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ABSTRACT. - The affirmative answer is given to the long standing question
whether there exist nowhere dispersing ergodic billiards in dimensions

greater than two. To do this we construct a class of n-dimensional domains,
n &#x3E; 3, generating ergodic billiards (that are also Bernoulli systems).
@ Elsevier, Paris.
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RESUME. - Nous repondons de fagon positive a la question posee de
longue date de savoir s’il existe des billiards ergodiques nulle part dispersifs
en dimensions superieures ou egales a trois. Dans ce but, nous construisons
une classe de domaines en dimension n &#x3E; 3 engendrant des billiards

ergodiques (qui sont de plus des systemes de Bernoulli). © Elsevier, Paris.

1. INTRODUCTION

It is well known that chaotic properties of dynamical systems of physical
origin are generated by hyperbolicity. Sometimes hyperbolicity is referred
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422 L. A. BUNIMOVICH AND J. REHACEK

to as sensitive dependence on initial conditions. It means that nearby
trajectories exponentially diverge in a phase space.

Historically this type of motion was first observed and proved to exist
in the geodesic flows on surfaces of negative curvature [H]. Then the
results were essentially generalized by Anosov, Sinai and Smale [A], [S],
[AS], [Sm].
However, all these papers deal with smooth dynamical systems that

exhibit uniform hyperbolicity. The last means that the rates of divergence
of trajectories at different points of a phase space vary smoothly and their
ratios are bounded away from zero as well as from infinity. In dynamical
systems that appear in physical models, however, the hyperbolicity is

usually nonuniform.
The most visible and classical examples of such models are billiards.

Billiards naturally appear as models in statistical mechanics, optics,
acoustics etc. The theory of hyperbolic billiards was essentially developed
by Sinai and his school. He introduced the class of billiards with smooth
dispersing (convex inwards) boundaries [SI], which were later called Sinai
billiards and proved that such billiards are ergodic and B-systems in any
(finite) dimension. These results were extended to dispersing 2D billiards
with nonsmooth boundaries in [BS].

It was the general belief for a long time, both in the mathematical

and physical communities, that billiards with focusing components always
demonstrate a regular, rather than chaotic behavior. This ideology has been
confirmed by Lazutkin’s proof [L] of the abundance of caustics for billiards
in the convex 2D domains with smooth boundaries.

It has been discovered, however, that this ideology is wrong, because
there exists another mechanism of hyperbolicity that works in some billiards
with focusing boundaries [Bl]. This mechanism was called the mechanism
of defocusing. Later it has been shown that the same mechanism generates
chaotic (hyperbolic) behavior in some geodesic flows on surfaces of positive
curvature [Dl,2], [BG]. However, all the examples studied in these papers
are two dimensional.

For more than 20 years the problem, whether the mechanism of

defocusing can generate hyperbolicity in dynamical systems with dimension
greater than two, was open. The affirmative answer to these questions was
claimed in [B2], where the construction of corresponding high-dimensional
chaotic focusing billiards was outlined. In [WI] was constructed an example
of a linearly stable periodic trajectory in some 3D region whose boundary
contains semispheres. This demonstrates again that the problem under
consideration is rather delicate. The rigorous proofs of the existence of
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423ERGODICITY OF MANY-DIMENSIONAL BILLIARDS

high dimensional focusing billiards with nonzero Lyapunov exponents were
given in the recent papers [BR1,2]. Here we prove ergodicity and B-property
for billiards with spherical caps that are smaller than 60° (as opposed to 90°
in [BR1~2]) This additional restriction seems to be mostly of a technical
nature. However, it may have some implications for the structure of the
spectrum of the corresponding quantum systems.
The main difficulty in studying high dimensional focusing billiards lies

in the fact that focusing is very weak in some directions. This phenomenon
is called astigmatism and the corresponding elementary formulas were
discovered more than 160 years ago (see [C] and the formula (2.2) below).
Bunimovich’s claim made in [B2] was also made because of this formula.
However, in this paper we need to impose even stronger restrictions on the
size of spherical caps. Therefore the mechanism of defocusing discovered
in [Bl] works in such billiards in much more subtle manner.

2. DESCRIPTION OF THE BILLIARD AND THE MAIN RESULT

We will study billiards in some class of n-dimensional regions (n &#x3E; 2)
bounded by flat walls and spherical caps. By a spherical cap we mean a
piece of sphere bounded by some plane. It is our aim to prove that for

some class of such regions the billiard motion is a B-system.
Let B ~ Rn be a region described above whose boundary is equipped

with a field of inward unit normal vectors n(q) (see Fig. 1). The billiard
system is then realised by a point particle, moving with a unit velocity
inside this region and being reflected according to the law "the angle of
incidence equals the angle of reflection" at the boundary. In terms of the
velocity of the particle this means, that the tangent component of it remains
the same after the reflection, while the normal component changes the sign,
according to the rule

v+ =~ -2(~(~)~_)~(g).

The phase space A4 of such a system is the restriction of the unit tangent
bundle of Rn to B and we’ll use the standard notation x = (q, v), where
x is the phase point, q is the point in the configuration space and v is
the unit velocity vector. The billiard flow preserves the Liouville measure
dv = dq A dw, where dq and dw are Lebesgue measures on B and the
unit sphere respectively. This flow will be denoted by st, thus yielding the
continuous dynamical system v).

Vol. 68, n° 4-1998.



424 L. A. BUNIMOVICH AND J. REHACEK

As is customary for billiard systems, rather than studying the dynamics of
the continuous system, we will be studying the so called billiard map. Then
many properties, e.g. ergodicity, of a billiard flow follow automatically
from the corresponding properties of a billiard map. Let us denote

The projection onto the configurational space will be denoted by 7r, i.e.

= q. For x = (q, v) E M we define to be the first positive
moment of intersection of the billiard orbit determined by x with the

boundary. Then Tx = (q’, v’) = so that q’ is the point of next
reflection and v’ is the outcoming velocity vector at that point.

Since very often we will be working with the (n - I)-dimensional
hypersurface , in the rest of the paper we will adopt the convention
m = n - 1. Not to confuse the reader with dimensions, let us repeat that

the boundary of our billiard region B C Rn consists of m dimensional
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manifolds (flat walls and parts of the m dimensional sphere). A subspace,
perpendicular to an orbit, has also the dimension m = n - 1. The n-
dimensional billiard mapping T preserves the projection of the Liouville
measure on the boundary

where dq is the m-dimensional Lebesgue measure on the boundary ~B

generated by the volume and dw is the m-dimensional Lebesgue measure
on the unit sphere. The const is the usual normalizing constant so that

= 1.

In order to study the behavior in the vicinity of a given billiard trajectory,
we introduce a concept of an m-dimensional infinitesimal control surface

1 (also called a wavefront) of class C2 perpendicular to the orbit. The rate
at which the neighboring trajectories diverge is defined by the curvature
operator (the operator of the second fundamental form) of the surface ~y.

The reflection from the focusing components of the boundary may cause
that some of the principle curvatures are negative. However, during the free
path the corresponding families of trajectories defocus and from then on
diverge from an orbit under consideration, i.e. from a certain point on the
free path (the conjugate point) the curvature operator is positive definite.
To demonstrate that the defocusing mechanism works in many dimensions,
we show that if the surface 1 approaches a spherical cap with the positive
definite curvature operator, then the whole billiard region can be configured
in such a way, that after passing through the spherical cap, the surface
~ will focus "relatively soon" (and thus the curvature operator becomes
positive definite again). We will specify this in the proof of Lemma 1 (see
also [BR1~2]) This property ensures that the mechanism of defocusing
discovered in [B2] for 2-D billiard works also for some n-dimensional

regions.
It is known and obvious that a part of the orbit reflecting from a given

spherical cap lies in the same 2D plane, which contains the center of the
corresponding sphere. We denote this plane by P. This plane then defines
the unique direction on a hyperplane U, perpendicular to the orbit. We
will call this unique direction a planar direction or a planar subspace,
while its orthogonal complement will be called an orthogonal or transversal
subspace. The hyperplane U thus naturally splits into

where Up = U n P and Ut is the (m - 1)-dimensional orthogonal
complement to Up in U. Since the control surface ~ is tangent to U

Vol. 68, n° 4-1998.
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the planar direction and the orthogonal directions are naturally defined on
~. Let us mention, however, that these directions are not intrinsic properties
of the control surface and can be defined only with respect to a given cap.

For understanding the dynamics of the system in the vicinity of the given
orbit it is important to know how the curvatures of the control surface q
evolve. In the planar direction they change just like in the 2D billiards

In the orthogonal subspace, however, they obey ([C], p.66)

where x+ (/~ ) is the curvature after (before) the reflection, § is the angle
of reflection and k is the curvature of the boundary. Finally, during the free
path the curvature evolution is known to be

The main difficulty in dealing with billiard dynamics is the existence of
singular points, i.e. points x E M at which the mapping T (or T-1) is
not defined or is discontinuous. In our case of focusing billiard there are
no "tangencies" (as in dispersing billiards) and so we have to deal only
with "multiple reflections".

Let us denote by the set of points where the mapping T is not defined
(points whose trajectory hits intersections of regular boundary components)
and by 81 the points where T -1 is undefined (points x = ( q, v ) with q
in these intersections). Thus points from 5"i can be further iterated by T,
giving rise to manifolds where higher iterates of T-1 are not defined.
More precisely, for a positive integer l we define the set of points where

T- i is not defined by

and similarly

is the set, where Tl is not defined. Further let 5oo = and
= Their intersection S = 8-00 n 8ex;) is the set of points

whose orbit terminates both in the past and in the future.

Annales de l ’lnstitut Henri Poincaré - Physique theorique
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Finally, we denote the set of points for which either forward or backward
trajectory can be defined by Mo = MB5".
We now formulate the main result of this paper. Let w’ be the angular

size of a given spherical cap C and p its radius.

DEFINITION 1. - The zone of focusing of a given spherical cap is a part
of the billiard region bounded by the flat wall to which the spherical
cap is attached, by the transparent wall parallel to it and intersecting
the center of the spherical cap and, finally, by surrounding flat walls

(in Fig. 2 the transparent walls associated with the cap Ci are denoted

by 

DEFINITION 2. - Let Q c be a regular polyhedron, which tiles the
whole space A region B ~ Rn will be called type (1) region, if
it consists of a product Q x [0, a] for some a &#x3E; 0 and all the spherical
caps are attached only to the sides Q x {0} and Q x ~ a ~ (these walls
will be called principal faces). Moreover, the intersection of the spherical
cap with the flat face should be "inscribed" to the polyhedron Q, i.e. all
the faces of the polyhedra should be tangent to this intersection. Finally,
their zones of focusing have to be disjoint, i.e. pi + p2 ~ a, where pi
and p~ are radii of the spherical caps attached to the principal faces. If
one of them holds more than one cap, then we take maximum of all the

possible radii.

DEFINITION 3. - A region Q c Rn will be called type (2), if it consists
of a rectangular box with spherical caps attached to some of its faces.
More precisely, the type (2) region must have at least one spherical cap
attached to each pair of opposite sides of the rectangular box. However,
any billiard trajectory going from one cap to the other must, at some

point, be outside of both zones of focusing. Thus in Fig. 2 the caps
Ci and C2 are improperly placed (the full line represents part of the
billiard orbit that is inside zones of focusing during traversing from Ci
to C2), while either of them can coexist with the spherical cap C3 in the
type (2) region. In addition to it, the type (2) region must have at least
one spherical cap attached to each pair of opposite sides of the rectangular
box.

DEFINITION 4. - A phase point x = ~q, v~ will be called essential if
its forward or backward semitrajectory has at least one reflection from a
spherical cap. We denote by Mi the set of all essential points.
The main result of this paper is the following.

Vol. 68, n° 4-1998.
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THEOREM 1. - Let B be a billiard region of the type (1 ) or (2) and let all
the spherical caps attached to the flat walls have angular size smaller than
60°. Then billiard system in this region is ergodic.
The full-blown proof of ergodicity for billiard systems uses techniques

developed over the years in [BS], [SCh], [KSS], [LW], [Ch], [M], which
are based on the original Sinai’s approach [SI]. It consists in showing that
the expansion of local unstable manifolds prevails over the fractioning of
these by images of singularity manifolds. This allows to deduce that in

every neighborhood of a phase point x there is a sufficient number of long
enough smooth stable and unstable fibers that are necessary to carry the

- 
construction of Hopf’s chain of stable and unstable manifolds.

In order to establish the existence of these manifolds we use a combination

of techniques of invariant cones and of monotone quadratic forms (see
[LW], [M]). The function Q : T M  R is a quadratic form if Qx is a

quadratic form on TxM for any x e M. We define these forms in the proof
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of Lemma 1. Given this quadratic form we can define the following sets

which are contracting and expanding subspaces and

which are called contracting and expanding cones.
We base our proof on the abstract versions of the so-called Fundamental

Theorem of the billiards theory (see for instance [Ch], [M], [LW])
that establishes local ergodicity provided certain conditions are met. Our
approach is essentially based on [Ch].
Fundamental Theorem: Assume that the billiard system (M, T, ~~

satisfies the Conditions (A)-(E) (listed below). Then for each essential
point x E Mo (i.e. x E Mo n Mi) there exists a neighborhood U(x)
contained (mod 0) in one ergodic component.
Now we list the conditions that the billiard system has to satisfy:
Condition A: (continuity) For almost all x E M there exist local stable

and unstable manifolds and their tangent subspaces E~ and E~ c TxM
depend continuously on x.

Condition B: (Sinai-Chernov ansatz) Almost every point on the

singularity manifold enters regions where the quadratic form increases,
i.e. for almost all x E 

where DT" is the differential of the n-th iterate of the billiard map.
Condition C: (double singularities) For each integer n &#x3E; 0, denote by

An the set of x E M such that there exist positive integers M ~ n and
satisfying T-N x E 81 and TM x E 8_1. Then An is a finite union

of compact submanifolds of codimension greater than 1.

Condition D: (thickness of the singularity region) For E &#x3E; 0 let UE be
the E- neighborhood of the singularity set 81 U that is measured in

Vol. 68, n° 4-1998.
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a pseudometric, described in the proof of Lemma 4. Then there exists a
constant C &#x3E; 0 such that

Condition E: (transversality) At almost every point x of the singularity
submanifold 5i the stable subspace E~ is transversal to Si, i.e. E~ is not
a subspace of Similarly, .E~ is not a subspace of for almost

every point of 
The Lemmas dealing with these conditions are proved in Sect. 3. Besides

them, we will need some properties of essential points Mi.

PROPOSITION 1. - Essential points have full measure, i.e. = 1.

Proof. - For the sake of brevity we give the proof just for the case of a
cube with attached spherical caps. It is easy to see that any velocity vector
v = (~B...,f~),~t~ ( = 1, with pairwisely incomensurable components
defines a positive (as well as negative) semitrajectory which gets reflected
from a spherical cap. Indeed, by the standard trick with reflecting the
trajectories that never hit spherical caps from flat walls one gets a flow
on a torus.

Poincare recurrence theorem now implies the following statement.

COROLLARY. - Trajectories of almost all points of ~Vh have infinitely many
reflections from spherical caps.

PROPOSITION 2. - The set Mi of essential points contains a subset of full
measure Ml, = 1, which is arcwise connected.

Proof. - For the sake of brevity we will discuss only the domains of type
(2). It is enough to consider a cube K, which has at least one spherical cap
attached to every pair of its parallel faces. (Recall that B is constructed

as a rectangular box K with some attached spherical caps). The case of a
rectangular prism, whose principal faces tile Rm (type ( 1 ) region) can be
treated in a similar way based on the approach developed in Sect. 3. Define
the base C2, i = 1, ..., p, p &#x3E; n, of a spherical cap Ci as the intersection
of the sphere containing this cap with the hyperplane (the face of K) to
which Ci is attached. The base C2 is an m-dimensional disk.

Consider a velocity vector v = ~ v 1, ..., = 1 (and recall that v is

always directed inwards B). Suppose that the components of v are rationally
independent and a positive semitrajectory = (?~)?? ~ 88 is
defined (k &#x3E; 0). It is well-known that the ergodic components of a billiard
in a rectangular parallelepiped in Rm are the one-parameter groups of shifts

Annales de l ’lnstitut Henri Poincaré - Physique theorique
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of an m-dimensional torus. Thus such semitrajectory 0  k  oo, is

everywhere dense in 9B and eventually hits a base C of a spherical cap C.
Therefore, we must consider only such vectors v, whose coordinates

are rationally dependent. Suppose that coordinates of a vector v satisfy
more than one relation over the field of rational numbers. Then the union
of corresponding tori, which are closures of semitrajectories 
(q, v) , k &#x3E; 0 (k  0), have at least codimension two in M. There is only a
countable number of such tori whose union we denote by W + (W~ ) .

Therefore we should consider only such vectors v whose coordinates
satisfy only one rational relation. There is only a countable number of such
relations. Each rational relation defines an m - 1 dimensional unit sphere
on an m-dimensional unit sphere of all admissible velocities that satisfy
some rational relation r.

Let Fi , F2 , ..., F2n be the sequence of faces of the cube K. Denote by
a union of all vectors v whose components satisfy the relation r and

whose basepoint belongs to some fixed face Fl.
Let Dr,i be a measurable subset consisting of the points x = (q, v) E M,

such that x(x) = q E Fi and the components of the velocity vector v
satisfy the rational relation r. It is important to mention that i doesn’t

necessarily contain all points of M with such properties, but instead only
a measurable subset consisting of such points.
We call Drai a positive rational strip if its positive semitrajectory

0  ~  oo never hits a base of any spherical cap (we assume here
that some semitrajectories of a rational strip may terminate at singularities
of the boundary In the same way we define negative rational strips.
Denote by the maximal rational strip corresponding to a relation
r and having a basepoint in the face Fi.
We now invoke the Kronecker’s Theorem: If 1, QI, ... , a ~ are rationally

independent, then for any E and any real numbers xl, ..., x~ there exists an
integer n and a family of integers pi, ..., p~ such that

This theorem ensures that for a type (2) domain there is only a finite number
of maximal rational strips (recall that we consider only the rational strips
generated by a single rational relation). Indeed, let us denote by v1 E Rn
the orthogonal complement of all the velocity vectors satisfying the relation
r. This is an n - 1-dimensional subspace V c Rn, hence its orthogonal
complement is one dimensional. For any rational strip, we fix a base point
q and consider the subspace V. When we unfold it, and project it back to

Vol. 68, n° 4-1998.
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the cube K we obtain finitely many parallel hyperplanes, whose distance
(in the normal direction) will be denoted by s. The maximal length of the
projection of some base C onto v1 will be denoted by a. Then, according
to the construction of the type (2) domain, for only a finitely many rational
strips s &#x3E; a. This was the reason for us, to attach spherical caps to at

least one of any pair of parallel faces of In the same way, one may
consider negative rational strips.

None of the finite number of the maximal rational strips cuts Mi into the

separated domains because any maximal rational strip has "holes"

corresponding to velocity vectors v, satisfying r and such that a trajectory
of x = hits some spherical cap. A union of such holes is

We now remove from Mi all positive and negative rational strips.
According to the previous consideration the resulting set M~ will be arcwise
connected. Finally, the set Ml = ( Mi n is also arcwise

connected because a removal of a countable number of codimension two

submanifolds doesn’t change the arcwise connectivity.

Remark. - For type ( 1 ) domains there is an infinite (countable) number
of rational strips. Those strips are accumulated in the vicinity of rational

strips that are parallel to faces of 9B to which the spherical caps are

attached. However, by making the bases of spherical caps to be inscribed
into the corresponding polyhedra, we can still connect points in a "good"
subset of Mi of full measure through the intersections of boundaries of
bases of the spherical caps with another (not containing spherical caps)
regular components of 

Proof of Theorem 1. - Provided that the Fundamental Theorem holds,
which will be the content of the next section, ergodicity is obtained by the
standard method. Indeed, each essential point of Mo has a neighborhood
which belongs mod 0 to one ergodic component. According to the

above Propositions there exists an arcwise connected full measure set

Ml C Mo n Mi consisting of points to which the Fundamental Theorem
applies. We can connect any two points from that set by the path which
avoids the double singularities (this is possible because the manifolds of
double singularities have at least codimension 2). Finally, by virtue of

compactness, we cover this path by finitely many open neighborhoods,
each of them belonging to one ergodic component.

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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3. PROOF OF THE MAIN RESULT

In this section we prove that billiard regions described in the Theorem 1
satisfy Conditions (A)-(E). We begin by showing how to define quadratic
forms that establish the existence of local stable and unstable manifolds.

LEMMA 1. - A billiard region B described in Theorem 1 satisfies
Condition A.

Proof. - The key ingredient for establishing the existence of local stable
and unstable manifolds is an invariant cone field in TM, i.e. cones (or
more exactly sectors) defined in the tangent space TxM of almost every
phase point x and being mapped into each other by a differential of the
billiard map (see [W2]). Some facts from the theory of cone-fields (from
[LW]), as well as the characterization of tangent vectors using infinitesimal
fronts and basic results about their propagation inside a spherical cap (from
[BR2]) are summarized in the Appendix.
We begin by introducing artificial transparent walls (see Fig. 3) whose

purpose is to provide enough free path for a control surface (a wavefront)
~ to defocus. These transparent walls V and V’ play the role of the border
of the zone of focusing from Definition 1. They are parallel to the sides
to which the spherical caps are attached and pass through the centers of
the corresponding spheres.

It was shown in [BR2] (Lemma 1 and Lemma 2) that any control
surface that passes the transparent wall towards a cap with positive definite
curvature operator (i.e. the corresponding beam of rays is diverging) has
positive definite curvature operator again when it leaves through the same
transparent wall. That means that after a series of reflections from a spherical
cap a diverging beam becomes diverging again. This property is called
absolute focusing (see [B2,B3]). For spherical caps under consideration
it immediately follows from (2.2) (see [C], [WI]). Of course, during the
passage through the spherical cap and immediately after it, the curvature
operator may have a non-trivial eigenspace with negative eigenvalues
(principal curvatures). The whole point of moving the transparent walls
V and V’ back so they intersect the centres of the attached spheres is to
give the control surface ample time to defocus.
The above described defocusing property of control surfaces between

points Vin and Vout serves as a basis for definition of cones (sectors) at
the tangent spaces of these points. If the tangent spaces are parametrized
by r’, then they are defined as the standard sectors C~ = V2),
where ~1 = (r’, 0) and V2 = (0, ~’~. The boundary of this sector thus

Vol. 68, n° 4-1998.
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consists of a Lagrangian subspace Vi that corresponds to a beam of parallel
trajectories and V2 corresponding to a beam of trajectories emanating from
one (configuration) point. The defocusing property then means that the
image of Vl by a billiard map is mapped strictly inside a corresponding
cone at Vout, while the image of V2 may not be mapped strictly inside
(this is an analogy from planar billiards where a beam emanating from the
center comes back and focuses at the center again). This is why we give
two focusing zones a positive distance. This extra free path then causes
the beam that may have focused at Vout to be diverging at ~ and that
"pushes" ~2 inside the corresponding cone at that point. Thus between Y2n
and Y2~ the billiard map maps one cone strictly inside the other.
With the above choice of Vi and V2 one can define the quadratic form Qx

by (this is a special case of a general definition mentioned in the Appendix):

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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It is clear that if Q (x’) &#x3E; 0 (or Q ( x’ ) &#x3E; 0), then we can find an infinitesimal
surface with positive definite (semidefinite) curvature operator, such that
a vector x’ lies in the Lagrangian subspace that corresponds to it (the
reader can find more details in [BR2]). This facilitates the study of the
dynamics of T.

Having defined the quadratic form at the configuration point Vin (see
Fig. 3), we can now repeat the same construction at the next point V2n and
so on. Since the quadratic form Q maps the sector C(V1, V2) at Vin into
the analogous sector at Vout, the linearized billiard mapping is monotone
between and Vout and because of a positive distance between the two
zones of focusing it is strictly monotone between Vin and One can now

define a linear mapping T between tangent spaces at different Vins which
is strictly monotone &#x3E; Q(u)) or observe that the linearization of
the original billiard map T is eventually strictly monotone. In either case
Theorem 5.1 (from [W2]) now assures the existence of the expanding
and contracting subspaces E; and E~ and Theorem 2.1 from [M] their
continuous dependence on x. Note that for regions of the type (2) the
positivity of the distance between two zones of focusing is guaranteed by
the placement of the spherical caps (Fig. 2).

LEMMA 2. - A billiard region B described in Theorem 1 satisfies
Condition B.

Proof. - In order to prove the Sinai-Chernov Ansatz we need to show
that almost every point on the singularity manifold enters some spherical
cap. Indeed, every passage through the spherical cap causes the control
surface ~ to focus in all directions at or before the point Vout. After that the
positive distance between the two zones of focusing forces the boundary
of the sector at Vin to be mapped strictly inside of the sector at the next
point Vin. This causes the quadratic form to increase and this increase is
uniform, since it depends only on the minimal distance between the two
zones of focusing.
To show that this happens, i.e. that almost every orbit starting on the

singularity manifold enters a spherical cap, requires a detailed knowledge
of the orbit in the polygonal part of our region. For this reason we
have restricted the regions in consideration to rectangular or tiling boxes.
For these, we will first show that any configurational point q in the

boundary has the property, that for almost every unit velocity vector v the
trajectory determined by x = (q, v) enters some spherical cap. From this
we then deduce the desired property of the singularity manifold. While for
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rectangular boxes this is trivial and essentially follows from the dynamics
on the m-torus, for type ( 1 ) regions we will show this in more detail.

Suppose that the flat walls Q to which the caps are attached are parallel
to the hyperplane xn = 0. We then project the billiard region onto this
plane and likewise we project the billiard trajectory. After we unfold the flat
side Q to its symmetric images RQ, we can consider a projected billiard
trajectory in the form of a straight line, going through different images,
rather then a piecewise linear trajectory, bouncing within the same side Q
(this is a well-known "trick" from polygonal billiards).
Now we pick a point in each "cell" (for instance in Fig. 4 we have

picked the centers of each hexagon) and label it as lI = 
The points lI constitute a lattice that is determined by m vectors

ei = looo...1...ooo - looo...ooo. Recall, that each cell is actually a projection
of the billiard region B along the xn axis and since the "side" flat walls
are perpendicular to Q, the whole billiard region tiles Rn. Unless the n-th
component of the velocity is 0, the billiard orbit hits infinitely often the
principal face Q, since the reflections off the side walls do not change this
component. As a matter of fact, this component can change its magnitude
only by reflecting from the spherical cap in which case we would be done.
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By projecting along xn we have effectively erased the information about the
dynamics in the vertical direction, so we have to somehow keep the track
of reflections from the principal faces parallel to the plane xn = 0. The
projections of the points where the orbit reflects from Q will be denoted by
ri. If the nth component of velocity is large (i.e. the billiard trajectory is
steep), the points ri will be close to each other, because it takes less time
to traverse the billiard region from the bottom to the top. In the opposite
case, of course, the spacing between ri’s will be wide.
We claim that for almost all velocity vectors the points ri are dense

in a parallelogram E = (el, e2, ..., e?.,.z~. More precisely, let us denote by
w = n 2014 ro. Then we claim that for any E &#x3E; 0, every ro E ~n-1 and
almost every velocity projection w there exists a natural number n and a
lattice point such that

To see this, we first make a linear transformation that transforms vectors

(ei , e2, ..., en ) into an orthonormal basis. Since this means just introducing
new coordinates in the parallelogram E (that is now a unit cube), the values
of ro and w that yielded dense trajectories will yield dense trajectories again.
Moreover, we can shift the point ro to the origin looo..ooo. It is now clear

that the velocities w for which the points r i are dense in the unit cube are
those, whose coordinates are irrational numbers. Or, to put it differently,
the velocities that do not yield dense orbits are those that have rationally
dependent coordinates.
The set of velocities having this property is of (m-dimensional) measure 0

and thus for almost all w the points rz fill in the parallelogram E densely.
That means that the same points will also fill in the flat side Q densely.
Since the projection of the spherical cap onto Q is an open set, one of ri’s
will fall into this projection. This point rio is the intersection of the billiard
orbit with the flat side Q and thus for every point on the boundary almost
every velocity yields a trajectory that visits a spherical cap.
A beam of trajectories shot from a particular singular boundary point

(i.e. from the "edge" of our region) represents only an m-dimensional
submanifold of the full 2m -1 dimensional singularity manifold. However,
the full manifold can be foliated by these m dimensional submanifolds.
Indeed, for any point from the m - 1 dimensional intersection of any two
regular boundary components we can shoot a similar beam of trajectories.
Since each family of such trajectories gives rise to an m dimensional
submanifold of the singularity manifold, we can just observe that the
statement of the lemma follows from integration over this intersection.
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Each leaf of the foliation has, according to the discussion above, the
full measure of points visiting some cap and the same is true about the
singularity manifold.

LEMMA 3. - A billiard region B described in Theorem 1 satisfies
Condition C.

Proof. - The singularity manifolds have codimension 1 and are caused

only by orbits ending at the points of intersection of regular boundary
components (so called "multiple reflections"). Consider a point x E M such
that there exist such integers N &#x3E; 0 and M &#x3E; 0 that z+ = T ~x E 5Li
and y- = T-N X E Si.

Denote the images of the singularity manifolds at x by 8M ( x) and
8 - N (x) respectively. If these two manifolds were not transversal at x the
tangent spaces to these two submanifolds at x would coincide and have
dimension 2~20141. However, the control surfaces corresponding to beams of
trajectories emanating from z and y- have positive and negative definite
curvature operators respectively. Hence the 2m - 1 dimensional tangent
space to both singularity manifolds would have to contain 2 disjoint n
dimensional subspaces, which is impossible.

This argument doesn’t hold only in the case when the trajectory between
y+ and y- never leaves the given zone of focusing. That means that both
y+ and y- have their base point in the "edge" of a spherical cap. In that
case we deduce the claim from the fact that the planar direction can now
be defined along the whole orbit between y+ and y- and is transversal to
the directions determined by the m - 1 dimensional edges.

LEMMA 4. - A billiard region B described in Theorem 1 satisfies
Condition D.

Proof. - For simplicity we will consider a different Poincare section of
the billiard flow, defined by passing through different zones of focusing,
rather than by reflecting at the boundary. Let us denote the points of
entrances to zones of focusing by Y2n, V~,... and the induced mapping by
T~V~ = Y2n 1. For any corresponding phase point x = (q, v), q = ~2n
we coordinatize the tangent space by (r’, ~’~ E B’n x Rm, where r’

corresponds to the configurational displacement along the m-dimensional
subspace perpendicular to the velocity vector v. Due to the strict invariance
of cones Ct- between different Vins the local unstable manifold at x is

defined by a positive definite curvature operator K. This operator defines
a curved hypersurface K in the vicinity of x. We define w(x) as the

length of the shortest geodesic along K connecting 7r (x) with where
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y = ~~r~~~, u) and u is a velocity vector such that a trajectory determined
by y ends at a singularity (i.e. at the intersection of two regular boundary
components). The length of a geodesic on K is defined in a standard way
by a pseudonorm ~x’~ = Qx(x’) for x’ E TxM, which acts as a norm in
the unstable subspace E~ . Owing to the positive distance between different
zones of focusing (which increases the form Q on the vectors from the
unstable cone Cx ) the billiard map Tin expands vectors from the unstable
space E~ when measured in this pseudonorm.
The distance function w(x) is equivalent to the function z(x) defined in

[SCh] as long as the curvature operator K has bounded curvatures (the z
function defines the distance from singularities as the maximal diameter of
a cylindrical neighborhood in B of the trajectory connecting x and Tx and
avoiding singularities). From strict cone invariance, the unstable space E~
lies in the interior of the unstable cone This subspace then corresponds
to a control surface with positive definite curvature operator K and its

eigenvalues satisfy 0  const for all i = 1, 2, ..., m and the constant

depends only on the distance between different zones of focusing. Hence
there are two positive numbers A, B (depending on the such that

Thus we can measure the E neighborhood of the singularity set using
the function z which is technically easier. That means that instead of

calculating the measure of the set UE = {x E M, w(x)  E}, we can
estimate the measure of V~ = {x E M, z(x)  E}.
The only possibility for a phase point x = (q, v) to be in ~ is for q

to lie in the neighborhood of S_1. The m-dimensional volume
of this set is less than where const depends only on the
parameters of the region B. Then the p-measure of the set of such points
will be less than const.E.

LEMMA 5. - A billiard region B described in Theorem 1 satisfies
Condition E.

Proof - Condition E (in [Ch] property 5’) can be reformulated in terms
of the cone field C(x) as follows (see the "proper alignment of singularity
sets" in [LW], sect. 8): all the tangent subspaces to singularity submanifolds
have their skew-orthogonal complements in C~ (the singularity manifolds
are of codimension 1 and their complements with respect to the standard
symplectic form have thus dimension 1 ).

In order to check this condition, for each point x E Si we have to
find a skew-orthogonal complement c E TM of the tangent space to the
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singularity manifold (ê 1 and then move it by a differential of
the flow to the border of a zone of focusing. Since our billiard system
doesn’t have tangential singularities, let us consider a point x = (q, v)
where q lies in the intersection of 2 regular boundary components ~Bi
and The singularity manifold around x is then constituted by all

y = (p, v), where p E 0Bi n ~B~ and v is an arbitrary inward pointing
velocity vector. The orthogonal complement of the singularity manifold at
x then has the form c = ~r’, 0), where 0 = (0, ..., 0) E Rm and r’ E Rm
is an orthogonal complement of the intersection ~Bi n in either Bi or
Bj, or to be more exact, it is a projection of this vector onto a subspace
(ri,..., rm, 0,..., 0) E TcM. Hence the skew-orthogonal complement of the
singularity manifold at x has the form c =~ (0, r’ ) E (it follows from
the symplectic geometry that if the codimension 1 subspace has a euclidean
complement (a, b), then its skew-orthogonal complement is (b, -a)).

In order to find, whether the skew-orthogonal complements to singularity
sets are in C‘~ we have to consider the evolution of a control surface that
originated at q, i.e. the beam of trajectories that started at q wi1th different
velocities v. Strictly speaking we would need only to consider the evolution
of the part of the control surface corresponding to the vector but it is
easier to look at the evolution of the whole surface. And at this point we
need the restriction of the angular size of the spherical cap to Since

this computation needs to be done only in the transversal directions, we
will make use of the formula (3.4) in the Appendix with p = I.

Let us consider a part of the billiard orbit in a spherical cap with the
angular size smaller than 60° and having N + 1 reflections in it, including
the one at the singularity point, where this orbit begins. Since we are going
to consider a beam of trajectories emanating from this point, we have to
find the curvature of the corresponding wavefront at the point A1 (Fig. 5),
which will make the beam focused at the singularity point. This point can
be thought of as the first reflection point and hence ~/ ~ 2014l/co~(~). If
we denote the angle subtended at the center by the first and the last point
of reflection by cc/, then the angle w = o/ + ~//W. Using the relation
~ = 90° - 2014 and the above expressions for w and x’ we can now evaluate
the exit curvature (i.e. at the point A3 in Fig. 5). After a few elementary
trigonometric manipulations we obtain

Since we consider orbits having at least two reflections (including the

singularity point) N &#x3E; 0 and from  60° we now easily deduce that
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x" &#x3E; 0 at the exit point and hence also at the point Vout, which lies farther
on the orbit. This means that any beam of trajectories emanating from
the singularity point x (and that includes the vector c E TxM) will have

positive definite curvature operator at Vout. Hence Lemma 5 follows.

Let us remark that the fact that our condition E follows from the "proper
alignement of the singularity sets" mentioned at the beginning of the

previous proof is implied by the following observation: First recall from
lemma 1 that for a vector u = (r’, 4J’) E TxM the quadratic form is defined
by a scalar product of m-dimensional vectors Q (u) = r’.4J’. For such vector 

"

let us also denote û = ( - ~’, r’ ) and recall again that if u is the orthogonal
complement to a codimension one subspace, then ic is the skew-orthogonal
complement to the same subspace. From the definition of Q it is also clear
that if u E C~ then ic E Cj and vice versa. The stable subspace E~ C Cj,
while E~ c both being m-dimensional subspaces.

Suppose for contradiction that E~ c TS1. Let u be the orthogonal
complement of such that ic is in Then u E Cj is orthogonal also
to E~ C T5’i which is a contradiction, since the cone Cj cannot contain
an m + 1 dimensional subspace spanned by E~ and u.
This concludes the proof of the Fundamental Theorem.

COROLLARY. - Billiard system (M, T, p) considered in Theorem 1 and the
corresponding flow v) are Bernoulli systems.
This statement follows immediately from standard techniques and the results
of [ChH, GO, KS, Sl, 52].

CONCLUDING REMARKS. - The mechanism of defocusing acts in higher
than two dimensions in much more subtle manner than in 2D. The famous

formula (2.2) from the geometric optics [C] immediately gives the idea
that the corresponding spherical caps must have an internal angle less than
90°. However, to prove ergodicity one needs to obey some other (besides
defocusing of incoming rays) conditions, which forced us to restrict an
allowed spherical caps even more [B2]. At the moment, we are not able
to prove ergodicity in the condition of [B2]. Actually, our spherical caps
with internal angles less than 60° are exactly inscribed into the pieces of

spheres considered in [B2]. We believe, however, that ergodicity can be
proved for spherical caps with internal angles less than 90°. Furthermore,
Wojtkowski’s example [Wl] with semispheres gives just linear stability of
some periodic trajectories. However, on contrary to 2D, it is not true in

higher dimensions that generically linearly stable periodic trajectory is, in
fact, stable. The general belief is that it is not the case. Therefore, while

Wojtkowski’s example shows a loss of hyperbolicity, it doesn’t demonstrate
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that spherical caps with internal angles 90° or even with bigger ones cannot
belong to the boundary of ergodic billiards.

Appendix
In this appendix we review some basic facts about the tangent vectors

of a billiard phase space, about their evolution and about cones in the
tangent spaces.

Let us fix a point x = (q, v) and consider an m-dimensional hypersurface
U perpendicular to the vector v. A tangent vector ~’ _ (r’, 1/) E Tx M
can naturally be related to a family of orbits generated by a displacement
r’ = dr along a subspace perpendicular to v and the angle increment
4J’ == dcjJ (see Fig. 5):

o(a) = (r(a) , 4’(Q’l l == (r + + Q’~f’~~ .
Note that this family represents a curve in the phase space, satisfying
o(0) = x = (q, v) and o’(0~ = x’. Hence this family is a natural

representative of a class of equivalent curves from the usual definition
of a tangent vector. In the configuration space this family (representing a
tangent vector x’) can be visualized as a perpendicular envelope of the
family of orbits o(a) at q (a representant of this family is a dashed curve
in Fig. 5).
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A tangent vector x’ = (r’, ~’) when acted on by a differential of the
billiard flow evolves to a vector x" = (r", ~" ) . Even though the most
natural way how to describe the dynamics in the vicinity of a given orbit
is to consider evolution of the infinitesimal control surface (also caled a
wavefront) that is tangent to U we will at first consider only evolution of
1-dimensional curves corresponding to planar and transversal directions on
U. That means that x’ _ (r’, r~r’), where r’ is one of the above directions.

In order to obtain clear understanding of the dynamics, we consider the
evolution only from the point Ai to the point Ai+1, where Ai is the middle
point of a segment connecting the points of the ith and (i - 1 )th reflections.
Between any pair of such points Ai and the evolution of the tangent
vectors can be expressed as

where

in the planar direction and

in the transversal directions. Here w = nwo is an angle subtended by the
points Ai and Ai+n at the center 0 of the spherical cap. In order to express
the differences between the two cases, let us rescale the configurational
coordinates differently. In the planar direction we set rp = 
while in the transversal directions rt = The evolution matrices,
after the rescaling, assume the following form

Now we see the fundamental difference between the behavior in the planar
direction (which coincides with the behavior of planar billiards) and in the
transversal directions (which one has to deal with in many dimensional
cases). In the planar direction, the action of the evolution matrix G is a
shear, while in the transversal direction it is a rotation. As a result of this,
in the transversal direction a piece of a sphere does not have an absolutely
focusing property (which is equivalent to focusing between any pair of
reflections, see e.g. [Bl], [B2], [D]).
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When, instead of looking at the tangent vectors x’ = (r’, cp’) we look at
the curvature of the associated perpendicular envelope (control curve) ~y,
we obtain the following formulas:

in the planar direction and

in the transversal directions. Here ~’ is the curvature of the control surface

in the middle of the entrance cord (the point Ai in Fig. 4) and ~" is the
curvature in the middle of the exit cord (the point A3). Thus in the planar
direction, the dynamics adds to a curvature a constant amount (as we go
from Ai to while in the transversal direction the curvature evolution

is in a certain sense periodic.
This difference causes very strong focusing in the planar direction, while

in the orthogonal directions the focusing is much weaker. As a matter of
fact, a surface that was focusing in the orthogonal direction exactly while

passing through the transparent wall (on its way towards the cap) does
so on its way back too. Thus the transparent walls cannot be moved any
closer towards the spherical caps.
Of course, in general an incoming surface may have principle curvature

directions not identical to the planar and transversal subspaces defined
in the previous section. In that case the evolution of curvatures between
Vin and Vout is more complicated and the evolution in the planar and
transversal direction cannot be described separately since the principal
curvature directions now rotate after each reflection and the quantity
subtracted at the reflection in each direction is a combination of (2.1)
and (2.2). The fact that one can nevertheless restrict himself to considering
the evolution of planar and transversal directions separately is justified either

by an abstract approach of invariant cones ([LW]) or more geometrically
by enclosing an incoming control surface between two spherical caps (this
approach is exploited in [BRl,2].
We now describe the construction of the invariant cones and the quadratic

form Q. To the configuration point Vin (see Fig. 3) there corresponds a phase
point x = ~ Y2n , v ~ . At this phase point we take a quotient of Tx ( Q x sm)
by the velocity vector v and denote the resulting linear space by TxM.
We chose this notation, because this quotient space can be parametrized,
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just as the tangent space to the phase space, by m positional coordinates

r~ and by m angles §§.
Let us denote a tangent vector at x (r’, ~’~, where r’ ==

(r~...,r~) and §’ = ( ~ 1, ... , ~m ~ . Any control surface ~y can be thought
of as an m-dimensional subspace of the 2m-dimensional space T~ M,
spanned by m independent vectors ~2 = ~ri , ~i ~ - Then the second

fundamental form K of the control surface maps the configurational vector
onto the angular vector

Since the curvature of a surface in the direction of a unit vector u is given
by (Ku, u), taking u = allows us to compute the curvature of the

family as

and we can always rescale the vector x’ so that r’ is a unit vector.

However, not every m-D subspace in the 2m-D tangent space corresponds
to an infinitesimal perpendicular surface. In order that ..., x£)
corresponds to an infinitesimal surface, it is necessary and sufficient that

for all i, j = 1, ..., m

This is just a condition for the symmetricity of the curvature matrix K. If
we think of R2m as a symplectic space with a standard symplectic form H,
then the equation (3.6) becomes just SZ~~2, = 0. Hence the infinitesimal

surfaces, perpendicular to the orbit can be identified with the Langrangian
subspaces of R2m, i.e. with planes that are skew-orthogonal to themselves

y’) = 0 for any two vectors from that plane).
In order to define the quadratic form at a point x = v) we will

need a notion of sectors, that are multidimensional versions of cones (for
more detailed treatment see [LW]). Let Vl, V2 C TxM be two transversal
Lagrangian subspaces, i.e. every vector in w E T~M can be uniquely
written as w = vi + v2, where Vi E ~2. This decomposition allows one to
define a quadratic form Q(w) = in TxM. Recall that
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where r’, s’, C~~~ 7j;’ E and ~~ _ ~~’~yf’~~~ y’ == E R~~&#x3E;~ 13f T~~
("13f" denotes an isomorphism between the linear spaces). Given Vi and Y2
we can define a sector (cone)

The interior of the sector is then defined as the set of vectors on which
the quadratic form Q is strictly positive.

Since the definition (3.7) is difficult to work with, we will now evaluate
the quadratic form Q explicitly for a particular choice of the Lagrangian
subspaces Vi and V2. Namely,

It is clear that these two subspaces are Lagrangian and that they are

transversal, i.e. R2m = V1 ~ V2, where "g9" stands for a direct sum of
subspaces. These subspaces correspond to infinitesimal surfaces, one of
which is flat and one is focusing (i.e. it has an infinite curvature) and the
corresponding sector is called the standard sector. Any vector x’ _ (r’, 4J’)
can be decomposed into Vi and V2 as ~’ _ (r’, 0) + (0, 4J’) and that yields
~(~’~ = r’ .4J’.
Of course, different choice of Lagrangian spaces Vi and V2 generates

different Q. For instance for m = 2 we can consider Lagrangian subspaces
corresponding to spherical surfaces with radii 8  E

Then

There are many Lagrangian subspaces in the standard sector. They
correspond to control surfaces with positive definite curvature operator K.
The Lagrangian subspace is then described by V = (r’, K.r’ ) with r’ E 
On the other hand, each vector from the standard sector (corresponding to an
infinitesimal curve) can be embedded into a Lagrangian subspace contained
in it. This is important because the evolution of control surfaces is easier to
study than the evolution of infinitesimal vectors. Thus invariance of sectors
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can be fully described by means of curvature operators of the infinitesimal
surfaces perpendicular to the orbit. Indeed, from (3.5) we see that for the
standard sector Q(x’) = ~llr’112, where ~ is a curvature of a perpendicular
envelope of a beam of trajectories defined by x’.

Finally, let us mention that if this invariance causes standard sectors at
x to be mapped strictly inside the sectors at future iterates and this process
results at one Lagrangian subspace, then this subspace correspond to an
infinitesimal local unstable manifold whose curvature operator K can be

formally obtained by an infinite continued fraction discussed in [SCh].
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