations below, most of which
also apply to a continuous time dynamics, it has the advantage of including
quantum maps (which can usually be pictured as one-cycle propagators of
periodically driven systems).
Time averages of an observable A following the evolution of a given

initial state - ~(0) are defined by

and are in fact statistical averages, (A)T = Tr(p(T)A), with the density
matrix

These density matrices are finite rank, positive operators, and to everyone
of them is associated the entropy

which is a measure for the size of the statistical ensemble defined by the
states of the system between times 0 and T - 1; in the following it will

be denoted S(~,T). Our aim here is to estimate the asymptotic growth
of 5~~, T) with T .
The basic tool in getting upper estimates will be the following well-

known result. For x E [0,1] define 8(x) == -x In x 0, 8(0) = 0;
then an elementary convexity argument shows that:

LEMMA. - For any statistical operator p, and for any Hilbert base

B - 

With the statistical operator defined in eqn.(I), (pn] p]pn) == pn(T) is

just the averaged probability of finding the system in state pn between

Annales de l’Institut Henri Poincaré - Physique théorique
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times 0 and T - 1. The rhs of (3) is the Shannon entropy of the probability
distribution pn(T), which in the following will be denoted B, T).
Since the rank of (3) is at most T, the base B can be chosen so that the
sum over B in (3) contains at most T nonzero terms; then well-known
properties of the Shannon entropy yield the bound S In T, which is exact,
e.g., if U has a Lebesgue spectrum in [0, 27r], because in that case a base
B can be found, so that U acts as a shift over B. On the opposite extreme,
if U has a pure point spectrum, then using in (3) an eigenbase of U we
immediately find that remains bounded at all times. Thus we see
that entropy cannot increase with time faster than In T, and that its actual
increase is related to the degree of continuity of the spectrum.

This qualitative indication will now be turned into an exact result, which
calls appropriate dimensions into play, as a measure of the "degree of
continuity". We first review their definitions.
The spectral measure of 03C8 (also called Local Density of States at is

the unique measure dp on [0,27r] such that, at all times t,

The dependence of this measure on the state ~ will be left understood in
the sequel. Various dimensions of the Hausdorff or multifractal type can
be assigned to the measure the ones we shall use are the upper and
lower Hausdorff dimensions and the fractal dimension dim F(J-l),
which are defined as follows.

is the supremum of the set of values a E [0, 1] such that
= 0 for all Borel sets A C [0,27r] which have Hausdorff dimension

smaller than 0152.

dim +H ( ) is the infimum of the set of values a E [0 , 1] such that there is
a set A C [0,2~] of Hausdorff dimension a, with p(A) = 27r]).

If the upper and lower dimensions coincide, then the measure is said to
have exact Hausdorff dimension, given by their common value. Note that
measures which have both a point and a continuous part do not fall in this
class, if the dimension of the continuous part of the measure is positive.

Finally, the fractal dimension is defined as

= sup compact s.t. J-l(K) &#x3E; 1 - (4 (4)~ ~ j B /

where dimF (K) is the fractal (box-counting) dimension of K. In general,
dim -H ( )  dim +H ( )  dim F ( ), but the three dimensions may coincide;
Vol. 68, n° 4-1998.



498 1.GUARNERI

such is the case, e.g., when the measure has, ~2014almost everywhere in
[0,27!-], a well-defined, constant scaling exponent [26]. In that case their
common value is the same as the information dimension For such

"exactly scaling" measures the behavior of entropy is particularly simple:

THEOREM 1. - If the spectral measure is exactly scaling, with dimension
D then D ln T asymptotically as T -~ 00.

This is the central result of this paper: it will be obtained via Propositions
1-5 below. Ineq. (3) suggests that upper bounds to entropy growth can be
obtained by choosing a suitable base B in the cyclic subspace of and

then analyzing the growth with time of the Shannon entropy ~‘(~, T, B) of
the distribution over the base B.

The latter is a measure of the "width" of the distribution, and in order to
estimate its growth we will estimate the growth of nE = nE(T, B), defined
as the smallest integer such that the total probability assigned by 
to states I n I  nE be larger than 1 - E2 . To this end we shall use the

following technical tool:

PROPOSITION 1. - Let B be any base in the cyclic subspace of KE a

compact set in [0,27r] such that &#x3E; 1 - 8 , and N an integer&#x3E; l.

Given a partition of [0,27r] in intervals + 1 ~ N-1 ],
~j = 0,..., N - 1), let

where EI3 are spectral projectors associated with the intervals Ij. Define
N) as the smallest integer v such that WB(n, N)  E. Then

there are numerical constants c1, c2 so that:

for all N &#x3E; 

Proof. - Note that ¿ WB(n, N)  1, so v$ (E, N) is a meaningful
nez

quantity. First, we use the Spectral theorem to identify the cyclic subspace
of 03C8 with £2([0, 27r], in which 03C8(t) is represented by the function

of A E [0, 27r]. Then we define stepwise approximations to for

0  t  T:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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It is immediately seen that

which can be kept  4 at all times from 0 to T, by choosing N &#x3E; ciTe~,
with ci a numerical factor. Then,

which will be less than f2 if v(c2E3, N) (note that in the lst inequality
the upper limit of the sum over s has been changed from T - 1 to N - 1,
which is certainly larger). D

Remark. - Viewed as functions of n at fixed A in the spectrum of U, the
functions ~pn ~ ~ ) are (generalized) eigenfunctions of U. Thus proposition ( 1 )
establishes a connection between dynamics and structure of eigenfunctions.

If the measure is purely continuous, then there is a particular base B~
in the cyclic subspace of qb, which allows for optimal control on the
growth of entropy . The vectors of BF are represented by functions pn E
J~([0,27r],~) defined as follows:

where F(~) _ ~c~ ~0, ~] ~ is the distribution function of the spectral measure.
The pn (n E Z) are a complete orthonormal set because they are the image
of the Fourier in L2 ~ [0, 1] , d~~ under the isomorphism
which is established (when dp is continuous) between L2 ~ ~0, 2~r], d~c) and
L2([0, 1], dx) by A - 

PROPOSITION 2. - If dp is purely continuous then there is a numerical
constant c5 so that, for any d &#x3E; B~ )  for all
suficiently large T..

Proof. - We use Proposition l. Observing that

Vol. 68, nO 4-1998.
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we obtain

N) is the number of intervals h which overlap We now

choose KE so that its box-counting dimension be smaller than dim 
which is made possible by the very definition (4) of the latter quantity. If
we use dyadic partitions, N = 2~B then, for any d &#x3E; dimF (~c),

for all sufficiently large M, so  Finally, defining M
by 2~’~   2~, proposition 1 says that  for

all sufficiently large T. D

PROPOSITION 3. - is purely continuous, then lim "~~  -

Proof. - Since does not depend on the labeling of the
base vectors, at given time T let us rearrange them in such a way that
the probability supported by a vector is monotonically non- increasing
with the label of the vector, thus obtaining a base BF; then clearly

 so Proposition 2 also holds for Bp. Therefore,
the distribution fin (T) over BF obeys

Monotonicity of fin (T) then implies

Let mE the smallest integer larger than so that the total probability
on states of BF beyond nE is less than E2 by construction. For n &#x3E; nE the

rhs of (7) is certainly smaller than e-1 for small enough f, so we can use
monotonicity of 0(~) for x E (0, e-1 ) to the effect that:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where the last term is only dependent on f. Proposition 2 follows

immediately from the definition of nE, because 

and f is arbitrary as well as d &#x3E; D

Let us extend Proposition 3 to measures having a point component,
= dJ-lp + Let Hp , He be the pure point and the continuous subspace

of the evolution operator U, and P = 27r]) the squared norm of the
projection on Hp. Then we can write 1/; == l - with

PROPOSITION 4. - If denotes the continuous component of the spectral
measure, and P is the squared norm of the pure point component of 03C8, then

Proof. - Let us choose the base B = Bp U Be, where Bp is an eigenbase
of U in Hp and Be is the base (5) associated with dJ-le in He. The vectors

evolve, under repeated applications of U, independently of each
other,with spectral measures d c respectively; their distributions over
B are disjoint, so one immediately finds that that:

The 1 st term in the rhs is constant in time, and the second is estimated

by proposition 2. D

The following proposition sets a lower bound to entropy.

PROPOSITION 5. - lim &#x3E; &#x3E; dim-H ( ).

Proof. - This proposition is an immediate consequence, not of published
results, but of their proofs.

Let B be an eigenbase of p(T), so that (3) becomes an equality.
Such a base consists of at most T vectors in the subspace spanned
by ~(0), ..., ~(T), plus any orthonormal set spanning the orthogonal
complement of that subspace. A lower bound to S ( 1/;, B, T) is established
as follows. Given E E (0,1 ) let mE(T) be the smallest number of base
vectors which are needed to support more than 1 - E of the distribution

In the Appendix we prove the following elementary estimate, which
holds if mE &#x3E; 3:

Vol. 68,n° 4-1998.
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General lower bounds on wave packet propagation[26] entail that, for any
small ?? &#x3E; 0, mE (T) &#x3E; c~Tdim-H ( )-~ at all sufficiently large T. Therefore,
unless = 0 (in which case Proposition 4 is obviously true), 
will be definitively larger than 3, we can insert the lower bound on 
into (10), and thus obtain the desired result, because ??, E are arbitrary. D

Thus theorem 1 finally emerges, as a consequence of propositions 1-5 for
the special case that the spectral measure is exactly scaling (proposition 4
being necessary to that end only in case of zero-dimensional measures).

Remarks:

1. For measures having a point component, the lower bound 0 given
by proposition 5 is not optimal: one can prove that dim - (J-l) can be
replaced by ( 1 - P) 

2. The dynamical entropy defined by (2) is not related to quantum
analogs of the Kolmogorov-Sinai entropy, as it is only determined by
2-point time correlations . In fact,

where pi are eigenvalues of p(T) . It is easily seen that pi = T-1ri,
where ri are eigenvalues of the T x T autocorrelation (Toeplitz)
matrix Rs t = ~ ~ ~ s ) ~ ~ ( t ~ ~ = s) (the hat denoting Fourier
transform). In this light, Theorem 1 also applies to ~2 - stationary
stochastic processes, as a statement relating the asymptotic distribution
of their autocorrelation eigenvalues to scaling properties of the power
spectrum. It may result in a convenient method for numerically
estimating the dimension of the power spectrum.

3. The apparition of the fractal, rather than the Hausdorff, dimension
in the upper bound of Propositions 3,4 is not an artifact of the

proof. In the Appendix an abstract example is given of a spectral
measure which has zero Hausdorff dimension and fractal dimension

1, for which lim s«ln ~’~’~ = 1. This "frequently ballistic"
behavior is also detected in the growth of moments of the probability
distribution pn (T), and it is controlled by the fractal dimension.

Annales de l’lnstitut Henri Poincaré - Physique theorique
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3. APPENDIX

1. Proof of ineq. (10):

Denote S(T) = T, B) and define Ae,T as the set of labels n ~ Z
such that From

it follows that the complement BE,T of AE,T supports more than 1 - E
of the distribution pn(T); hence, it cannot consist of less than mE(T)
elements. Now define BE,T as the set of those elements of BE,T which have

 e-1. There cannot be less than mE - 3 such elements, therefore

because e (x) is increasing in (0, e -1 ); (10) immediately follo~ws. D

2. An example of a non-exactly scaling, continuous measure,
and dynamical consequences theoreof

The construction below is a special case in a class of measures taken from
ref.[28]. Write A E [0,27r] as 27rx with x E [0,1], and let an (x) e {0,1} be
the binary digits of x. A well-known construction allows to define measures
on [0,27r] as images of cylinder-set measures on {0,1}~, which are in turn
constructed by assigning the distribution of the random variables an (x~. Let
us consider the particular measure dp in [0,27r] which is obtained when the
an’ s are independent random variables distributed as follows: = 0

with probability 1 if k!  n  (k + I)! with k even, an(x) = 0 with
with k odd.

For integer k, consider the dyadic partition of [0,27r] in 2k! intervals of
equal size Ak. It is easily seen that these intervals have either measure 0
or measure given by:

Vol. 68, n° 4-1998.
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whence it follows that

Then == 0. In fact, for A in the support of dp, let =

(A - 8, A + 8). If 6k == 2A~, then, for all k, 7~ (A) contains the full dyadic
interval of size A~ and measure pk, which contains A, so that:

(note that ln4A2r+1 is negative at large r). Therefore the Hausdorff
dimension of dp is zero, because it coincides with the essential supremum
with respect to dp of the scaling exponent a(A)[26].
On the other hand, the fractal dimension (4) of dJ-l is 1. In fact, if a

compact K &#x3E; 1 - E, then a covering of K with dyadic intervals
of the (2r) !-th generation requires at least f)~ &#x3E; ( 1 - intervals, so

Let us explore how does a wavepacket with the just defined spectral measure
dp spread over the base BF defined by (10); specifically, we shall use (5)
to estimate the growth of from below.

Given E E (0,1), let us choose EI  1 such that 1 - E2 - 2 &#x3E; 0. Then,
going back to the proof of Proposition 1, and using the same notations, we
have that, for any finite set :F of indices,

if N &#x3E; c1Te-11. For all integer r, define as the largest integer less or
equal to 6ic~2~ so that ( 16) holds with T = and N = Nr = 2(2~’)’
for all values of r. Since all the intervals in the partition have either measure
0 or measure from (6) we get WBF (n, Nr)  Substituting this
into (16) we find that, in order that the total probability at time on

states n E 0 be larger than 1 - E2, 0 has to be chosen such that

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Therefore, since mE(T) in (10) is the smallest number of base vectors

which support more than 1 - E2 of the distribution 

Estimate (10) and Proposition 2 now yield lim s~ 1’B~,’T ~ = 1.

Much in the same way one finds that the growth of (the q-th moment

of the probability distribution pn(T)) follows limsup~_~ 
(note however that in the present case Mq (t)  00 only if q  1).
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