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ABSTRACT. - Complex spectra of random matrices are studied in the
regime of weak non-Hermiticity. The matrices we consider are of the form
Hl + iH2, where Hl and H2 are Hermitian and statistically independent.
In the first part of the paper we consider the case of matrices H1,2
having i.i.d. entries. For such matrices the regime of weak non-Hermiticity
is defined in the limit of large matrix dimension N by the condition
(Tr ex We show that in the regime of weak non-Hermiticity
the distribution of complex eigenvalues of iH2 is dictated by the
global symmetries of but otherwise is universal, i.e. independent of
the particular distributions of their entries. Our heuristic proof is based on
the supersymmetric technique and extends also to "invariant" ensembles of

In the second part of the paper we study Gaussian complex matrices
in the regime of weak non-Hermiticity. Using the mathematically rigorous
method of orthogonal polynomials we find the eigenvalue correlation
functions. This allows us to obtain explicitly various eigenvalue statistics.
These statistics describe a crossover from Hermitian matrices characterized

by the Wigner-Dyson statistics of real eigenvalues to strongly non-Hermitian
matrices whose complex eigenvalues were studied by Ginibre. Two-point
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statistical measures such as spectral form-factor, number variance and
small distance behavior of the nearest neighbor distance distribution p(s)
are studied thoroughly. In particular, we found that the latter function
may exhibit unusual behavior p(s) oc S5/2 for some parameter values.
@ Elsevier, Paris.

Key words: Complex spectra, non-Hermitian matrices, supersymmetry, Wigner-Dyson
statistics, poles of S-matrix.

RESUME. - Le spectre complexe des matrices aleatoires est etudie dans
le regime de faible non hermiticite. Les matrices que nous considerons
ont la forme 1 + ou 1 et H2 sont hermitiennes et statistiquement
independantes. Dans la premiere partie nous considerons le cas de matrices

avec entrees independantes et identiquement distribuées. Pour ces
matrices, la limite de faible non hermiticite est dennie par la condition

ex dans la limite des grandes tailles (ici N = dimension
des matrices). Nous montrons que dans ce regime, la distribution des valeurs
propres complexes de Hl + 2H2 est dictee par les symetries globales de

mais, a part cela, est universelle, c’est-a-dire independante de la
loi de distribution des entrees. Notre preuve heuristique s’appuie sur les
techniques supersymetriques et s’ étend aussi aux ensembles statistiques
invariants de Dans la deuxieme partie de 1’ article, nous etudions les
matrices complexes gaussiennes dans le regime de faible non-hermiticite.
Utilisant la technique rigoureuse des polygones orthogonaux, nous trouvons
les fonctions de correlations des valeurs propres. Ceci nous permet
d’ obtenir diverses statistiques explicites de valeurs propres. Elles decrivent
la transition entre le cas hermitien, caracterise par les statistiques de Wigner-
Dyson, et le cas fortement non hermitien etudie par Ginibre. Les mesures
statistiques a deux points comme le facteur de forme spectrale, la variance
du nombre et le comportement a courte distance de la distribution d’écarts
de niveaux p(s), sont etudiees en detail. En particulier, nous montrons
que p(s) ex s5/2, un comportement inhabituel, dans certains domaines de
parametres. @ Elsevier, Paris.

I. INTRODUCTION

Eigenvalues of large random matrices have been attracting much interest
in theoretical physics since the 1950’s [1-7]. Until recently only the real
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eigenvalues were seen as physically relevant, hence most of the studies
ignored matrices with complex eigenvalues. Powerful techniques to deal
with real eigenvalues were developed and their statistical properties are well
understood nowadays [2]. Microscopic justifications of the use of random
matrices for describing the universal spectral properties of quantum chaotic
systems have been provided by several groups recently, based both on
traditional semiclassical periodic orbit expansions [8, 9] and on advanced
field-theoretical methods [10, 11 ] . These facts make the theory of random
Hermitian matrices a powerful and versatile tool of research in different
branches of modern theoretical physics, see e.g. [4, 6, 7].

Recent studies of dissipative quantum maps [ 12, 13], asymmetric neural
networks [14, 15], and open quantum systems [ 16-20] stimulated interest
to complex eigenvalues of random matrices. Most obvious motivation
comes from studies of resonances in open quantum systems, i.e. systems
whose fragments can escape to or come from infinity. The resonances are
determined as poles of the scattering matrix (S-matrix), as a function of
energy of incoming waves, in the complex energy plane. The real part of
the pole is the resonance energy and the imaginary part is the resonance
half-width. Finite width implies finite life-time of the corresponding states.
In the chaotic regime the resonances are dense and placed irregularly in
the complex plane. Recently, the progress in numerical techniques and
computational facilities made available resonance patterns of high accuracy
for realistic open quantum chaotic systems like atoms and molecules [21 ] .

Due to irregularity in the resonance widths and positions the S-matrix
shows irregular fluctuations with energy and the main goal of the theory
of the chaotic scattering is to provide an adequate statistical description
of such a behavior. The so-called "Heidelberg approach" to this problem
suggested in [22] makes use of random matrices. The starting point is
a representation of the S-matrix in terms of an effective non-Hermitian
Hamiltonian He!! = The Hermitian N x N matrix 77 describes the
closed counterpart of the open system and the skew-Hermitian 2T = iW W T
arises due to coupling to open scattering channels a = 1,..., M, the matrix
elements Wj a being the amplitudes of direct transitions from "internal"
states z = 1,..., N to one of open channels. The poles of the S-matrix
coincide with the eigenvalues In the chaotic regime one replaces 77
with an ensemble of random matrices of an appropriate symmetry. This step
is usually "justified" by the common belief according to which the universal
features of the chaotic quantum systems survive such a replacement [4-7].
As a result, various features of chaotic quantum scattering can be efficiently
studied by performing the ensemble averaging. The approach has proved
Vol. 68, n° 4-1998.
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to be very fruitful (for an account of recent developments see [20]). In
particular, it allowed to obtain explicitly the distribution of the resonances
in the complex plane for chaotic quantum systems with broken time-reversal
invariance [ 19, 20] and, in its turn, this distribution was used to clarify some
aspects of the relaxation processes in quantum chaotic systems [23].

A very recent outburst of interest to the non-Hermitian problems [24-
32] deserves to be mentioned separately. During the last several years

complex spectra of random matrices and operators emerged in a diversity
of problems. Hatano and Nelson described depinning of flux lines from
columnar defects in superconductors in terms of a localization-delocalization
transition in non-Hermitian quantum mechanics [24]. Their work motivated
a series of studies of the corresponding non-Hermitian Schrodinger operator
[27 -31 and, surprisingly, random matrices appeared to be relevant in this
context [27, 28]. Complex eigenvalues were also discussed in the context of
lattice QCD. The lattice Dirac operator entering the QCD partition function
is non-Hermitian at nonzero chemical potential and proves to be difficult
to deal with both numerically and analytically. Recent studies of chiral
symmetry breaking used a non-Hermitian random matrix substitute for the
Dirac operator [32]. There exist also interesting links between complex
eigenvalues of random matrices and systems of interacting particles in

one and two spatial dimensions [33]. And, finally, we have to mention
that random matrices can be used for visualization of the pseudospectra
of non-random convection-diffusion operators [34], and for description of
two-level systems coupled to the noise reservoir [35].

Traditional mathematical treatment of random matrices with no symmetry
conditions imposed goes back to the pioneering work by Ginibre [36]
who determined all the eigenvalue correlation functions in an ensemble
of complex matrices with Gaussian entries. The progress in the field

was rather slow but steady [2, 37-41], see also [42, 43]. In addition to
the traditional approach other aproaches have been developed and tested
on new classes of non-Hermitian random matrices [15, 17, 19, 44-48].
However, our knowledge of the statistical properties of complex eigenvalues
of random matrices is still far from being complete, in particular little is

known about the universality classes of the obtained eigenvalue statistics.

When speaking about universality one has to specify the energy scale, for
the degree of universality depends usually upon the chosen scale. There exist
two characteristic scales in the random matrix spectra: the global one and
the local one. The global scale is aimed at description of the distribution
of the eigenvalues in bulk. The local one is aimed at decription of the
statistical properties of small eigenvalue sets. For real spectra, the global

Annales de l’Institut Henri Poincare - Physique théorique



453UNIVERSALITY IN THE RANDOM MATRIX SPECTRA

scale is that on which a spectral interval of unit length contains on average
a large, proportional to the matrix dimension, number of eigenvalues. If the
spectrum is supported in a finite interval [a, b] the global scale is simply
given by the length of this interval. In contrary, the local scale is that

determined by the mean distance A between two neighbouring eigenvalues.
Loosely speaking, the local scale is N times smaller than the global one
sufficiently far from the spectrum edges, N being the matrix dimension.

Universality in the real spectra is well established. The global scale

universality is specific to random matrices with independent entries and
does not extend to other classes of random matrices. The best known

example of such universality is provided by the Wigner semicircle law

which holds for random matrices whose entries satisfy a Lindeberg type
condition [50]. In this expression the parameter J just sets the global scale
in a sense as defined above. It is determined by the expectation value
J2 = ~ ~ Tr H2 ~ . It is generally accepted to scale entries in such a way
that J stays finite when ~V 2014~ oo, the local spacing between eigenvalues
in the neighbourhood of the point X being therefore A oc 1/ N. Similar
universality is also known for complex spectra [42, 43].
From the point of view of universality the semicircular eigenvalue

density is not extremely robust. Most easily one violates it by considering
an important class of so-called "invariant ensembles" characterized by a
probability density of the form ex exp (-lV Tr V (H)), with 
being an even polynomial. The corresponding eigenvalue density turns
out to be highly nonuniversal and determined by the particular form of
the potential V ( H ) [51, 52]. Only for H2 it is given by the
semicircular law, Eq. ( 1 ). Moreover, one can easily have a non-semicircular
eigenvalue density even for real symmetric matrices S; Sij = Sji with
i.i.d. entries, if one keeps the mean number of non-zero entries p per column
to be of the order of unity when performing the limit ~V 2014~ oo. This is a
characteristic feature of the so-called sparse random matrices [53-55].
Much more profound universality emerges on the local scale in the

real spectra. The statistical behavior of eigenvalues separated by distance
5’ = sA measured in units of the mean eigenvalue spacing A is dictated
by the global matrix symmetries (e.g. if they are complex Hermitian or real
symmetric [2]), being the same for all random matrix ensembles within a
fixed symmetry class. All ensemble specific information is encoded in A.
On different levels of rigor, this universality was established for "invariant"

Vol. 68, n° 4-1998.
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ensembles (i.e. matrices with invariant probabiltity distributions) [56-58]
and for matrices with i.i.d. entries, including sparse matrices [54, 59].
Similar universality holds on a larger scale S &#x3E; A [60, 61] ] and in the
vicinity of the spectrum edges [62, 63].

It turns out, that it is the local scale universality that is mostly relevant
for real physical systems [4]. Namely, statistics of highly excited bound
states of closed quantum chaotic systems of quite different microscopic
nature turn out to be independent of the microscopic details when sampled
on the energy intervals large in comparison with the mean level separation,
but smaller than the energy scale related by the Heisenberg uncertainty
principle to the relaxation time necessary for a classically chaotic system to
reach equilibrium in phase space [5]. Moreover, these statistics turn out to
identical to those of large random matrices on the local scale, with different
symmetry classes corresponding to presence or absence of time-reversal
symmetry.

One of the aims of the present paper is to demonstrate that complex
spectra of weakly non-Hermitian random matrices possess a universality
property which is as robust as the above mentioned local scale universality
in the real spectra of Hermitian matrices. Weakly non-Hermitian matrices
appear naturally when one uses the Heidelberg approach to describe few-
channel chaotic scattering [19]. When the number M of open channels is
small in comparison with the number N of the relevant resonances, the
majority of the S-matrix poles (resonances) are situated close to the real
axis. This is well captured within the Heidelberg approach. With a proper
normalization of  and W, the imaginary part of typical eigenvalues of
the effective Hamiltonian He!! is of the order of the mean separation
between neighboring eigenvalues along the real axis. This latter property is
a characteristic feature of the regime of weak non-Hermiticity.

Motivated by this example we introduced in [45] another ensemble of
weakly non-Hermitian random matrices. This ensemble consists of almost-
Hermitian matrices which interpolate between the Gaussian ensemble of
Hermitian matrices (GUE) and the Gaussian ensemble of complex matrices
studied by Ginibre. It turned out that the eigenvalue distribution for almost-
Hermitian random matrices is described by a formula [45] containing as
two opposite limit cases both the Wigner semicircular distribution of real
eigenvalues and the uniform distribution of complex eigenvalues obtained
by Ginibre. Further studies of almost-Hermitian random matrices [41]
showed that actually all their local scale eigenvalues statistics describe

crossover between those of the GUE and Ginibre ensembles. Later on

Efetov, in his studies of directed localization [27], discovered that weakly

Annales de l’lnstitut Henri Poincare - Physique théorique
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non-Hermitian matrices are relevant to the problem of motion of flux lines
in superconductors with columnar defects. Efetov’s matrices are real almost-
symmetric. They interpolate between Gaussian ensemble of real symmetric
matrices (GOE) and the Gaussian ensemble of real asymmetric matrices.
This development clearly shows that, apart from being a rich and largely
unexplored mathematical object, weakly non-Hermitian random matrices

enjoy direct physical applications and deserve a detailed study.
The present paper consists of two parts. In the first part we study a three

parameter family of random matrix ensembles which contains the above
mentioned ensembles of almost-Hermitian and almost-symmetric matrices.
Our random matrices are of the form

where the four matrices on the right-hand side are mutually independent,
with 6~2 being real symmetric and A1,2 being real skew-symmetric. By
choosing matrix distributions and varying the parameter values one obtains
different ensembles of non-Hermitian matrices. We use that normalization

of matrix elements which ensures that

N being the matrix dimension. The parameters v and u are scaled with
matrix dimension:

and 0152, ø, and ware assumed to be of the order of unity in the limit
N - oo. The above scaling of v provides access to the regime of weak
non-Hermiticity, while scaling u we describe the crossover between the
GOE and GUE types of behavior of eigenvalues of the Hermitian part
of jHB A simple argument [45] based on the perturbation theory shows that
for our random matrices the eigenvalue deviations from the real axis are of
the order of when N is large, i.e. it is of the same order as typical
separation between real eigenvalues of the Hermitian 81 + iu1. Hence, in
order to obtain a nontrivial eigenvalue distribution in the limit N - o0 one
has to magnify the imaginary part scaling it with the matrix dimension.
Our study of the scaled eigenvalues of  is based on the supersymmetry

technique. We express the density of the scaled eigenvalues in the form
of a correlation function of a certain zero-dimensional non-linear a-model.

The obtained correlation function is given by a supersymmetric integral
which involves only the density of the limit eigenvalue distribution of
the Hermitian part of fl and the parameters a, ~, w. In two particular

Vol. 68, n° 4-1998.
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cases this supersymmetric integral can be explicitly evaluated yielding the
earlier obtained distributions of complex eigenvalues for almost-Hermitian
[45, 41] ] and almost-symmetric matrices [27].
The supersymmetric a-model was invented long ago by Efetov in the

context of theory of disordered metals and the Anderson localization and
since then have been successfully applied to diverse problems [64, 65].
Application of this technique to the calculation of the mean density of
complex eigenvalues of non-Hermitian random matrices was done for the
first time in our earlier works [19, 20, 45] and further advanced by Efetov
[27] in the context of description of flux line motion in a disordered

superconductor with columnar defects.
A detailed account of our calculations is given for sparse matrices [53-55]

with i.i.d. entries, although our results are extended to "invariant" ensembles
and conventional random matrices with i.i.d. entries. We assume that matrix
entries of 9k and A~ are distributed on the real axis with the density

where h(x) is arbitrary symmetric density function, = h ( - x ) ,
having no delta function singularity at x = 0 and satisfying the condition
2x h(x)dx  ~. We also assume that the mean number of nonzero entries

p exceeds some threshold value: p &#x3E; pi, see [59].
We want to stress that Eq. (2) describes the most general class of random

matrices whose entries are i.i.d. variables with finite second moment [54].
In particular, in the first part of our paper we do not assume the matrix
entries to be Gaussian.

We believe that here the power of the supersymmetry method is the most
evident and we are not aware of any other analytical technique allowing to
treat this general case non-perturbatively.

Although giving an important insight into the problem, the supersymmetry
non-linear a-model technique suffers from at least two deficiencies. The
most essential one is that the present state of art in the application of the
supersymmetry technique gives little hope of access to quantities describing
correlations between different eigenvalues in the complex plane due to
insurmountable technical difficulties. At the same time, conventional theory
of random Hermitian matrices suggests that these universal correlations
are the most interesting features. The second drawback is conceptual: the
supersymmetry technique itself is not a rigorous mathematical tool at the
moment and should be considered as a heuristic one from the point of
view of a mathematician.

Annales de l’lnstitut Henri Poincare - Physique théorique
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In the second part of the present paper we develop the rigorous
mathematical theory of weakly non-Hermitian random matrices of a

particular type: almost-Hermitian Gaussian. Our consideration is based

on the method of orthogonal polynomials. Such a method is free from the
above mentioned problem and allows us to study correlation properties of

complex spectra to the same degree as is typical for earlier studied classes
of random matrices. The results were reported earlier in a form of Letter-

style communication [41]. Unfortunately, the paper [41] contains a number
of misleading misprints. For this reason we indicate those misprints in the

present text by using footnotes.

II. REGIME OF WEAK NON-HERMITICITY:

UNIVERSAL DENSITY OF COMPLEX EIGENVALUES

To begin with, any N x N matrix J can be decomposed into a

sum of its Hermitian and skew-Hermitian parts : J = fli + iH2, where
1 = (J + Jt)/2 and H2 == (J - Following this, we consider
an ensemble of random N x N complex matrices J = fli + ivH2 where
Hp ; p = 1, 2 are both Hermitian: HJ = Hp. The parameter v is used to
control the degree of non-Hermiticity.

In turn, complex Hermitian matrices Hp can always be represented as
1 = 81 + iu1 and H2 = 82 + iwA2, where 8p = 8J is a real symmetric
matrix, and a real antisymmetric one. From this point of
view the parameters u, w control the degree of being non-symmetric.

Throughout the paper we consider the matrices ~i, 62,~41,~2 to be

mutually statistically independent, with i.i.d. entries normalized in such a
way that:

As is well-known [4], this normalisation ensures, that for any value of
the parameter u ~ 0 , such that u = 0(1) when N - oo, statistics of

real eigenvalues of the Hermitian matrix of the form H = 5’ + iu is
identical (up to a trivial rescaling) to that of u = 1, the latter case known
as the Gaussian Unitary Ensemble (GUE). On the other hand, for u m 0
real eigenvalues of real symmetric matrix S follow another pattern of the
so-called Gaussian Orthogonal Ensemble (GOE).

Vol. 68, n° 4-1998.
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The non-trivial crossover between GUE and GOE types of statistical
behaviour happens on a scale u ex l ~N 12 [66]. This scaling can be easily
understood by purely perturbative arguments [67]. Namely, for u oc 1/Nl/2
the typical shift 8 À of eigenvalues of the symmetric matrix S due to

antisymmetric perturbation iu is of the same order as the mean spacing
A between unperturbed eigenvalues : 8 À f"’.J 0 N 1/ N.

Similar perturbative arguments show [45], that the most interesting
behaviour of complex eigenvalues of non-Hermitian matrices should be
expected for the parameter v being scaled in a similar way: v (x 1~N1~2. It
is just the regime when the imaginary parts Im Zk of a typical eigenvalue Zk
due to non-Hermitian perturbation is of the same order as the mean spacing
A between unperturbed real eigenvalues : Im Z/c ~ A ~ 1/~V. Under these
conditions a non-Hermitian matrix J still "remembers" the statistics of its
Hermitian part fli. As will be clear afterwards, the parameter w should
be kept of the order of unity in order to influence the statistics of the

complex eigenvalues.
It is just the regime of weak non-Hermiticity which we are interested in.

Correspondingly, we scale the parameters as 1:

and consider a, 4J, w fixed of the order O( 1 ) when N - oo.
One can recover the spectral density

of complex eigenvalues Zk = Xk + iYk, k = 1, 2, ..., N from the

generating function (cf. [14, 20])

as

To facilitate the ensemble averaging we first represent the ratio of the two
determinants in Eq. (6) as the Gaussian integral

1 In the Letter [41] ] there is a misprint in the definition of the parameter 0152.

Annales de l’lnstitut Henri Poincare - Physique théorique
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over 8-component supervectors ~i,

with components ri ~ -f- ) , r2 ( - ) ; z = 1, 2,..., N being complex commuting
variables and Xz(+)~(~) forming the corresponding Grassmannian parts
of the supervectors 03A8i(±). The terms in the exponent of Eq. (7) are of
the following form:

and the matrices ~T, f, ~T, l1T are obtained from the corresponding
matrices without subindex T by replacing all ~2 blocks with the matrices
T = diag ( 1, -1).
We also use ~j~~~) _ (x2 (~); -xi~~)). When writing £2 (I» in Eq. (9)

we have used the fact that diagonal matrix elements S2,ii for i = I, .., N
Vol. 68, n° 4-1998.
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give total contribution of the order of with respect to the total
contribution of the off-diagonal ones and can be safely disregarded.
Now we should perform the ensemble averaging of the generating

function. We find it to be convenient to average first over the distribution
of matrix elements of the real symmetric matrix S’1.
These elements are assumed to be distributed according to Eq.(2). Before

presenting the derivation for our case, let us remind the general strategy.
The procedure consists of three steps. First step is the averaging of the
generation function over the disorder. It can be done trivially due to

statistical independence of the matrix elements in view of the integrand
being a product of exponents, each depending only on the particular matrix
element Hij. This averaging performed, the integrand ceases to be the
simple Gaussian and thus the integration over the supervectors can not
be performed any longer without further tricks.When matrix elements are
Gaussian-distributed, this difficulty is circumvented in a standard way
by exploiting the so-called Hubbard-Stratonovich transformation. That
transformation amounts to making the integrand to be Gaussian with

respect to components of the supervector by introducing new auxilliary
integrations. After that the integral over supervectors can be performed
exactly, and remaining auxilliary degrees of freedom are integrated out in
the saddle-point approximation justified by large parameter N.
As is shown in the paper [54], there exists an analogue of the Hubbard-

Stratonovich transformation allowing to perform the steps above also for
the case of arbitrary non-Gaussian distribution. The main difference with
the Gaussian case is that the auxilliary integration has to be chosen in a
form of a functional integral.
Our presentation follow the procedure suggested in [54], and presented

also in some detail in [55] 2.

Exploiting the large parameter TV ~&#x3E; 1 one can write:

2 Similarly to the paper [54] we first disregard necessity for the compactification and use the
matrix I rather than two different matrices t and I, see discussion in [55].

Annales de l’Institut Henri Poincare - Physique théorique



461UNIVERSALITY IN THE RANDOM MATRIX SPECTRA

In order to proceed further we employ the functional Hubbard-

Stratonovich transformation introduced in [54]:

where the kernel CYQ.0) is determined by the relation:

with the right-hand side of the eq. (12) being the 6-function in the space
of supervectors.

Substituting eq. (11) into averaged eq. (7) and changing the order of
integrations over [dip]i and Dg one obtains the averaged generating function
in the form:

where

We are interested in evaluating the functional integral over Dg in the
limit ~V 2014~ oo and x - 0; X -~ Xb. Moreover, we expect eigenvalues
Vol. 68, n° 4-1998.
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of weakly non-Hermitian matrices to have imaginary parts Y to be of the
order of Remembering also the chosen scaling (4), we conclude that
the argument of the logarithm in Eq. (14) is close to unity and the term
8£( p) in Eq. (13) should be treated as a small perturbation to the first
one. Then the functional integral of the can

be evaluated by the saddle-point method. Variating the "action" £(g) and
using the relation eq. (12) one obtains the following saddle point equation

= 0 for the function 

A quite detailed investigation of the properties of this equation was
performed in [54, 55]. Below we give a summary of the main features of
the eq. (15) following from such an analysis.

First, the solution to this equation can be sought for in a form of a
function ~s(~) = go (x , g) of two superinvariants: x = lft lf and y = Wt14J.
As the result, the denominator in eq (15) is equal to 1 due to the

y) = F(0,0) which is a particular case of the so-called
Parisi-Sourlas-Efetov-Wegner (PSEW) theorem, see e.g. [65] and references
therein. However, the form of the function go(x, y) is essentially different
for the number of nonzero elements p per matrix column exceeding the
threshold value p = pz and for p [54, 59]. Namely, for p &#x3E; pz the

function go (x , y) is an analytic function of both arguments x and y, whereas
for p  pz such a function is dependent only on the second argument
y = At the same time, the saddle-point equation eq. (15) is always
invariant w.r.t. any transformation - g(14J) with supermatrices T
satisfying the condition = A.

Combining all these facts together one finds, that for p &#x3E; pz a saddle-point
solution gives rise to the whole continuous manifold of saddle-point
solutions of the form: gT(~) - = so that all

the manifold gives a nonvanishing contribution to the functional integral
eq. (13). It is the existence of the saddle-point manifold that is actually
responsible for the universal random-matrix correlations [54].
We see, that the saddle-point manifold is parametrized by the

supermatrices T. It turns out, however, that one has to "compactify"
the manifold of T matrices with respect to the "fermion-fermion" block
in order to ensure convergence of the integrals over the saddle-point
manifolds [22]. The resulting "compactified" matrices T form a graded
Lie group UOSP(2, 2 /4) . Properties of such matrices can be found in [22]
together with the integration measure 
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From now on we are going to consider only the case p &#x3E; pl. The program
of calculation is as follows: (i) To find the expression for the term 
on the saddle-point manifold g = in the limit TV 2014~ oo and (ii) to
calculate the integral over the saddle-point manifold exactly.

Expanding the expression in Eq. (14) to the first non-vanishing order
in /, 52,~4.i, introducing the notation XT(4J) = 
and using the relations

which hold for arbitrary 8 x 8 supermatrices B, C, one finds that

where
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and we used the notations:

It is clear that with the chosen normalization [see Eqs. (3) - (4)] we have

when ~V 2014~ oo. On the other hand, it is easy to see that:

because of the statistical independence of and the chosen

normalization of matrix elements. Therefore, the part can be safely
neglected in the limit of large N.
To proceed further it is convenient to introduce the 8 x 8 supermatrix
W with elements

Exploiting the saddle-point equation for the function g~ ( ~ ~ ==

go I&#x3E;t A I&#x3E; ) one can show (details can be found in [55], Eqs. (67-
70)) that the supermatrix W whose elements are W03B103B2 can be written

3S.’

where B is the second moment of the di stribution h(s) : B 
and gox = In the expression above
we introduced a new supermatrix:  = -i-1.
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Using the definition of the matrix W, one can rewrite the part as

follows (cf. [55], Eqs. (71)-(73)):

Now one can use Eq. (20) together with the properties: Str Q = Str  =
Str7 = 0; Q2 = -I to show that:

where the 8 x 8 supermatrices entering these expressions are as follows:

and 73 is 4 x 4 diagonal, 73 = 7}.
In the same way one finds:

where

and T B’ ~ are 4 x 4 diagonal supermatrices: T3 $ ~ = and

T3F~ = 
At last, we use the relation between and the mean eigenvalue

density for a sparse symmetric matrix ~i at the point X on the real axis
derived in [54] :

Substituting expressions for b~,C~ and (4Jt /W) T to the generating
function Z represented as an integral over the saddle-point manifold
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parametrized by the supermatrices T (or, equivalently, by the supermatrices
Q = and performing the proper limits we finally obtain:

where we introduced the scaled imaginary parts y = and used

the notations: a2 = (7rv(X)a)2, b2 = (~v(X ~~)2, c2 = 
The expression (24) is just the universal a- model representation of the

mean density of complex eigenvalues in the regime of weak non-Hermiticity
we were looking for. The universality is clearly manifest: all the particular
details about the ensembles entered only in the form of mean density of
real eigenvalues v(X). The density of complex eigenvalues turns out to
be dependent on three parameters : a, band c, controlling the degree of
non-Hermiticity (a), and symmetry properties of the Hermitian part (b) and
non-Hermitian part (c). -

The following comment is appropriate here. The derivation above was
done for ensembles with i.i.d. entries. However, one can satisfy oneself that
the same expression would result if one start instead from any "rotationally
invariant" ensemble of real symmetric matrices 81. To do so one can
employ the procedure invented by Hackenbroich and Weidenmuller [58]
allowing one to map the correlation functions of the invariant ensembles
(plus perturbations) to that of Efetov’s a-model.

Still, in order to get an explicit expression for the density of complex
eigenvalues one has to evaluate the integral over the set of supermatrices
Q. In general, it is an elaborate task due to complexity of that manifold.
At the present moment such an evaluation was successfully performed for

two important cases: those of almost-Hermitian matrices and real almost-
symmetric matrices. The first case (which is technically the simplest one)
corresponds to ~ 2014~ oo, that is b - oo. Under this condition only that
part of the matrix Q which commutes with f2 provides a nonvanishing
contribution. As the result, Str (â-Q ) 2 = Str (â- rQ ) 

2 

so that second and

fourth term in Eq. (24) can be combined together. Evaluating the resulting
integral, and introducing the notation a2 = a2 + c2 one finds [45] :
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where p)( (y) is the density of the scaled imaginary parts y for those

eigenvalues, whose real parts are situated around the point X of the
spectrum. It is related to the two-dimensional density as px(y) =

°

It is easy to see, that when a is large one can effectively put the upper
boundary of integration in Eq. (25) to be infinity due to the Gaussian
cut-off of the integrand. This immediately results in the uniform density
p~(~) = inside the interval I y I  a 2 /2 and zero otherwise.

Translating this result to the two-dimensional density of the original
variables X, Y, we get:

This result is a natural generalisation of the so-called "elliptic law"
known for strongly non-Hermitian random matrices [36, 14]. Indeed, the
curve encircling the domain of the uniform eigenvalue density is an ellipse:
2v2 ( 1 ~-zv2 ) + ~ 4 = 1 as long as the mean eigenvalue density of the Hermitian
counterpart is given by the semicircular law, Eq. ( 1 ) (with the parameter
J = 1). The semicircular density is known to be shared by ensembles with
i.i.d. entries, provided the mean number p of non-zero elements per row
grows with the matrix size as p oc 7V~; o; &#x3E; 0, see [54]. In the general case
of sparse or "rotationally invariant" ensembles the function v(X) might be
quite different from the semicircular law. Under these conditions Eq. (26)
still provides us with the corresponding density of complex eigenvalues.
The second nontrivial case for which the result is known explicitly is

due to Efetov [27]. It is the limit of slightly asymmetric real matrices

corresponding in the present notations to: (~ 2014~ 0; w - oo in such a way
that the product 4Jw == c is kept fixed. The density of complex eigenvalues
turns out to be given by:

The first term in this expression shows that everywhere in the regime
of "weak asymmetry" c  oo a finite fraction of eigenvalues remains on
the real axis.
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Such a behaviour is qualitatively different from that typical for the case
of "weak non-Hermiticity" ii  oo, where eigenvalues acquire a nonzero
imaginary part with probability one.

In the limit c » 1 the portion of real eigenvalues behaves like c-1.
Remembering the normalisation of the parameter v, Eq. (3), it is easy to see
that for the case of v = the number of real eigenvalues should scale
as vW. Indeed, as was first noticed by Sommers et al. [ 14, 37] the number
of real eigenvalues of strongly asymmetric real matrices is proportional to

This and the fact that the mean density of real eigenvalues is constant
was later proved by Edelman et al. [38].

III. GAUSSIAN ALMOST-HERMITIAN MATRICES: FROM
WIGNER-DYSON TO GINIBRE EIGENVALUE STATISTICS

In the previous section we obtained the eigenvalue distribution in the
regime of weak non-Hermiticity for the random matrices of the form
J = with HI and ~2 being mutually independent Hermitian
random matrices with i.i.d. matrix entries. The obtained eigenvalue
distribution appeared to be universal, i.e. independent of the probability
distribution of the Hermitian matrices fli and 

In the present section we reexamine a particular case of J when both
~1 and H2 are taken to be Gaussian. In this special case not only the
mean eigenvalue density but also the eigenvalue correlation functions can
be obtained and studied in great detail.

The ensemble of random matrices that will be considered in this section

is specified by the probability measure = 

on the set M of complex N x N matrices with the matrix volume element

If the Hermitian fli and H2 are taken independently from the GUE, the
probability distribution of j = J?i + iu2 is described by the above-given
measure with
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provided that HI and H2 are normalized to satisfy (Tr ~) = N(1+T)/2, ,

p = 1,2.
The parameter T, 0  T  1, controls the magnitude of the correlation

between Jjk and Jk j : (JjkJkj) = T /N, hence the degree of non-Hermiticity.
All Jjk have zero mean and variance |Jjk|2~ = l/N and only Jjk and
Jkj are pairwise correlated. If T = 0 all Jjk are mutually independent
and we have maximum non-Hermiticity. When T approaches unity, Jjk
and are related via Jjk = J~~ and we are back to the ensemble of
Hermitian matrices.

Our first goal is to obtain the density of the joint distribution of

eigenvalues in the random matrix ensemble specified by Eq. (28). First
of all, one can disregard the matrices whose characteristic polynomial has
multiple roots. For, the set of such matrices forms a surface in A4 , hence
has zero volume. Every matrix off this surface has N distinct eigenvalues
and we label them Zi,..., ZN ordering them in such a way that

and if ] = ] for some j then arg Zj  arg Zj+1. Given J, one
can always find a unitary matrix C/ and a triangular T = 0 if j &#x3E; k)
such that

and Tjj = Zj for every j [68]. The choice of !7 and T is not unique.
For, multiplying !7 to the right by a unitary diagonal matrix $ one can
also write j = where V = !7~ is unitary, 6’ is triangular, and
again Sjj = Zj for every j. It is natural, therefore, to impose a restriction
on !7 requiring, for instance, the first non-zero element in each column
of !7 to be real positive. Then the correspondence (30) between J and
(!7,r) is one-to-one.

The idea of using the decomposition (30) (which is often called the
Schur decomposition) for derivation of the joint distribution of eigenvalues
goes back to Dyson [69] and we simply follow his argument. To obtain
the density of the joint distribution one integrates (28) over the set of
matrices whose eigenvalues are Z 1, ... , Z N. To perform the integration,
one changes the variables from j to (7,T) and integrates over f7 and the
off-diagonal elements of T. The Jacobian of the transformation J - ( U, T)
depends only on the eigenvalues and is given by the squared modulus of
the Vandermonde determinant of [69]. Since !7 is unitary,
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Therefore, the integral over !7 yields

where Vol[U(N)] is the volume of the unitary group U(N). Since T is
triangular, the integration over the off-diagonal entries of T reduces, in
view of (31), to the Gaussian integral

Collecting the constants one obtains the desired density. Obviously, it is

symmetric in the eigenvalues {Zj}. Therefore, the above restriction of Eq.
(29) on the eigenvalues can be removed by reducing the obtained density in
N! times. Thus finally, the density of the joint distribution of (unlabelled)
eigenvalues in the random matrix ensemble specified by Eq. (28) is given by

where

The form of the distribution Eq. (32) allows one to employ the powerful
method of orthogonal polynomials [2]. Let H n (z) denotes nth Hermite
polynomial,

These Hermite polynomials are orthogonal on the real axis with the weight
function exp(-~/2) and are determined by the following generating
function

It is convenient to rescale Hermite polynomials in the following way:

Annales de l’Institut Henri Poincare - Physique théorique



471UNIVERSALITY IN THE RANDOM MATRIX SPECTRA

The main reason for doing that rescaling is that these new polynomials
n = 0,1, 2, ..., are orthogonal in the complex plane Z = X + iY

with the weight function w 2 ~ Z ~ of Eq. (33):

(Recall that d2Z = dXdY.) We borrowed this observation which is crucial
for our analysis from the paper [70] (see also the related paper [71 ] ). A

quick check of the orthogonality relations is possible with the help of the
generating function (35).
With these orthogonal polynomials in hand, the standard machinery of the

method of orthogonal polynomials [2] yields the n-eigenvalue correlation
functions

in the form

where the kernel Zz) is given by

In particular, define the density of eigenvalues as in Eq.(5), so that the
number of eigenvalues in domain A of the complex plane is given by
the integral

Notice that the averaged density of eigenvalues (p(Z)) is simply Ri(Z).
From Eqs. (39), (40), and (36) one infers that

This exact result is valid for every finite N. The rest of this section

is devoted to sampling of statistical information that can be obtained
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from Eqs. (39) - (40) for large matrix dimensions ~V ~&#x3E; 1. First we

briefly examine the regime of strong non-Hermiticity when the real and
imaginary parts of a typical eigenvalue are of the same order of magnitude
when N - oo. This regime is realized when 0  T  1

(recall that for T = 1 our matrices are Hermitian). We will show that
in this case T-dependence of the eigenvalue correlations on the local
scale becomes essentially trivial and the correlations become identical
to those found by Ginibre in the case of maximum non-Hermiticity
(T = 0).

Then we will examine the regime of weak non-Hermiticity when the
imaginary part of typical eigenvalue is of the order of the mean separation
between the nearest eigenvalues along the real axis. This regime is realized
when

We will show that by varying the parameter Q one can describe the crossover
from the Wigner-Dyson eigenvalue statistic typical for Hermitian random
matrices to the Ginibre eigenvalue statistic typical for non-Hermitian
random matrices.

To begin with the regime of strong non-Hermiticity we first recall
that in this regime the eigenvalues in bulk are confined to an ellipse
in the complex plane and they are distributed there with constant density
(cf. Eq. (26)):

This fact can be inferred from Eq. (42). Inside the ellipse every domain
of linear dimension of the order of 1/ VN contains, on average, a finite
number of eigenvalues. Thus the eigenvalue statistics on the local scale are
determined by the correlation functions .

of the rescaled eigenvalues z = VN Z. This rescaling is effectively
equivalent to the particular normalization of the distribution (28) which
yields (Tr JJt) = N2, the normalization used in [36].
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One can easily evaluate the rescaled correlation functions Rn exploiting
Mehler’s formula 3 [72] :

Indeed, denote z2) = Then, by Mehler’s
formula

and in view of the relationship

one obtains that

In particular

After the natural additional rescaling Eqs. (45)-(47)
become identical to those found by Ginibre [36] for the case T = 0.

3 Mehler’s formula can be derived by using the integral representation (34) for Hermite
polynomials in the l.h.s. of Eq. (44).
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Now we move on to the regime of weak non-Hermiticity [see Eq. (43)].
We will show that in this regime new non-trivial correlations occur on the
scale: ImZi,2 = Re Zl - Re Z2 = 

To find the density of complex eigenvalues and describe their correlations,
let us define new variables yi, ~2, w:

Our first goal is to evaluate the kernel Z2 ) in the limit

Using the integral representation for Hermite polynomials, Eq. (34), we
can rewrite in the form

Using new variables (48) in the equation above and making the substition

in the integrals, we obtain
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were we have introduced the notation

Now we are in a position to evaluate Z2) in the regime defined by
Eq. (49). Indeed, in this regime, to the leading order,

From these relations one obtains that

Taking into the account that

and evaluating the integral over v by the saddle point method we finally
obtain that in the regime Eq. (49), to the leading order,

where y = (yi + y2)/2 and
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with v(X ) = ~V’4-X~ standing for the Wigner semicircular density of
real eigenvalues of the Hermitian part 77i of the matrices J.

Equation (51 ) constitutes the most important result in this section. The
kernel KN given by Eq. (51) determines all the properties of complex
eigenvalues in the regime of weak non-Hermiticity. For instance, the mean
value of the density p ( Z ) _ ~ ~ 1 b ~ 2 ~ ( Z - of complex eigenvalues
Z = X + iY is given by (p(Z)) = KN (Z, Z). Putting ~l = y2 and úJ = 0
in Eqs. (51)-(52) we immediately recover the density Eq. (25) found by
the supersymmetry approach 4.
One of the most informative statistical measures of the spectral

correlations is the ’connected’ part of the two-point correlation function
of eigenvalue densities:

In particular, it determines the variance ~2(D) _ (n(D)2) - (n(D))2 of
the number n of complex eigenvalues in any domain D in

D
the complex plane, see the Appendix for a detailed exposition.
Comparing with the definitions, Eqs. (38) and (39) we see that the

cluster function ZZ) is expressed in terms of the kernel KN as

It is evident that in the limit of weak non-Hermiticity the kernel KN
in Eq. (51) depends on X only via the semicircular density v(X). Thus,
it does not change with X on the local scale comparable with the mean
spacing along the real axis 0 N 
The cluster function y2 is given by the following explicit expression:

The parameter a = 7rv(X)a controls the deviation from Hermiticity.
When a » 1 the limits of integration in Eq. (54) can be effectively put

4 In the present section we normalized 2 in such a way that for weak non-Hermiticity regime
we have limN -00 TrH2 - N, whereas the normalization Eq. (3) gives 
TV(1 + w2 ). It is just because of this difference the parameter a entering Eq. (25) contains extra
factor 1 + w2 as compared to the present case.
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to J=oo due to the Gaussian cutoff of the integrand. The corresponding
Gaussian integration is trivially performed yielding in the original variables
Zi,J?2 the expression equivalent (up to a trivial rescaling) to that found
by Ginibre [36]: y2(Z1, Z2~ _ Z2I2I~2~. In
the opposite case a - 0 the cluster function tends to GUE form

J’2(p ~1~ ~2/ - 
One can also define a renormalized cluster function:

Introduce the notation

Then

where

It has advantages of being non-singular in the Hermitian limit a - 0 and
coinciding with the usual GUE cluster function [;;-2 sin2 [;; on the real axis:
Y1 == Y2 = 0. We plotted this function for different values of the parameter
a in Figure 1.

The operation of calculating the Fourier transform of the cluster function
over its arguments w, ~2 amounts to simple Gaussian and exponential
integrations. Performing them one finds the following expression for the
spectral form-factor:
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where Zi and Z2 are given by Eq. (48), and 0(u) = 1 for u &#x3E; 0 and
zero otherwise.

We see, that everywhere in the regime of weak non-Hermiticity
0  0152  oo the formfactor shows a kink-like behaviour at Ikl = v ( X ) .
This feature is inherited from the corresponding Hermitian counterpart-
the Gaussian Unitary Ensemble. It reflects the oscillations of the cluster
function with cv which is a manifestation of the long-ranged order in

eigenvalue positions along the real axis [4]. When non-Hermiticity increases
the oscillations become more and more damped as is evident from the Fig. 1.

As is well-known [2, 4], the knowledge of the formfactor allows one to
determine the variance E2 of a number of eigenvalues in any domain D
of the complex plane. Small ~2 is a signature of a tendency for levels to
form a crystal-like structure with long correlations. In contrast, increase in
the number variance signals about growing decorrelations of eigenvalues.

For the sake of completeness we derive the corresponding relation in
the Appendix, see Eq. (A3). In the general case this expression is not very
transparent, however. For this reason we restrict ourselves to the simplest
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case, choosing the domain D to be the infinite strip of width L~ (in units of
mean spacing along the real axis A = (~(0)~V)’~) oriented perpendicular
to the real axis: 0  ReZ  -oo  ImZ  oo. Such a choice

means that we look only at real parts of complex eigenvalues irrespective
of their imaginary parts. It is motivated, in particular,by the reasons of
comparison with the GUE case, for which the function ~2 (Lx ) behaves at
large L~ logarithmically: ~2 (Lx ) oc ln Lx [4].

After simple calculations (see Appendix) one finds 5

First of all, it is evident that ~2 grows systematically with increase in the
degree of non-Hermiticity a = 7rv(0)a, see Fig. 2. This fact signals on the
gradual decorrelation of the real parts Re Zi of complex eigenvalues. It can
be easily understood because of increasing possibility for eigenvalues to
avoid one another along the Y = Im Z direction, making their projections
on the real axis X to be more independent.

In order to study the difference from the Hermitian case in more detail
let us consider again the large L~ behaviour. Then it is evident, that the
number variance is only slightly modified by non-Hermiticity as long as
a « Lx. We therefore consider the case a » 1 when we expect essential
differences from the Hermitian case. For doing this it is convenient to

rewrite Eq. (57) as a sum of three contributions:

First of all we notice, that for large a the third contribution ~~3) is always
of the order and can be neglected.

5 In our earlier Letter [41] ] the expression Eq. (57) and formulae derived from it erroneously
contained Tra instead of a.
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The relative order of the first and second terms depends on the ratio
In a large domain 1 « Lx rv a, the second term ~~2) is much

smaller then ~21~. This implies that the number variance grows like

E(L~) = Lxf(Lx/a). We find it more transparent to rewrite the function
f(u) in an eauivalent form:

which can be obtained from Eq. (58) after a simple transformation.
For u = Lx la « 1 we have simply f : 1 and hence a linear growth of

the number variance. For t6 ~&#x3E; 1 we have f ~ (7r3/2U)-1. 
slows down: E2(L~.) ~ J.
Only for exponentially large L~ such that In (Lx/a) 2: a the term ~~2)

produces a contribution comparable with ~21~ . To make this fact evident
we rewrite ~~2) as:
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For 1 we can neglect the oscillatory part of the integrand effectively
substituting 1/2 for sin~ in Eq. (59). The resulting integral can be
evaluated explicitly. Remembering that ~~1) a/(27r3/2) we finally
find:

where, is Euler’s constant. This logarithmic growth of the number variance
is reminiscent of that typical for real eigenvalues of the Hermitian matrices.

Another important spectral characteristics which can be simply expressed
in terms of the cluster function is the small-distance behavior of the nearest

neighbour distance distribution [2, 4, 40]. We present the derivation of the

corresponding relationship in Appendix.

Substituting the expression Eqs. (25, 54) for the mean density and the
cluster function into Eq. (A6) one arrives after a simple algebra to the
probability density to have one eigenvalue at the point Zo = X + 
and its closest neighbour at the distance zi - zo = -s~ ~ = 
such that s « 1:

where ga is given by Eq. (52).
First of all it is easy to see that in the limit a &#x3E; 1 one has:

« l~ _ ~ (s~a2~3 in agreement with the cubic repulsion generic
for strongly non-Hermitian random matrices [36, 12, 40]. On the other hand
one can satisfy oneself that in the limit ~ 2014~ 0 we are back to the familiar
GUE quadratic level repulsion: 1) oc S(~o)s2. In general, the
expression Eq. (60) describes a smooth crossover between the two regimes,
although for any 0 the repulsion is always cubic for s - 0.
To this end, an interesting situation may occur when deviations from

the Hermiticity are very weak: and ’observation points’ Zo are
situated sufficiently far from the real axis: 2~o!/~ ~ 2’~.
Under this condition the following three regions for the parameter s

should be distinguished: i) ~ « 4 I y° I ii)-4Ia I « a « 2l1l2l and finally
iii) 2-~ ~ 2l1l2l « j « a-1.
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In the regimes i) and ii) the term linear in cos () in the exponent of
Eq. (60) dominates yielding the result of integration to be the modified
Bessel function xlo (4~gs). In the regime iii) the term quadratic in cos ()
dominates producing ~2~rcx~s~ 1~2. As the result, the
distribution p(Zo, s) displays the following behaviour:

with 

Unfortunately, the unusual power law p(s) oc s5 ~ 2 might be a very
difficult one to detect numerically because of the low density of complex
eigenvalues in the observation points reflected by the presence of the
Gaussian factor in the expression Eq. (61).

IV. CONCLUSION

In the present paper we addressed the issue of eigenvalue statistics of
large weakly non-Hermitian matrices. The regime of weak non-Hermiticity
is defined as that for which the imaginary part ImZ of a typical complex
eigenvalue is of the same order as the mean eigenvalue separation A for
the Hermitian counterpart.

Exploiting a mapping to the non-linear a-model we were able to

show that there are three different "pure" classes of weakly non-Hermitian
matrices: i) almost Hermitian with complex entries, ii) almost symmetric
with real entries and iii) complex symmetric ones. Within each of these
classes the eigenvalue statistics is universal in a sense that it is the
same irrespective of the particular distribution of matrix entries up to

an appropriate rescaling. There are also crossover regimes between all three
classes.
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Our demonstration of universality was done explicitly for the density of

complex eigenvalues of matrices with independent entries. Within the non-
linear a-model formalism one can easily provide a heuristic proof of such
a universality for higher correlation functions as well as for "rotationally
invariant" matrix ensembles, see [5 8] . The above feature is a great advantage
of the supersymmetry technique.

A weak point of that method is a very complicated representation of
the ensuing quantities. It seems, that the explicit evaluation of the higher
correlation functions is beyond our reach at the moment, and even a

calculation of the mean density requires a lot of effort, see [45, 27]. As a
result, at present time the mean density is known explicitly only for the
cases i) and ii).

Fortunately, because of the mentioned universality another strategy can be

pursued. Namely, one can concentrate on the particular case of matrices with

independent, Gaussian distributed entries for which alternative analytical
techniques might be available. Such a strategy turned out to be a success for
the simplest case of complex almost-Hermitian matrices, where we found
the problem to be an exactly solvable one by the method of orthogonal
polynomials. This fact allowed us to extract all the correlation functions in
a mathematically rigorous way [41].

One might hope that combining the supersymmetric method and the
method of orthogonal polynomials one will be able to elevate our

understanding of properties of almost-Hermitian random matrices to the
level typical for their Hermitian counterparts.

From this point of view a detailed numerical investigation of different
types of almost-Hermitian random matrices is highly desirable. Recently,
an interesting work in this direction appeared motivated by the theory of
chaotic scattering [74]. Weakly non-Hermitian matrices emerging in that
theory are different from the matrices considered in the present paper
because of the specific form of the skew Hermitian perturbation, see e.g.
[19]. This fact makes impossible a quantitative comparison of our results
with those obtained in [74]. The qualitative fact of increase in number
variance with increase in non-Hermiticity agrees well with our findings.
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Appendix: Number variance and
nearest neighbour distance distribution

The number of eigenvalues in any domain A is expressed in terms
of the eigenvalue density as in Eq. (41). Then the variance ~2(~4.) =~
(n(A)2) - (n(A))2 of the number n(A) is given by:

where we used the definition of the cluster function ~2(~1? ~2).
We are interested in finding this variance for the domain A being a

rectangular in the complex plane 2014L~V
Ly . Moreover, we are going to consider the extension Lx being comparable
with the mean eigenvalue separation along the real axis: A = 
We know that on such a scale the mean eigenvalue density is independent
of X and can be replaced by its value v(0) at X = 0, whereas the cluster
function depends on H = X2 rather than on Xi and X2 separately.
Using these facts, we obtain:

It is convenient to introduce the spectral form-factor B(K, Q1, Q 2 ) by the
Fourier transform:

The number variance can be expressed in terms of the spectral form-
factor, Eq. (A2), as:
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In particular, for the strip 0  X  L; - oo  Y  oo the number

variance is given by a rather simple expression:

In the main text of the paper we use the variables == and

úJ = NQ. Correspondingly, the form-factor is related to

~(~1~2). Eq. (56) as

. Substituting this expression into Eq. (A4) and measuring the length
L in the units of A = 1/(Nv(0)) as L = we find after simple
manipulations the eq. (57).

Let us now derive the relation between the cluster function and the

nearest neighbour distance distribution p(Zo, S), see also [40].
We define the quantity p( Zo , S) as the probability density of the following

event: i) There is exactly one eigenvalue at the point Z = Zo of the
complex plane, ii) Simultaneously, there is exactly one eigenvalue on the
circumference of the circle ~Z - Zo = S, iii) All other eigenvalues Zi are
out of that circle: Zol &#x3E; S.

As a consequence, the normalization condition is:

In particular, for Hermitian matrices with real eigenvalues one has
the relation: p(Zo, S) = with being the
conventional "nearest neighbour spacing" distribution at the point X of
the real axis [2].

Using the above definition one easily finds the relation: 
where H(Zo , S) has the meaning of the probability density

Vol. 68, n° 4-1998.
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to have one eigenvalue at Z = Zo and no other eigenvalues inside the
disk D:~Z 2014 Zo I ::; S. The latter quantity is related to the joint probability
density of complex eigenvalues as

where is the characteristic function of the disk equal to unity for
points Zj inside the disc and zero otherwise.
We are interested in finding the leading small-S behaviour for the function

p(Zo, S). For this one expands

and notices that each factor xD (Zj ) produces upon integration extra factor
proportional to the area of the disc. Therefore, to the lowest nontrivial
order in S one can restrict oneself by the first two terms in the expansion
and write:

where we used the definitions of the mean eigenvalue density and

the spectral correlation function, see Eq. (38). At last, exploiting that
= fo drr + one finally finds after

differentiation over S:

where we used the definition of the cluster function, Eq. (53).
In the regime of weak non-Hermiticity this formula is valid as long as

the parameter S is small in comparison with a typical separation between
real eigenvalues of the Hermitian counterpart: S « 0 N 
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