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ABSTRACT. - We prove the existence of breathers in a wide family of
models consisting of an array of anharmonic molecules coupled by harmonic
acoustic phonons. In addition to the usual assumption that the breather
frequency and its harmonic do not lie in the phonon bands, an essential
hypothesis for this theorem is that the sound velocities in the crystal do
not vanish. We are led to distinguish between piezoactive breathers which
generates a strain in the crystal which decays at infinity similarly to the
electric field of a Coulomb charge, and the nonpiezoactive breathers which
generate a strain analogous to the electric field of an electric dipole. A
consequence is that the existence proof extends for multibreathers only
with a finite number of breathers in the piezoactive case, but for an infinite
number and arbitrary configurations in the nonpiezoactive case. In that
models, the amplitude of the time dependent harmonics of a single breather
decay exponentially with the distance but the static component decays as
a power law which is the same as those of a static impurity in the same
model. © Elsevier, Paris.
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RESUME. - Nous demontrons 1’ existence de « breathers » pour une large
classe de modeles constitues d’un reseau de molecules anharmoniques
couplees par des phonons acoustiques harmoniques. En plus de l’hypothèse
usuelle selon laquelle la frequence des « breathers » ainsi que ses

harmoniques ne se situent pas les bandes de phonons, nous imposons
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382 S. AUBRY

1’ hypothese essentielle a notre resultat, que la vitesse du son ne s’ annule
pas. Nous sommes conduit a distinguer les « breathers » piezoactifs generant
une contrainte dans le cristal s’ annulant a 1’ infini comme le champ electrique
d’une charge Coulombienne, de ceux qui ne le sont pas et engendrant une
contrainte analogue au champ electrique d’un dipole.
Une consequence est que la preuve d’existence s’ etend a des « multi-

breathers » ne comportant qu’ un nombre fini de « breathers » piezoactifs
mais un nombre infini et des configurations arbitraires de « breathers »

non piezoactifs.
Dans ces modeles, 1’ amplitude des harmoniques dependant du temps

d’un « breather » simple decroit exponentiellement avec la distance tandis
que sa composante statique decroit en loi de puissance de façon similaire a
celle d’une impurete statique dans le meme modele. @ Elsevier, Paris.

1. INTRODUCTION

The pioneering work of Sievers and Takeno [1] ] revealed the existence
of time periodic and spatially localized solutions (breathers) in large class
of dynamical models (for a review see ref. [2]). Rigorous proofs for their
existence were established later [3] for a family of models in arbitrary
dimension, which possess a limit called anticontinuous (or anti-integrable
[4, 5]) where the model reduces to an array of uncoupled anharmonic
oscillators. At this anticontinuous limit, a single breather consists of a

single oscillator oscillating while the others are at rest. Under rather weak

hypotheses, it was proven that such time reversible solutions could be

continued up to a nonzero finite coupling between the oscillators as a

consequence of the implicit function theorem. The existence of multibreather
states (corresponding to an arbitrary subset of oscillators) oscillating with
the same period was also established with the same proof. A series

of extensions of these theorems were given later for rotors instead of

oscillators, for itinerant electrons coupled with anharmonic oscillators [6],
for nonhamiltonian systems with dissipation and more generally for coupled
multicomponent oscillators [7, 8].
At the anticontinuous limit of the hamiltonian systems with breathers

where these proofs hold, the phonon dispersion corresponding to the

linearized fluctuations around the ground-state consists of a perfectly flat

optical branch. In models involving acoustic phonons for example the FPU
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chains, such an anticontinuous limit cannot be defined. A method which
works successfully for numerical calculations [9] consists in starting from
the anticontinuous limit of a variation of these models where an extra
substrate potential is introduced. Its breather solutions can be continued
when varying the model parameters along an appropriate path, till the
initial model is recovered. However, although this breather continuation
can be observed numerically, the mathematical proof that this continuation
is possible all along the path, seems to be a delicate task.

Some attempts to prove the existence of breathers to models with acoustic

phonons, were made by introducing new anticontinuous limits at which the
existence of breathers is trivial, can be defined and used for continuation.
In [10], Id models with two types of atoms with different masses are
considered. An anticontinuous limit is obtained when the mass ratio between

light and heavy atoms goes to zero. At this limit, the heavy atoms are static
and do not respond to the vibrations of the light atoms, thus playing the
role of a substrate potential. There are breather solutions which can be
continued when the mass ratio varies up to some non vanishing value. This
method was claimed to be extendable to higher dimension [ 11 ] .
The essential technical difficulty (which has a physical origin) for

extending the proof of the breather existence in systems with acoustic
phonons is that in case a breather would exist with some frequency Wb in a
system, and although it does not couple to the global translation modes, the
breather harmonic 0 is always almost resonant with the acoustic phonons
in the long wave length limit. Thus the crucial point is to control how
this coupling vanishes and to show that it is harmless for the existence
of breathers.

Section (2) of the paper defines the class of models on which we work
and the notation. In section (3), we introduce the concept of piezoactivity of
an optical mode and distinguish between piezoactive and non piezoactive
optical modes. The next section (4) discusses the structural stability of
periodic orbits in anharmonic oscillators with a finite number of components.
In section (5), we describe some specific models which belong to the
general class of models and illustrate the concept of piezoactivity. The
next section (6) presents a proof of existence of piezoactive breathers or
finite multibreathers and the next section (7) presents a specific proof for
nonpiezoactive breathers which also holds for infinite multibreathers. In
section (8), we suggest extension of these results for nontime reversible
breathers and especially rotobreathers. We also suggest extensions to random
network. We discuss briefly how the last limitation of our model, which
is the harmonicity of the acoustic phonons could be overcome. Section (9)
Vol. 68, n° 4-1998.
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discusses the breather extension for the dynamical part and the linear

stability of the single breathers. Finally, we conclude in the last section ( 10)
by some brief suggestions of their relevance for some problems of physics
and biology.

2. DESCRIPTION OF THE CLASS OF MODELS

We consider here different types of models which are broad d-dimensional
extensions of the Id model considered in [ 12] where acoustic breathers were

already found numerically. These models consist of arrays of anharmonic
molecules (e.g. two atoms coupled by an anharmonic potential). These
molecules are coupled one with each other by harmonic potentials in order
to form a d-dimensional lattice with acoustic and optical phonons. The
limit we call anticontinuous is obtained when this coupling is zero. This
class of models does not include FPU chains for which specific proofs
are needed [15].

The basic principle of our approach is to eliminate the acoustic variables
which can be made explicitly because they are assumed to be harmonic. This
elimination results in an effective (retarded) coupling between the variables
of the anharmonic molecules. Although we get long range interactions
between the oscillators, the conditions for the applicability of the implicit
function theorem to this effective model, are preserved if one chooses

appropriate norms.

Although these models do not yet describe the fully general case where
all the crystal interactions should be assumed anharmonic, they clearly
demonstrate how breathers survive in the presence of acoustic phonons.

2.1. The Hamiltonian

The crystal is in a d dimensional space which contains in each unit cell
n E .~d, an anharmonic molecule which we choose for simplicity to be
diatomic, and Nc other atoms (p = 1,..., Nc).

The mass of each molecule in the unit cell n is Mo and xn,o is the vector

describing the displacement of its center of mass referred to its position
in the crystal in equilibrium at rest. The displacements of the other Nc
atoms p with mass Mp in the unit cell n also referred from their positions
at rest are denoted xn,p = {Xn,p,0152} ( a labels the d space directions). The
internal coordinate of molecule n, in the framework of its center of mass, is

Annales de l’lnstitut Henri Poincaré - Physique théorique
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described by the d-dimension vector yn == {Yn,a} 1. Thus, when the crystal
is in equilibrium at rest, all the coordinates are zero.

More generally, vector ynrepresents the anharmonic optical variables (i. e.
which are unchanged by crystal translations) in the unit cell of the crystal
and has not necessarily the dimension d. Nevertheless, we shall continue to
assume in order to fix the ideas that it has dimension d.

With X = {~n,p,a} denoting the global vector describing all the

components of the displacements of the atoms and molecules, and

Y = {~n,~}. the vector for the internal coordinates of the molecules,
the Hamiltonian of this system has the form

where

It just consists of uncoupled oscillators with mass m and anharmonic d
dimensional C2 potential V(y) (that is twice differentiable with continuous
derivatives). This potential is defined as resulting from the interaction of
the considered molecule with the neighboring atoms and molecules fixed
at their rest position for the crystal in a fixed orientation. In general, this
potential V(yn) has the local symmetry of the crystal which is not the

spherical symmetry of the potential for a completely free molecule.

1 For example, if molecule n consists of two atoms with coordinates un and vn and masses
ml and m2 respectively, the coordinate of its center of mass is Xn,o == (mlUn + m2Vn)/
(ml + m2 ) and its internal coordinate is yn = vn - Un.

Vol. 68, n° 4-1998.
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It will not cost more work in the existence proof if hamiltonian ( 1 ) also
includes a direct coupling between the internal coordinates of the molecules
in neighboring cells  n, m &#x3E; described by the C2 potential

with amplitude k’ and which could be anharmonic or not.
The other interactions between these molecules and the remainder of

the system are treated harmonically. The coupling between the internal
coordinates of the molecules and the displacements of the atoms and
molecules from their rest positions is described by a matrix P =

{p(n,a),(m,r,(3)}. The amplitude of this coupling is controlled by parameter
k. The periodicity of the crystal also implies that each matrix element
p(n,a),(m,r,(3) only depends on the difference n - m (and on the intracell
indices (a) and (r, (3). The coupling matrix P is also invariant by a global
translation of the crystal which implies P .1 a = 0 for all the directions a.
The dynamical equations of this model can be written explicitly as

where M is the diagonal matrix of the atomic and molecular masses Mp.
When k = 0, the molecular modes are uncoupled to the harmonic

phonons and then the existence of breathers can be proved as before

for purely optical breathers [3]. The anticontinuous limit of this model is
obtained when k = k’ = 0. Then, it consists of a standard crystal decoupled
from independent anharmonic oscillators.

2.2. Optical and acoustic phonons

We have to make some hypotheses on the model which actually will
mean that we just consider a physically realistic crystal. Equation

Annales de l’lnstitut Henri Poincaré - Physique théorique
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determines the phonon spectrum of the uncoupled crystal at k = k’ = 0. The
periodicity of the crystal implies that each matrix element N(n,p,a),(rn,r,{3)
only depends on the difference n - m (and on the intracell indices (p, ex)
and (r,13)) (as well as p(n,a),(rn,r,{3)).
The phonon spectrum can be obtained using the standard space time

Fourier transform

where q is a d dimension vector and ~cj  7r for all components 0152 which
defines the standard Brillouin zone BZ of a cubic lattice. We define the

coefficients of the finite (m+1)d x (~a+1)d matrix N(q) and d x (n+1)d
matrix P(q) as

Then, it comes out after time Fourier transform that

determines W2 (q) as an eigenvalue of the d(n + 1) x d (n +1) matrix
M-1.N(q) and the corresponding eigenmode. There are d ( n -- 1) phonon
branches Since the translation invariance of the crystal energy in
the d directions, implies that N has d degenerate eigenvectors for the

eigenvalue 0, there are d branches of (acoustic) phonons which

vanishes at q = 0 and are assumed to be strictly positive for q ~ 0 (that
is the crystal is stable). There are also nd branches of optical phonons
cvopt (q) which are strictly positive for all q. Thus, the finite matrices N(q)
are strictly positive and invertible for q # 0. However, matrix N(0) is
not invertible and consequently the whole matrix N is not invertible as
well. This noninvertibility makes a priori the continuation of breathers
questionable when there are acoustic phonons. Actually, this apparent
difficulty can be overcome provided we make assumptions which are

nothing but characteristics of physically realistic models.

Vol. 68, n° 4-1998.
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To prove breather continuation, we need first to assume that matrices N
and P involve interactions between the atoms and molecules which are not

(too much) long range. This condition is precisely formulated by assuming
that matrices N(q) and P(q), are C2 functions of the wavevector q. As
a result, the phonon frequency squares are C2. The phonon frequencies
cvv (q) are also C2 except at q = 0 for the d acoustic phonon branches
labeled ac, 

For those branches, we have wac(O) = 0 and can be expanded
for small )q) ( as ~ &#x3E; where !1ac is d x d matrix which
determines the sound velocities in the crystal. They are defined as the
slopes of the acoustic phonon branches in the different eigendirections of
the d matrices !lac that is the squareroots of their eigenvalues 2. In a real
crystal, the sound velocities are generally not zero so that wac( q) is not
C2 at q = 0.

As well as those of matrix there are d eigenvalues for
matrix N(q) which vanishes at q = 0 and can be expanded for small q as

The eigenvalues of Cae are strictly positive. Using the fact that the mass
matrix M is strictly positive, it is straightforward to show that this property
is equivalent to say that the sound velocities of the crystal do not vanish.
When k and k’ are not zero, the phonon spectrum corresponding to the

linearized small oscillation is modified by the coupling with the internal
extra molecular modes. The sound velocities turn out to be reduced by
the coupling. The stability of the crystal at equilibrium requires that the
phonon frequency squares and especially the acoustic ones, do not become
negative. This condition is fulfilled when k and k’ are not too large which
is the regime we are interested in.

3. PIEZOACTIVE AND NONPIEZOACTIVE MODES

Our approach for studying the existence of breathers is based on the
. elimination of the harmonic variables X. It turns out that the anharmonic

coordinates might be coupled to the acoustic phonons in two ways

2 Taking into account the fact that for y = 0, the crystal energy is unchanged by any global
crystal rotation, there are only d(d - 1)/2 different sound velocities in the most general case
without special symmetries.

Annales de l’Institut Henri Poincaré - Physique théorique
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depending on the symmetries of the model. We are led to distinguish
between piezoactive and non piezoactive coordinates.

For the elimination of X, only the static part will cause problem. Thus
we consider preliminarily the static problem where the internal coordinates
are fixed to arbitrary values Y. Then, X is determined by minimizing the
part of the energy

in (1) which depends on X. It comes out X = 2014~N ~.P~.Y and the
minimum of this energy is

Actually, N is in principle not invertible and we have to give a precise
definition to the products

In the Fourier representation (8),we have for q ~ 0,

and 4YM(Y) = with

The (n + l)d x d matrix Ro(q) = N-1(q).pt(q) can be expanded as

where &#x3E; are the d(n + 1) normalized eigenvectors of N(q) with
strictly positive eigenvalues Av(q).
When q - 0, there are d eigenvalues labeled Àac( q) which go

to zero while the corresponding eigenvectors &#x3E; _ ~ ~~,a,~,c ~q) ~
become global crystal translations combinations of the unit vectors 1 a
The translational invariance of the energy of the crystal implies that
vector  UaC(q)1 I = with 

Vol. 68, n° 4-1998.
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goes to zero. Since we have = U~(-q), it can be

expanded for small Iql as

Actually, A = = {A~} = {~(~~),(/3~)}. B == 
and C = {C~c} = ~C(~~),(~,~,~~ are real tensors

where the first group of indices deals with the label of the acoustic branch
ac and the space direction ae while the second group deals with d the

components of q. For simplicity in the notations used in the next, we

implicitly assume that A, B and C are matrices either with respect to the
first group of indices or with the second group.

There are two possible situations which can be met in models, depending
whether B vanishes (for all components) or not. We distinguish between
the case where B does not vanish called "piezoactive" from the other case
where it does.

3.1. Case with a piezoactive coupling

There are components of B which do not vanish. It is reasonable to

expect this situation for the most realistic models of crystals since a local
vibration of a molecule tends to increase its effective volume and develops
a strain in the crystal around it.

As a result, when q - 0, operator Ro (q) in eq.18, diverges as

where q = defines the unitary vector q.
For a distortion of the anharmonic coordinates yn = 

in the direction u, we get the distortion of coordinates xn =

sin  n ~ q &#x3E;.Ro(q).u. When q - 0, it comes that

Locally, this distortion is collinear to a crystal translation but is

unbounded and diverges linearly as  nlq &#x3E; in the direction of q. The

Annales de l’Institut Henri Poincaré - Physique theorique



391DISCRETE BREATHERS IN ANHARMONIC MODELS

effect of this distortion is to stretch or to shear uniformly the crystal which
change the macroscopic size and the shape of the crystal. We say that the
internal mode of the molecule is piezoactive 3.

The coefficients = of matrix Ro are the Fourier

transform of those of Ro(q)

It can be proven that although the singularity (20) at q = 0,
this integral (22) can be defined even in one dimension (d = 1).
However, because of this singularity at q = 0, the coefficients of

Ro = ~~(n,~,a),(m,~i) ~ depends on n - m in a similar way as those

of the electric field created by a Coulomb charge at the origin in a d
dimensional space.

A local distortion of a single molecule at site 0 in the crystal represented
by 0 and yi = 0 for i ~ 0, induces a crystal distortion

= -k ~~ at infinity which only decays to zero
at d &#x3E; 2 and goes to a constant in 1 dimension. This is the expected
behavior of the distortion induced by an impurity (atomic substitution of
an atom by another one with a different size) in a crystal.

Although the matrix Ro(q) is unbounded, the matrix So(q) =
involved in the energy is bounded for all q and

can be expanded for q 2014~ 0 as

However, the limit of this operator for q - 0 is generally not well
defined because it depends generally on the direction q in which the limit
is taken. Nevertheless, this result implies that the spectrum of operator So
considered in the Hilbert space of square summable vectors, is the union of
the spectra of So (q), and thus is bounded. As a result, this linear operator

3 In this present model, and if the molecule bears an electric dipole, this condition generally
implies piezoelectricity for the whole crystal. However, in more complex models, we could have
other anharmonic modes in the same unit cell which could cancel by symmetry any piezoelectric
effect.

Vol. 68, n° 4-1998.
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So obtained by inverse Fourier transform as in (22), is bounded for the l2
norm and maps the space of square summable vectors Y onto itself 4.
The one dimensional case is peculiar because there are only two opposite

directions for the unit wavevector q. As a result So(q) is continuous at

q = 0 which implies that the Fourier series which determines

is absolutely convergent and consequently the sum ¿m I 
0o is convergent. Then, So considered with the standard supremum norm
is bounded. It maps the Banach space of vectors y considered with the
standard supremum norm onto itself.

In contrast, in d &#x3E; 2 dimensions, So(q) is generally not a continuous
function of q so that the Fourier series (24) cannot be absolutely convergent.
We have ¿m oo which implies that So considered with
the standard supremum norm is not bounded. So generally does not map
the Banach space of vectors y considered with the standard supremum
norm onto itself.

° 

3.2. Case without piezoactive coupling

This situation is less general than the previous one but often occurs in
simplified models which have symmetries which force the linear part B
to vanish. Then, for q - 0

Ro (q) is bounded but is generally not continuous at q = 0 (in
more than 1 dimension). Then, operator N-1.Pt can be defined by its

coefficients of which are obtained by inverse Fourier
transform of those of Ro(q). Since Ro(q) is not continuous, the series

IRCn,p,a),(n+m,/3) I of the absolute values of its Fourier coefficients is

divergent, that is the Fourier series cannot be absolutely convergent. The
crystal distortion xn induced by a local distortion is bounded but decay
slowly as a power function of the distance n which depends on the crystal
and its dimensionality. Although it is more complex, it is similar to the

electric field generated by an electric dipole.

4 The [2 norm of vector Y is Y ~ ~ 2 and its supremum norm is =

supi,03B1 |yi,03B1|. The l2 (resp. supremum) norm of an operator So is IISolI = supY I
where 11.11 is the [2 (resp. supremum) vector norm.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Nevertheless, in this case, the energy coupling between the internal

coordinates of the molecules and the acoustic variables at q = 0 vanishes.

Matrix So(q) can be expanded for q ~ 0 as

It vanishes at q = 0 and is twice differentiable but with discontinuous

second derivatives at q = 0.

In any case, So(q) is a C° function of q which implies that the linear
operator So considered with the standard supremum norm is now bounded. It
maps the Banach space of vectors y considered with the standard supremum
norm onto itself. It is also bounded as before for the l2 norm.

4. STRUCTURALLY STABLE PERIODIC ORBITS
AT THE ANTI CONTINUOUS LIMIT

We also need to make hypotheses on the single d dimensional

oscillator corresponding to a noninteracting molecule, in order to have
breather solutions which could be continued from the anticontinuous limit
k = k’ = 0. At this limit, the single d dimensional oscillator with dynamical
equation

is not necessarily an integrable system for d &#x3E; 2. It may exhibit (as usual)
periodic, quasiperiodic and chaotic solutions. Nevertheless, there are often
families of time reversible and time periodic solutions with a continuum
of frequencies Wb 5. Considering small amplitude oscillation around a time
periodic solution y(t), eq. 27 can be linearized as

5 For example, for d = 2, the existence of such solutions may be proven with the former
breather existence theorem [3]. Let y = (yi, y2 ), and assume that V(y) can be written with the
form V(y) = + V(~2 ) + CW(Yl - y2 ) where V(y) and W(z) are anharmonic potentials.
For C = 0, this two site model has time periodic solutions which generally can be continued
when C is not too large.

Vol. 68, n° 4-1998.
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where V = {V~,,~(t)} is a time dependent d x d matrix with

For the solution of the oscillator at rest y(t) = 0, this matrix does
not depend on time and its d eigenvalues 0 are the local

eigenfrequencies of the molecule.

4.1. Condition of nonresonance

We assume that equation (27) has time periodic and time reversible
orbits y(t) with period tb = 203C0/03C9b (i. e which fulfill y(t) = y(t + tb ) and
y(t) = y(-t)). In addition, their frequencies should not be "resonant" with
the phonon bands that is

, 

. For any integer 0, pc.vb is not equal to any cvv (q) for any wavevector
q and phonon branch v determined by eq. 11.

. For any integer p, pcvb is not equal to any of the rest frequencies of
the molecule 

We also need to assume that the periodic orbits of the individual

oscillators, we shall consider are "structurally stable" which means that
when the hamiltonian is perturbed by a smooth perturbation term, each
orbit is smoothly perturbed but persists with the same period. In the d = 1
case [3], this property was expressed in the action angle representation by
the condition 0. When, d &#x3E; 2, we cannot define an extended
action angle representation unless the model is integrable as a consequence
of a Liouville theorem [14], but this is an exceptional situation.

It is then convenient to express this property of structural stability through
the spectral properties of the linear derivative operator {~03B1} = 
defined as -

The periodic orbit y (t ) with period tb is structurally stable if 9T is invertible
for the L2 topology in the space of time periodic and time reversible

with the period tb. Since the number d of components
of 6e, is finite, the spectrum of this d dimensional Sturm-Liouville operator
~T, is discrete and consists of isolated eigenvalues with possible finite

degeneracy only [ 13] . Then, the structural stability condition is simply that
0T has no eigenvalue equal to zero in this space of time periodic and
time reversible solutions.

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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It is useful now to note that this condition is also equivalent to the
invertibility of 9T with the supremum norm. For that purpose, it is

convenient to use Green functions for representing the inverse of 
We have

where G~,~~(t,,T) is the time periodic and time reversible solution

of eq. 30 for the sum of Dirac functions -

and = 0 for 03B3 ~ {3. The
existence of these functions which are time periodic and time reversible
with respect to t and T, can be established with a proof similar to those
described in ref. [13] for a single component case. In addition, these

functions are continuous with respect to both variables. Their derivative
with respect to t is defined except for t = T and bounded. It is then

straightforward to show that there exists a finite constant K such that

which proves that is also bounded for the supremum norm on the

functions and their first and second derivatives.

In the case where the number of components d of the oscillator is one,
we can show that this property is equivalent to 0. (This result
should be published elsewhere in the context of linear stability problems
of breathers.) When d is not equal to one, it is easy to check that the

implicit function theorem (which will be applied in the next in a more
complex case with infinitely many components), holds for a finite number
of components. It shows that for any C2 perturbation of the single oscillator
Hamiltonian, the time periodic and time reversible trajectories which fulfill
9T invertible can be continued up to a finite amplitude of this perturbation
which proves structural stability.
The structural stability of a periodic orbit does not imply that it is

linearly stable for small perturbations on the initial conditions. Actually, a
structurally stable periodic orbit could be linearly stable or unstable.

4.2. Band Analysis

It is convenient to consider the complete spectral problem of eq. 30
which contains both the information concerning the linear stability of the
orbits and the invertibility of 9T. Since the time dependent coefficients

Vol. 68, n° 4-1998.
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are time periodic, the eigensolutions to this
eigen equation have the Bloch-Floquet form Ea (t) = where xa (t)
is time periodic with period tb. The eigenvalues of 9T form a discrete
set of continous branches ~a (8) which are 2x periodic and symmetric
functions of ~. The intersections of these branches with the axis 8 = 0

yield the eigenvalues of the Sturm-Liouville operator with time periodic
eigensolutions.
The time reversibility of the coefficients T~a,~ (~) implies that at () = 0,

the eigensolutions are either time symmetric or time antisymmetric. The
condition for the structural stability of a periodic orbit, is that the eigenvalues
at B = 0 corresponding to the time symmetric eigensolutions do not vanish.
Note that the time differentiation of eq. 27, yields always an eigensolution

fa == Ya of eq. 30 at ~ = 0 but it is time antisymmetric. The corresponding
branch of eigenvalues is tangent to the axis E = 0 for 03B8 = 0.

The linear stability of this periodic orbit is determined by eq. 30 for
E = 0. The Floquet matrix .~’ is the symplectic linear operator which is
defined by integrating eq. 30 with E = 0 over a period of time tb. It relates
the trajectory coordinates {~(4),6,,(~)} = .~. (0) , Ea (O)} at time tb to
the initial conditions at time 0. The linear stability of the periodic orbit y (t)
requires that no perturbation can grow exponentially in time. This condition
is equivalent to say that all the eigenvalues of the Floquet matrix J’ are on
the unit circle e:f:iBC7. The arguments ()a- of these Floquet eigenvalues are
just given by the intersections of the branches of eigenvalues .E~ (8~. ) = 0.
The linear stability of the periodic orbits requires that there are precisely
d pairs of intersections of the branches of eigenvalues of 9T with E = 0
(see [6]). Contact points of tangent branches should be counted with their
degeneracy which is generally two.

Therefore, it is quite helpful for understanding in practice what is going to
happen after perturbation, to draw the graph of the branches of eigenvalues
E~ (()) in the vicinity of the axis E = 0. We choose as an example a three
dimensional potential:

This 3d potential can be viewed as a finite ring of three coupled ld
anharmonic oscillators with periodic boundary conditions. For wb &#x3E; 1 and

C not too large, this system has breather solutions which are obtained

by continuation of solutions at C = 0. These breather solutions are time

periodic and time reversible solutions of the three dimensional oscillator.
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Fig. 1. - Branches of eigenvalues given 
a 

by eq. 30 for the 3 dimensional oscillator with

potential (33) for C - 0.2 and for a structurally stable periodic solution at c~b == 1.5
obtained by continuation versus C of the periodic solution at C = 0 where ~1 (t) ~ 0 and
~2 (t) = ~3 (t) = 0 (calculated by G. Kopidakis).

In that case, we can see 1- that the periodic orbit is structurally stable
because there is only a unique branch tangent to E = 0 at 03B8 = 0 2- that this
periodic orbit is linearly stable because there are 3 pairs of intersections
including the degenerate pair at 03B8 = 0.

5. MODEL EXAMPLES

In order to have a better representation of the classes of models we
consider, let us now give two simple examples of models with and without
piezo active couplings which has straightforward d dimensional extensions.

5.1. Model 1 with piezoactive coupling

This model consists of a chain of atoms with a diatomic molecule in
each unit cell with two atoms with mass ml and m2 which are coupled
anharmonically by potential ~(x) . It is represented schematically in a 2d
case on figure 2. Only the nearest neighbor atoms of neighboring molecules
are coupled harmonically with the constant C.
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We can put this Hamiltonian in the general form ( 1 ) by defining
the distortion of each molecule ~ ~ ~ 2014 ~ and its center of mass

Xi = (mlUi + + m2). The ld Hamiltonian is then

The Fourier transform of the coupling matrix P which has only one

component here is

which is equivalent to -2Cq for q - 0. As a result, the internal mode
of the molecule is piezoactive. The same result holds for the same model
in higher dimensions.

5.2. Model 2 without piezoactive coupling

This model now consists of two chains of atoms with a diatomic molecule

in each unit cell with again two atoms with mass ml and m2 which are
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coupled anharmonically by potential V (x ) . It was used for simple modeling
of DNA chains in ref. [12].

As before the distortion of each molecule is ~2 and its center

of mass is Xi = + m2~. In [12], ~i and vi represent
the displacement of DNA bases transverse to the trends, and Y(vi - Ui)
is the anharmonic potential resulting from the hydrogen bonds between the
trends. The Hamiltonian is then

This model has the form 1. We get

which is equivalent to (C2ml - + m,2).q2 for q - 0. In this
model, the internal mode of the molecule is not piezoactive.
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6. PROOF FOR THE EXISTENCE OF PIEZOACTIVE BREATHERS

As in the initial paper [3], our existence proof is based on the continuation
of the breather solutions which trivially exist at the anticontinuous limit. In
the present case, our method involves first the elimination of the harmonic
variables X(t) in eqs. 6 from eq. 5.

For the piezoactive anharmonic modes defined in subsection (3 .1 ),
we cannot use the supremum norms as we did previously because this
emimination involves operator So which is not bounded for that norm.

However, since it is bounded for the l~ norm, it appears that it remains

possible to use the implicit function theorem in the Banach space defined
with the L2 norm. As a result, we shall obtain the proof of continuation
for breathers and multibreathers involving a finite number of piezoactive
breathers only.
The 12 norm of multibreathers with infinitely many piezoactive breathers

is not defined and because we cannot switch to the supremum norm,
we cannot use our method to prove that they can be continued from
their anticontinuous limit. Actually, we believe that this continuation is

impossible (in general) for physical reasons. The reason is that the absence
of bound for the supremum norm of operator So is related to the possible
existence of configurations with infinitely many breathers which generate
divergent stresses at finite distance in the crystal.

In contrast, we shall see in the next section that for nonpiezoactive
breathers, we can use either the l2 norm or the supremum norm.

6.1. Definition of operating subspaces

It is convenient to define first, the two spaces of functions which we
shall use use for applying the implicit function theorem to the continuation
of the piezoactive breathers.
The space denoted is defined by arrays of functions F (t~ =

{fi,03B1(t)} which are time periodic with the given period tb = 203C0/03C9b and
time reversible:

We also require that F(t) is square summable in order that is a

Banach space for the L~ norm

Annales de l’lnstitut Henri Poincaré - Physique théorique



401DISCRETE BREATHERS IN ANHARMONIC MODELS

We also consider the subspace of arrays of functions Y(t,) _
~y2,a(t)~ which are also twice differentiable. It is also a Banach space
with the norm

6.2. Elimination of the Harmonic variables

Let us consider cvb such that no harmonic p03C9b belongs to the phonon
spectrum of system defined by eq. 11 for any p # 0.
We consider solutions of eqs. (5) and (6) such that Y(t) E This

condition means that we shall consider only spatially localized solutions
for the variable Y(t) but not for X(t).
No conditions are required for X(t) since equation (5) determines the

harmonic variables X(t) as a linear function of Y(t). Up to an arbitrary
uniform translation of the crystal, this determination is unique. The time
Fourier components defined as

are related by the equation

where operator Rp is defined as

The time reversibility implies that the Fourier coefficients of Y(t) are real
and since the matrices Rp are real, the Fourier coefficients of X(t) also
real, that is X(t) is time reversible.

For p # 0, operators Rp are well defined with a finite norm in l2 since
Wb and its harmonic pwb have been assumed to be not in the phonon
spectrum. In contrast, for p = 0 and when the breather mode is piezoactive,
operator Ro considered in eq. 15 is unbounded for the l2 norm and thus
is not well defined. Actually, since the quantity which appears in eq. 6
is Z(t) = P.X(t) we do not need to use this operator but the linear

operator S :
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Defining the time Fourier coefficients as Z(f) = 03A3p Zp eip03C9b t with p
integer, we readily get ZP = with

Eq. 6 can be written as

We have shown above that for a realistic crystal model, So defined by
eq. 15 is always bounded for the l2 norm and since wb and its harmonic
are not in the phonon spectrum of the crystal, Sp are also bounded for
the norm l2. In addition, the l2 norm of Sp goes to zero for p - oo as

We now show that operator S is also bounded for
the norm L~.

The square of the L2 norm of Y(t) defined by (41) can be
readily written as the sum of the squares of the l2 norms of its Fourier
coefficients

~ ~ ~ yP I I 2 ) 2 ~n, a ~ 2 is the square of the l2 norm of YP .

Then, we can write

The sum in the last member of ineq. 50 is convergent, which proves that

!!Y(~)~,2 defined by eq. 42, S is also bounded

when and are considered with the norms defined in

subsection (6.1 ).
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6.3. Definition of a map

The first member of eq. 48 defines a nonlinear map F(t) -
T(k, k’)(Y(t)) where F(t) == {fn,03B1(t)} is given by

It depends on the two parameters k and k’ . We prove that it is a continuous

map from the Banach space (with the norm (42) into the wider
Banach space with the norm (41)).

For that purpose, we prove first that Y(t) E implies that Y(t)
and are also bounded for the supremun norm. Indeed, considering
for example supn,03B1 IYn,a(t)l, we can write using the Schwarz
inequality 

where the last bound B(Y) is independent of n and a. The condition
B(Y) for all a defines the ball B(Y) for y.

Then using the fact that function V(y) is C2, it comes out that

is also L2 since we can write IZn,a(t)1  where

Since the functions Yi ) in eq. 4 which describe the direct nearest
neighbor interaction between the molecules, are also assumed to be C2,
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it is found similarly that ~~ in eq. 52 is L2. As a result, fn,Q(t)
in eq. 52 is also L2. 

Using the bounds on Y(t) and the C2 property of the potentials of the
model, it becomes straightforward to prove that T(k, k’) is a continuous

map between the Banach spaces and for their respective
norms. It is also differentiable and its derivative linear operator denoted

{ 1]n,a} == k’, depends continuously on Y(t) and k, k’.

6.4. The implicit function theorem

Now, we have established all the properties which allow the application
of the implicit function theorem. We recall its general statement [13] :

Let E, F, G be three Banach spaces, f maps an open set A in E x F
into G and is continuously differentiable. Let xo, ~o such that f (xo , = 0
and such that D2f(xo, Yo) be a linear homeomorphism of f into G. Then,
there exists a neighborhood Uo of xo in E such that for any open set U in
Uo containing xo, there exists a unique map u(x) of U into F such that
u(xo) == Yo and (x, u(x)) is in A and f(x, u(x)) = 0. In addition, is

continuously differentiable.
With cvb fulfilling the nonresonance conditions described in subsection

(4.1), we choose E = 7B~, the space of parameters (k, k’), F = 
G = and the map f = T(k, l~’ ) (Y (~) ) . The open set A = E x F
is the whole product space.

For k = k’ = 0, this map has trivial zeros in £~, which are obtained by
choosing an arbitrary but finite number of oscillators (finite multibreathers)
which are oscillating with a given structurally stable time reversible and
time periodic solution y (t) with period tb which fulfills the nonresonance
conditions (4.1 ). The phase of the oscillators which are moving can be
arbitrarily zero or 1f that is we choose y (t ) or y ( t + to /2).

For each of these zeros of T(k, k’) at k = k’ = 0, the linear derivative
operator is invertible with the appropriate L2 norms because it
becomes a direct product of three kinds of operators which are defined by
eq. 30 either for the rest solution y(t) = 0 or for the time reversible and
time periodic solution y(t) (phase 0) or y(t + tb /2) (phase One of these

operators maps yn (t) in the n component subspace of £~ into fn (t) in the
corresponding subspace of S%. Each of these operators is invertible as a
direct consequence of the nonresonance conditions (4.1 ) and the structural
stability assumption. The norm of the global inverse which operates from
the direct sum into ~S is bounded by the supremum of the norm of the
three inverse operators and thus is finite.
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Then, all the conditions required for the theorem, are fulfilled.

The continuation of this multibreather solution holds for (k, k’) in a

neighborhood of (0, 0), that is for k and k’ not too large.

6.5. Noncontinuation of some infinite multibreather configurations

The extension of the open domain in (k , k’) where the continuation holds,
depends on the initial finite multibreather. When the number of piezoactive
breathers in the considered multibreather state at the anticontinuous limit,
is infinite, our continuation theorem does not hold in principle because the
solution we consider, is not in ~.

There is a physical reason for this mathematical condition. Indeed, the
static component of the atomic displacements x~ which would be generated
by the breathers, could become infinite because of eq. 20 and thus undefined.
Actually, this divergency does not necessarily make physically any problem
because one could well accept macroscopic deformation of the crystal.
However, a problem occurs in two dimensions and more, because the stress
So.Y° which would be generated by the static component of the breathers
might not be bounded because we have shown in subsection (3 .1 ), that

operator So is not bounded for the supremum norm. It is known that

similarly, clusters of impurities which do not preserve the volume of a
harmonic crystal, generate divergent stresses, when their size grows. As
an example, we show a configuration of piezoactive breathers on figure 4
where such a situation occurs.
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Actually, real crystals are not harmonic and this divergent stress does
not occur because it is relaxed by the formation of dislocations and cracks
in the crystal. However, our model cannot generate any defect because we
assumed that the acoustic phonons are harmonic. For that reason, the general
proof of continuation of infinite clusters of breathers is not possible from
the anticontinuous limit of our model. However, we conjecture that there
are distributions of infinitely many breathers which could be continued
from the anticontinuous limit, but these distributions should be chosen

sufficiently "homogeneous" in order that the stress they generate in the
crystal be uniformly bounded.

7. PROOF OF THE EXISTENCE

OF NONPIEZOACTIVE MULTIBREATHERS

The above continuation proof holds a fortiori for multibreathers involving
non piezo active breathers defined in subsection (3.2). However, the

existence proof can be extended as well for multibreathers involving an
infinite number of nonpiezoactive breathers by using the fact that operator
So is bounded for the supremum norm (see subsection (3.2)). This proof
also holds for the piezoactive breathers in one dimensional models because
in that case, operator So remains bounded for the supremum norm.

We redefine the new Banach spaces as the vectorial space of C°
functions F(~) = {/t,a(~)} which are time periodic with the given period
tb = and time reversible: with the standard supremum norm

The new Banach space ~~(~) is defined identically but the functions

Y(t) _ are assumed to be C.2 and

Operator S can be formally defined as in subsection (6.2) but we have
now to prove that it is bounded for the supremum norm. It is convenient

to rewrite S as a series
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where Pp.Y(t) = YP is the projector which yields the p Fourier

component (43) of Y(t). Each operator Sp in the series (58) is bounded for
the supremum norm: So is bounded because we consider nonpiezoactive
modes as explained in subsection (3.2). For 0, the Fourier transform

SP(q) of Sp defined by eq. 47 is

The finite inverse matrix in eq. 59 is well defined since for any p # 0, pc~
does not belong to the phonon spectrum defined by eq. 11. Consequently,
SP(q) is a C2 function of q which implies that the Fourier series which
defines SP (q) is absolutely convergent {C° would be enough). As a

result, SP is bounded for the supremum norm. In addition, for p - oo,
which implies that the series involved in

the inequality

is convergent and S is bounded for the supremum norm. This is a fortiori
true when S is considered as a map from (ccJb ) to (wb).
We also need to check that each of the local operators defined by

eq. 30 is also invertible for the supremum norm. Actually, we proved in
subsection 4.1 that the invertibility of these local operators for the L2 norm
is equivalent to their invertibility for the supremum norm.

It is now straightforward to check that the operator k’) defined

by eq. 52, but from the space into the space with their

respective norms, is continuous, and is differentiable with a continuous
derivative operator. The conditions for the application of the implicit
function theorem hold for any infinite or finite multibreather state which
is in for k == k’ = 0.

8. EXTENSIONS AND DISCUSSIONS

Our approach can be easily extended to even more complex models (but
however still suffers some limitations). It suffices that the variables which
describe the crystal configuration can be split in two categories:
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. The optical variables which are unchanged by crystal translations, and
are anharmonic.

. The acoustic variables which are uniformly shifted when the crystal
is translated.

The part of the Hamiltonian involving the acoustic variables has to be
harmonic.

It comes out that the number of optical variables in the unit cell involved
in the displacement vector yn (t) and which are considered as anharmonic
is not necessarily d but any number which is of course finite. However,
we should have at least d variables describing the acoustic variables in
a realistic d dimensional crystal. According to previous study on optical
breathers [Aub97], the condition of time reversibility can be relaxed.

8.1. Non time reversible solutions, rotating molecules-rotobreathers

The assumption of time reversibility for the breathers and multibreathers
we considered, implies that the molecular motions are only oscillations.
However, we may also consider nontime reversible solutions. For example,
at the anticontinuous limit, single molecules may have time periodic
solutions in their local potential which correspond to rotations.

We can prove the possible continuation of nontime reversible solutions
with the same methods which were used in ref. [6] ] for purely optical
breathers. We sketch here the methods we used.

In the first method, we search for solutions of eqs. 5 and 6 in the space
which are defined identically to S£ or in subsection (6.1 ) but

where the time reversibility condition is replaced by a time antisymmetry
condition. The proofs made above works identically just by exchanging the
condition of time reversibility with the condition of time antisymmetry. This
method is only applicable when the Hamiltonian itself is time reversible.

The second method is based on the concept of effective action. It could
be used for Hamiltonians which are not time reversible, for example when a

magnetic field is involved and the crystal contains charged ions. However,
in our extended model, we cannot use the action angle representation as in
ref. [6]. Nevertheless, for the periodic orbit y (t) with period tb of a molecule
at the continuous limit which is rotating around some axis, we can define the

angle () ( t) of the molecule projected in the plane perpendicular to this axis.
This angle fulfills (for example) the condition + tb) = 6~) + 27r.
Then, we define the average angle a = tb0 (8(t) - 03C9bt)dt/tb during one
revolution.
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Then, we proceed as in [6] by extremalizing the action of the system
in the space of time periodic orbits but with fixed average angles for the
rotating molecules. We extremalize this action in the or

~2,s f an~ ~ 1 defined as in subsection (6.1 ) but where the molecules at the
sites denoted n’ which have been selected to rotate at the anticontinuous
limit, have fixed average angle (an, ).

Since the harmonic variables xn (t) can be eliminated identically by the
operator S (which actually does not require time reversibility conditions
to be defined), the continuation theorems proved above still hold for

piezoactive as well as for nonpiezoactive rotobreathers, in their respective
subspaces (under the same conditions of nonresonance and structural

stability). Moreover, the constraint parameters (an, ) can be incorporate
in the Banach space of parameters E appearing in the implicit function
theorem, which implies that this continuation is uniform with respect to
the constraints [6].

Since we have constraints, these solutions are not true extrema of the
action and thus are not true solutions of the dynamical system (but only
ghost solutions). The resulting extremalized action is a function of the

average angles of the molecules called the effective action. This function
is obviously invariant by a global rotation of the average molecule angles
which just corresponds to change the time origin. It is 2x periodic with
respect to each phase an,. and then, it has at least 2P-l extrema apart
a time translation. Each of these extrema corresponds to real solutions of
eqs. 5 and 6 which are called multirotobreathers. The single rotobreather is
obtained when only one molecule rotating in the whole crystal.

By this method, we can also build multibreather or multirotobreather
solutions with phase torsion as we did in [18]. However, since for

piezoactive breathers (or rotobreathers), the number of breathers (or
rotobreathers) is finite, we shall get only vortices or multivortices in energy
flow.

8.2 Breathers in random networks with acoustic phonons

Instead of a crystal, we can assume that we have a random network in
d dimensions where each site is connected to neighboring sites the number
of which is finite and bounded. At each site we attach molecules which are
not necessarily identical. The anharmonic molecule at site n, is submitted
to the local potential Vn (yn) where its internal coordinates are represented
by the vector yn with a finite number of components. The local potential
and the number of components may depend on n.
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There are also harmonic variables xm which are attached to a different
random network m different but superposed to the network of molecule.
The Hamiltonian of this system is decomposed as in the periodic case eq. 1
as the sum of four terms.

Helst is a harmonic hamiltonian for a random elastic network, the energy
of which is invariant by global translations of the atomic coordinates in
the d directions of the space. It is represented by a mass matrix M and
an elasticity matrix N which acts on the global vector X ~ {x~}. Both
matrices may have arbitrary coefficients but we shall have to introduce
global constraint to insure the stability of the network.
HAc is the Hamiltonian of anharmonic uncoupled oscillators corres-

ponding to the internal vibrations of the molecule with masses which can
be also arbitrary.

Furthermore, there is a harmonic coupling between the set of variables
X and the set Y = {yn} of internal coordinates described by the matrix P
which also can have arbitrary coefficients. The amplitude of this coupling
is tuned by the coefficient k. Finally, there is also a direct coupling between
neighboring anharmonic oscillators.

It is a priori difficult to define the sound velocities in such a system
because of the randomness of the network and the interactions do not allow
one to use space Fourier transformations. However, for a realistic model,
the sound velocities should remain well defined quantities as in glasses
for example.

However, it is possible to shortcut complex considerations about the
hypotheses which should be fulfilled by the model. We just make directly
the assumption that the [2 norm of the product So = P .N-1.Pt is finite.
This assumption means that as for a regular spring, the energy induced
by any optical distortion of the molecule remains of the order of the sum
of the square of the distortion. This assumption is physically necessary to
have a realistic model because it just says that the stiffness of the system
for any distortion of the optical modes is finite. In case the initial model
would not have this property, this would mean that the model has not been

properly defined for describing a physical system, and should be discarded
(by physicist’s).
Once this assumption is made, the proof for the existence of piezoactive

breathers works identically to the crystal case, with of course the same
assumptions. We have first the nonresonance conditions which assume that
for p i- 0, the breather harmonic pcvb do not belong neither to the global
acoustic phonon spectrum nor to the optical phonon spectrum (which now
has been broadened because of the randomness of the molecular oscillators).
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The second assumption is that at the anticontinuous limit, the multibreather
solutions only involves structurally stable orbits for the local oscillators
which have been selected to move at the anticontinuous limit.

8.3 More anharmonicity?

Our theory is limited by the necessary assumption that the acoustic
phonons must be treated harmonically. Could we abandon this assumption?
We think that this should be possible if the anharmonicity in the acoustic
phonons (and their coupling with the optical modes) are chosen properly
for having a physically acceptable crystal. Although the sound velocities
could be defined by considering the harmonic parts of these interaction, it
is not simple to express the stability condition of the crystal because the
phonon gap is vanishing.
A possible formulation would be that the harmonic part of the

Hamiltonian be perturbed by higher order terms which preserve its convexity
in a certain neighborhood of the equilibrium steady state of the crystal (to
be defined). Then, it could be possible to prove that the operator S we
defined here in the harmonic case in eq. 46, could be continued as a L2

operator up to an anharmonic perturbation not too large by using again the
implicit function theorem. In summary, we conjecture that the existence of
breathers in models with acoustic phonons should not be subjected to the
harmonicity of these acoustic phonons and of their coupling. Breathers may
exist in the most general models of anharmonic crystals.
The approach suggested by R. MacKay [ 11 ] considers models where all

the interactions are anharmonic and thus should be more general than the
proof we presented here. However, the detailed proof of the existence of
breathers in these most general models with anharmonic acoustic phonons
has not been yet published but may suffer some criticismes.
We briefly discuss the basic ideas of this approach from what we know

and in view of our results. In principle, it is formally elegant and does not
require the elimination of acoustic variables as we did here but consider
the whole set of atomic coordinates. The anticontinuous limit is obtained
as in [10] when the ratio of the masses of two kinds of atoms goes
to zero. Two configurations which are related by spatial translation or
rotation are considered as equivalent. Then, a norm is defined in this

space of equivalence classes of configurations which only involves the
relative distance of the atoms on some "triangulation" of the lattice. It
is chosen in order that the distances between nearest neighbour atoms on
this triangulation determine uniquely the atomic configuration. Then it is
claimed [ 11 ] that the implicit function theorem should hold in the Banach
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space of time periodic and time reversible configurations considered with
this norm. As far as we know, it is also claimed that there are several

norms which could be used equivalently for this approach which are for
example a supremum norm, a l2 norm or else. In case the breathers are
piezoactive, this assertion contradicts our results because it would allows

one to continue any infinite multibreather configuration which we know to
be untrue 6. At the present stage, this new approach did not recognized yet
the role of the piezoactivity for breathers in their continuation but it can be
considered as promising if more appropriate norms could be chosen which
we nevertherless believe to be possible.

9. BREATHER STABILITY AND HARMONIC DECAYS

We should complete this paper by a discussion of two important properties
concerning these breather solutions. One concerns the decays of the breather
harmonic at long distance and the second their linear stability. For brevity,
we only sketch here physicist arguments which should be easy to to turn
into rigorous proofs.

9.1 Exponential decay of the dynamical part of the breathers

As we have seen above, breathers and multibreathers in systems with
acoustic phonons generally generate long range distortions which do not
decay as exponentials. Actually, this problem concerns essentially the static
component. For single breathers or multibreathers involving a finite number
of breathers, the dynamical Fourier components xi. (t) and for p # 0,
are expected to decay exponentially in realistic models.

However, the conditions we assumed in subsection (2.2), that the acoustic
interactions are not too much long range is too loose. The assumption that
the matrices N(q) and P (q) are C2 functions of the wavevector q is

not sufficient, because it allows long range interactions between the atoms
which decay as power laws and thus compromises a fast exponential decay
of the breather components. To prove that the dynamical components of
the breathers decay exponentially for large n, we need to assume that the

6 More precisely, it can be checked that the supremum norm which is proposed in that theory
would have an sudden infinite variation when switching the perturbation at the anticontinuous
limit for certain multibreather configurations as for example those shown figure 4, and thus
cannot be used.
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matrices N(q) and P(q) depend on the wavevector q as analytic functions
in a band containing the real axis for each component of q. This condition
is equivalent to say that the coefficients of the Fourier series of these
matrices which determine the atomic interactions, decays exponentially at
long distance.

Now, to prove that the dynamical breather components indeed do decay
exponentially, it is convenient to consider the linear equation fulfilled by
the time derivative &#x26;(~) = which is obtained by time
differentiation of eq. 48

For large n, this equation becomes asymptotic to the linear phonon
equation where Y(t) = 0 which is translationally invariant and we get

Sp is defined by eq. 47. Since p ~ 0, pcvb does not belong to the

phonon spectrum and Sp(q) = -P(q).(p2wlM - is an

analytic function of q. Consequently, the coefficients (Sp)(n~ (m,/?) decay
exponentially with the distance ~n 2014 mi. 

’

Since at the anticontinuous limit, pcvb has been assumed to be outside
the phonon spectrum for all 0, this property remains true for (k, k’)
in a neighborhood of (0, 0). Then, we expect in that neighborhood (no
matter how the breather itself is extended!) that ~ ~ decays exponentially
to zero for large n. The rate of the exponential decay should be faster
at large order Ipl. (see ref. [17]). The same behavior should be found for
the breather distortion y~ at frequency pcvb as well as for the associated
acoustic distortion x~.
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9.2 Linear stability

We now briefly examine the problem of the linear stability of a single
breather solution close to the anticontinuous limit. Because of the existence
of gapless acoustic phonons, this problem is more complex to analyse than
in the simple case of optical breathers.
The linear stability of a solution Y(t),X(t) is given the linearized

equations (5) and (6). As we point out in subsection (4.2) and in ref. [6], it
is convenient to embed this problem in the following eigenvalue problem

The linear stability is determined by the solutions of this equation
for E = 0. Since the second equation (64) has time periodic and time
reversible coefficients, we can define the symplectic Floquet matrix FE,
which relates linearly ~?~n,~,cx~tb~~? to

the initial conditions {~,p~(0)},{??n,p~(0)},{6~~(0)},{6~~(0)}. For a
linearly stable breather, the Floquet matrix Fo for E = 0, has all its

eigenvalues on the unit circle.

Any eigensolution 1jJ( t) == (t) , En,a (t) ~ of eqs. 63 and 64 fulfills

the Bloch-Floquet condition 03C8(t + tb) = 03C8(t)ei03B8 and the corresponding
eigenvalue belongs to a band which is 2x periodic and symmetric
with respect to B [6]. The intersections of these bands = E determine

the eigenvalues of the Floquet matrix F(E) which are on the unit circle.
The Krein signature of this pair of eigenvalue is the opposite sign of the
slope of the band intersection in the interval ]0, x[ [ [6].
The evolution of the global band spectrum allows a better understanding

of the instabilities which may occur. Then, it is useful to know first of

all, this band structure at the beginning of the breather continuation when
k = k’ = 0. Then, the two equations (63) and (64) decouple and we get a
collection of independent harmonic oscillators with frequencies w (q) given
by the eigenequation ( 11 ), and by the frequencies of the linearized
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anharmonic oscillators at their rest position defined from eq. 27. Each of
these harmonic oscillators plus the anharmonic one, produces a family of
bands which superpose.

The optical phonons of the molecule at the discrete set of frequencies
yield the series of bands .E~,n,~ (8) = ~(=L~ - (~ + 2~7r)~/~) with n

integer. They are "folded parabolae" over the interval [-7r, 1r] ("Brillouin
zone"). Each of these band is degenerate N -1 times since there are N - 1
oscillators at rest for a system of N unit cells.

The acoustic phonons yield continua of bands depending on the

wave vector q which could be calculated in principle. The solution at

q = 0 determines the bands at the edge of this continuum which are

= -(Ep~p)(=~ + ~7r)~. They are d times degenerate.
This is again a folded parabola, which for the branch n = 0 is tangent
from below to the axis E = 0.

On top of that, there are nondegenerate bands corresponding to the

spectrum of operator 30 for the single oscillating molecules calculated in
subsection (4.2). There is again a band tangent to the axis E = 0 which
is due to the phase mode. For illustration, we have shown an example
figure 1 calculated for a real 3d potential.
With the superposition of three families of bands, the global band

spectrum might become quite complex. Figure 5 shows a possible scheme
for the simplest possible situation in one dimension where there is only
two variables per unit cell. We distinguished two situations for the local
anharmonic potential V(y). In the first case the derivative of the energy of
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the local oscillation with respect to its frequency is positive (hard potential)
and the second case where it is negative.
The eigenvalues e:i::8a of the Floquet matrix Fo at E = 0 which are on the

unit circle are obtained as the intersection of the bands with the line E = 0.

Then, the spectrum of the Floquet matrix consists of symmetric continuous
arcs on the unit circle which corresponds to the harmonic modes. Among
them, there at least two arcs which starts both from the eigenvalue 1 which
corresponds to the gapless acoustic phonons and possibly several other arcs.
There are also isolated eigenvalues on the unit circle which are degenerate
and corresponds to the optical phonon mode. On top of these eigenvalues,
there are also the Floquet eigenvalues corresponding to the Floquet matrix
of the oscillating molecule described in subsection (4.2), If we have chosen
initially a linearly stable solution, they are d pairs of eigenvalues on the unit
circle but one of them corresponding to the phase mode is degenerate at 1.

Figure 6 shows the distribution of the Floquet eigenvalues on the unit
circle which result from either case of fig. 5. It is clear that much

information useful for understanding the breather instabilities is lost in

that representation.
When k and k’ are no more equal to zero, we have to understand

from the initial band structure how it could evolve for producing breather
instabilities that is some band intersections with the axis E = 0 are lost.
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We do not treat the general case, but only a situation similar to those

represented by figure 5.
In that case, the Floquet eigenvalues associated with the acoustic phonons

form two symmetric arcs starting from 1 and they all have positive Krein
signature. Concerning the degenerate Floquet eigenvalues associated with
the optical phonon, it must be outside this arc if it has a negative Krein
signature (but it could be inside if its Krein signature is positive). We
can accept more complex situations with more phonon branches and more

optical phonons but we assume that overlap between arcs of eigenvalues
with different Krein signature do not occur.

Then, when k and k’ varies, the band structure varies continuously as
well as the breather solution. It keeps permanently 1 + d bands tangent to
E = 0. One corresponds to the phase mode, and d bands corresponds to
the translation modes of the crystal. Since the eigenvalues with different
Krein signatures are separated by finite gaps, when k and k’ are sufficiently
small, no instability can result from the collision between these egeinvalues.
There is only a risk of instability when two symmetric eigenvalues in the
acoustic band collides at + 1.

If such an event happens when k and k’ vary, there is a bifurcation point
at which there is a degenerate extra eigenvalue of the Floquet matrix at +1.
Then, there is an extra eigenvalue at E = 0 in the spectrum of eqs. 63 and
64 at 03B8 = 0. The corresponding eigensolution is time periodic with period tb
and its component is not zero ( otherwise it would be necessarily a
translation mode of the crystal). Then, the variables can be eliminated

from eq. 64 by using eq. 63 with the operator S defined in eq. 46. Since
we proved that this operator is L2, the linearized operator corresponding to
eq. 48 has a spectrum which is close to those obtained at the anticontinuous
limit when k and k’ are zero. This operator at the anticontinuous limit has
a discrete spectrum with isolated eigenvalues and only one zero eigenvalue
corresponding to the phase mode. Then, provided k and k’ remain small
enough, there cannot exist an extra eigenvalue coming to zero. This prove
the linear stability of the single breather in some neighborhood of the
anticontinuous limit, when at this limit the eigenvalues of the Floquet
matrix with different Krein signature are separated by gaps.
When there are arcs of eigenvalues with different Krein signature

which are overlapping, we are in a situation where we could expect
instabilities coming even for k and k’ small. Indeed, for finite system
where the continuous spectrum of the Floquet matrix is replaced by discrete
eigenvalues, breathers should become unstable by Krein crunches occuring
for k and k’ both very close to 0. Actually, a similar situation where two
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arcs on the unit circle of the Floquet spectrum overlap with opposite Krein
signatures, was found for optical breathers and studied both numerically
and analytically in [16]. We also expect finite size effects when there
are acoustic phonons with cascades of thresholds corresponding to the
occurence of weak instabilies followed by reentrant thresholds where the
breather recovers its stability ~. We also conjecture that the single breather
in the infinite system recovers its linearly stable at least when k and k’
are not too large.

The situation is quite different when an isolated eigenvalue associated
with the moving oscillator, penetrates a continuous arc of the Floquet
spectrum with a different Krein signature. Then, according to [16], there
are also finite size effects but the instability persists for the infinite system.
The stability problem of multibreather should involve the effective action

as we suggested in ref. [6] ] and will not be discussed here.

10. CONCLUDING REMARKS

A practical point which we did not discuss here is that the existence proof
of breathers can be turned into efficient numerical calculations [9, 18].
The major result of this paper is that it confirms that the existence

of breathers is universal. Indeed, it was often believed that the breathers

described by simple models would be washed out in real systems. The
argument was that their coupling with the many other degrees of freedom
which were neglected, would produce their decay. This work contradicts
this argument and proves that breathers may survive to complexity. Their
existence does not depend on the number of parameters in the unit cell, nor
on its periodicity. They could exist in crystal, amorphous material as well
as in complex proteins. Their existence only depends on global conditions
like their non resonance with the global phonon spectrum and their initial
structural stability.

Breathers are objects which are highly stable at low temperature where
they could survive over macroscopic times. Otherwise, we know from
numerical investigations and theoretical approaches that they interact with
phonons [20, 21 ] but roughly speaking, they have a physically reasonable

7 These breather instabilities have no effect on their possible continuation since Krein crunches
do not involve time reversible and time periodic eigenmodes.
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long life time when their characteristic energy is much higher than the
characteristic thermal energy.

We believe that it becomes now worthwhile to try to investigate some
puzzling physical problems which have unsolved answers, concerning for
example the hole burning [22], the effect of sonoluminescence [23] ...

under the light of these new advances in breather theory.
Another important result we pointed out, is that breathers in real situations

should be generally piezoactive. In ordinary crystal or in amorphous
structures, the piezoactivity of breathers leads to crystal deformations which
on average simply produces a crystal dilatation. This effect is not of major
importance because it is well known when heating any material.

By contrast, piezoactive breathers could play a major role for

understanding essential mechanisms of biology. One of the most puzzling
challenges of biophysics is to understand how some proteins which are
adsorbed on microtubules, move systematically in a determined direction
[19]. These motions play an essential role in the living cells because

these mobile units carry other attached proteins from the nucleus to other
part of the cell where they are needed. At the scale of few nanometers,
one should expect naively that the motion of the adsorbed proteins is a

Brownian motion on the microtubule and thus is a random walk. Actually,
precise observations shows that this motion is truly and essentially directive
without almost not any randomness. It is also known that it is induced by the
hydrolysis of ATP into ADP and in average, one hydrolysed ATP molecule
makes the protein to move by one unit of the microtubule. The efficiency
of this conversion is unexpectedly good and is close to one.
The sketch of a possible mechanism would be that an ATP molecule is

captured by the moving protein at an appropriate and selective site and

hydrolised. The energy which is released (about 0.3 eV) is much higher
than the thermal energy at the temperature where the cells are living.
Then, this energy can be captured as a (quantum) breather at a selective
(resonant) location of the protein. This piezoactive breather should generate
conformational changes of the protein producing finally after breather

relaxation, one protein step. Such process repeated (randomly by ATP
capture), should produce a perfectly directive walk along the microtubule.
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