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ABSTRACT. - In this article we explore some of the connections between
the theories of Yang-Mills fields, wave maps, and harmonic maps. It has
been shown that the search for similarity solutions of wave maps leads to
harmonic maps of the hyperbolic space. On the other hand, Glassey and
Strauss have shown that the equations for an 5’0(3)-equivariant Yang-Mills
connection on the Minkowski space with gauge group 5"!7(2) reduce
to a certain nonlinear wave equation, which we can now identify as a
wave map More generally, we will here show the reduction under
equivariance of a Yang-Mills system on the Minkowski space to a

wave map system on !Rn-2,1 in the specific case of bundles with

SO(n) symmetry. We then prove’ for odd n the existence of equivariant
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harmonic maps from the hyperbolic space that are smooth at the ideal

boundary of Hn, thus establishing the existence of similarity solutions for
equivariant wave maps and Yang-Mills fields. As a consequence we show
that for n &#x3E; 7, it is possible to have a wave map into a negatively curved
target manifold that develops from smooth initial data and blows up in
finite time, in sharp contrast to the elliptic case of harmonic maps. Finally
we show how these singular solutions can be lifted to one dimension higher
to produce singular travelling waves. @ Elsevier, Paris

Key words: Wave maps, harmonic maps, singularities, Yang-Mills fields, similarity
solutions

RESUME. - Dans cet article, nous explorons certaines relations entre

les theories de champs de Yang-Mills, des applications d’onde, et des

applications harmoniques. On sait que la recherche de solutions similaires
d’ applications d’onde conduit a des applications harmoniques de l’espace
hyperbolique. Par ailleurs, Glassey et Strauss ont montre que les equations
pour une connexion de Yang-Mills SO(3)-equivariante sur l’espace de
Minkowski 1R3,1 muni du groupe de j auge SU (2) se reduisent a une equation
des ondes non-lineaire, que l’on peut en fait identifier a une application
d’ onde sur 1R1,1. Plus generalement, nous etablissons ici la reduction

équivariante d’ un système de Yang-Mills sur l’espace de Minkowski à

un systeme d’ applications d’ onde sur IRn-2,1 dans le cas spécifique des fibres
SO (n) avec symetrie SO( n). Nous montrons ensuite pour n pair l’ existence
d’ applications harmoniques equivariantes de l’espace hyperbolique qui
sont regulieres a la frontiere ideale de etablissant ainsi 1’existence de

solutions similaires pour les applications d’ onde equivariantes et les champs
de Yang-Mills. Il en resulte que pour n &#x3E; 7, il est possible de construire
une application d’ onde dans une variete cible a courbure negative, qui
possede une donnee initiale reguliere et explose en temps fini, ce qui
differe du cas elliptique des applications harmoniques. Enfin, a l’ aide d’un
relevement, nous en deduisons l’existence d’ ondes progressives singulieres
dans la dimension immediatement superieure. @ Elsevier, Paris

1. INTRODUCTION

In this article we explore some of the connections between the theories of

Yang-Mills fields, wave maps, and harmonic maps. It has been shown that
the search for similarity solutions of wave maps leads to harmonic maps of
the hyperbolic space [13]. On the other hand, Glassey and Strauss [6] have
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317DEVELOPMENT OF SINGULARITIES IN WAVE MAPS AND YANG-MILLS FIELDS

shown that the equations for an SO(3)-equivariant Yang-Mills connection
on the Minkowski space 1R3,1 with gauge group SU(2) reduce to a certain
nonlinear wave equation, which we can now identify as a wave map on
1R1,1. More generally, we will here show the reduction under equivariance
of a Yang-Mills system on the Minkowski space to a wave map system
on IRn-2,1 in the specific case of SO~n) bundles with SO(n) symmetry.
We then prove for odd n the existence of equivariant harmonic maps from
the hyperbolic space IHJn that are smooth at the ideal boundary of thus

establishing the existence of similarity solutions for equivariant wave maps
and Yang-Mills fields. As a consequence we show that for n &#x3E; 7, it is

possible to have a wave map into a negatively curved target manifold that
develops from smooth initial data and blows up in finite time, in sharp
contrast to the elliptic case of harmonic maps. Finally we show how these
singular solutions can be lifted to one dimension higher to produce singular
travelling waves.

This Section is organized as follows: in §1.1-1.3 we review the known
results on wave maps and give the Yang-Mills reduction under equivariance.
In §1.4 we state our main results, which are then proved in Sections 2 and 3.

1.1. Wave Maps

Let M be the Minkowski space with coordinates x =

(~,:r~...,~) = and let N be a smooth, complete, rotationally
symmetric d-dimensional Riemannian manifold without boundary. This
means (cf. [14]) that N can be identified with a ball of radius R E 
in equipped with a metric of the form

where (u, 0) are polar coordinates on is the standard metric on the

sphere and g is as follows:

In addition, if R = oo, we assume that there exists a constant C &#x3E; 0
such that

A wave map U : M -~ N is a stationary point (with respect to compactly
supported variations) of the functional

Vol. 68, n° 3-1998.
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At a stationary point, the vector U = u ~ 9 e IRd satisfies

Let (t, p, w) E R x I~+ x be spatial polar coordinates on M, in
which the line element of M can be expressed as

One Ansatz of equivariance which is compatible with the wave map
structure (by no means the most general one) is to require

This is referred to as the corotational Ansatz. It follows (cf. [8]) that

8 : sn-l --7 has to be an eigenmap, i.e., a harmonic map of constant
energy density

The wave map system (1.4) for U then reduces to the following single
scalar wave equation for the spatially radial function u : M - R:

Remark 1. - If 8 : is a harmonic map, then the unit

vector 03B8(x) E Rd satisfies + |~03C903B8|203B8 = 0. Hence if the energy
density JV~0~ is constant, then each component of 9 is an eigenfunction
for the spectrum of which is (Az == £(£ + n - 2) 1£ The

corresponding eigenspace to Az is the vector space of £-homogeneous
harmonic polynomials in restricted to the unit sphere, and

Let {q,l,..., be an orthonormal basis for Then the map

B : sn-l - defined by 03B8j = 1&#x3E;j for j = 1,..., d(n, l)
is a ~-eigenmap, i.e., A9 + Ag9 = 0 and ~d~ i’~~{8~ {x))2 - 1 for all

x E (See [5 Chap. 8] and references cited therein).

Annales de l’lnstitut Henri Poincaré - Physique théorique
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We also note that since B is a homogeneous polynomial of degree ~ .~ in
its variables, for U(t, p, cv) == u(t, p) . 0(w) to be a smooth map, we must
have that u( t, p) / pi is smooth near p = 0.

The following results regarding existence, uniqueness, regularity and
break-down of solutions to (1.6) were obtained in [13]:

1. There exists T &#x3E; 0 such that the Cauchy problem for (1.6) with initial
data ~f~/~*~ has a unique solution u such that

where q = 2(n + 3) /(n + 1), cr = (n - 1)/2, and I~s and are

homogeneous Sobolev and Besov spaces of functions on ~n.
2. For n = 2, the Cauchy problem for (1.6) with smooth initial data of

small total energy

has a unique smooth solution defined for all time. Moreover, if the
initial data is smooth and if g satisfies

then the energy of the solution cannot concentrate at a point, and
therefore the solution remains smooth for all time.

3. Let n = 3, and suppose there exists a &#x3E; 0 such that ~(~) = 0 and
g"(a)  0. Choose .~ large enough such that + &#x3E;

1/4. Then (1.6) admits solutions which are self-similar (see below)
inside a null cone. These solutions develop from Cauchy data which
are smooth and of compact support, and they suffer a gradient blowup
in finite time. Moreover, there exist data in with s  n /2 such
that the corresponding Cauchy problem has two distinct solutions.

1.2. Yang-Mills Connections

Let P be a principal fiber bundle with base manifold B of dimension n,
structure group G and canonical projection Jr. Let g be the Lie algebra of
G. A connection on this bundle can be thought of locally as a g-valued
1-form A defined on the coordinate patches Ua of the base manifold,
A = g. Thus for v E TxB a tangent vector,

v) = Under a gauge transformation g : Ua n U, - G
that changes coordinates on fibers in the overlap of the two trivializations
7!’~(~a) the form A transforms according to

Vol. 68, n ° 3-1998.
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The curvature of the connection A is defined to be the 2-form F =

with

The Yang-Mills functional

is invariant under gauge transformations, and its critical points are

called Yang-Mills connections. These are solutions of the Euler-Lagrange
equations

where D~ := + ~A~, ~~ is the covariant derivative associated with

the connection A. If B is a globally hyperbolic Lorentzian manifold
with time function x° and Cauchy hypersurface £ = {xO = 0~, then
equations (1.8), modulo the gauge invariance, form a hyperbolic PDE

system for which a Cauchy problem is well-posed. A Cauchy data set

for (1.8) is then a pair (A,E) of g-valued 1-forms on ~ satisfying the
constraint div E + [A, E] = 0. The Cauchy problem in the temporal gauge
for ( 1.8) consists of finding a connection A with Ao m 0 which satisfies ( 1.8)
and such that A = A and = E on ~ .

Assume that a symmetry group S acts on the base manifold B,
a : with a(s,x) = sx, and that this action has a lift to

an action on the bundle P, ~ : S x P - P such that (i) a o 7r = 7r o o;

and (ii) ~ is a bundle map, i.e. it commutes with the right action of G
on P, This implies (cf. [7]) that there is a homomorphism 03BB : S ~ G
such that on a trivialization ~r-1 ~U) we have ~x, h~) _ 
for all x E U, s E Sand h E G. A connection A on P is equivariant
with respect to the S-action if the transformation induced on the 1-forms

Au by this action of S amounts to a (global) gauge transformation. That
is to say, for a fixed s E S,

for all x E B and v E TxB.
We now consider a special case of the above, when B is the Minkowski

space with global coordinates x = (~,~B...,~) = (t, x),
G = S = SO(V) the group of orthogonal transformations on IRN and

Annales de l’Institut Henri Poincaré - Physique théorique
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A = idG. Thus is an N x N skew-symmetric matrix A~ . The
appropriate Ansatz of equivariance in this situation is (cf. [4])

where h : B - R is a spatially radial function and r = The Ansatz

also implies that we are in the temporal gauge 0. Substituting the
above in the equations for a Yang-Mills connection and setting u := r2h
and n := N - 2, we obtain the following semilinear wave equation for u:

which is the Euler-Lagrange equation for the critical points of the

corresponding reduced functional

Remark 2. - We observe that ( 1.9) is the same as equation ( 1.6) obtained
before for a corotational wave map, with 1 = 2 and ~(~) = ~(1 2014 ~). The
only difference is that this g is not odd, which means that the nonlinearity
in (1.9), unlike the one in (1.6), has a quadratic term.

For n = 2, u is a solution to (1.9) iff the function h = satisfies a

wave equation in 6 space dimensions:

2 is the critical power in 6 dimensions, and this is why, despite the presence
of the quadratic term in the nonlinearity in ( 1.9), the arguments in [ 13] apply
and we have local and global existence results for ( 1.9) which are analogous
to those mentioned in §1.1 for wave maps. Note that u E iff
A E ~j(N-2)/2/~Nl. The singularity result mentioned in §1.1 holds for (1.9)
as well, because the conditions stated are satisfied for a = 1 and f = 2.

1.3. Similarity Solutions and Development of Singularities

A similarity solution (or self-similar solution) of the Cauchy problem for
a wave map U from the Minkowski space M = into a Riemannian
manifold N is a solution that is only a function of where (x, t) E I~n x R
are coordinates on M. Such solutions are constant along rays emanating
from the origin of the space-time, and thus, if nontrivial, have a gradient

Vol. 68, n° 3-1998.
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singularity at the origin. They can be regarded as maps defined on the
hyperboloid ~2 - ~ = 1, which, as a spacelike hypersurface of M,
inherits a Riemannian metric from it that has constant curvature -1 and
thus is a model for the hyperbolic space Therefore the restriction of a
self-similar wave map U to the interior of the light cone at the origin can
be regarded as a harmonic map from into N. Suppose ~ : 
is a smooth, nontrivial harmonic map. We take the ball model for i.e.,
the unit ball J3~ in jRn with the following metric

where r = = G R~. Let  : R~ 2014~ N be a smooth map
such that

Then inside the light cone t2 - rxl2 = 0 the unique solution to the Cauchy
problem for a wave map U : M - N with the following smooth, finite
energy initial data prescribed at t = -1 :

is nothing but

which means that U will undergo a gradient blowup at t = 0. However, we
see that in order for this to be considered a true formation of singularity we
need $ and therefore ~ to be smooth at the boundary of the unit ball, which
corresponds to the ideal boundary of the hyperbolic space Hn. Although the
Dirichlet problem at infinity for harmonic maps of the hyperbolic space has
been solved (see [3]), boundary regularity is, to the best of our knowledge,
an open problem. Following Shatah’s work [12], in [13] the authors used
equivariance to reduce this elliptic PDE problem to the study of an ODE,
and were able to prove the existence of smooth nontrivial solutions in the

dimension n = 3. We will take the same approach here in treating the
problem in higher dimensions.

1.4. Main Results

The following theorem extends the results stated in § 1.1 regarding
singular solutions of the Cauchy problem for wave maps:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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THEOREM 1.1. - Let M be the Minkowski space with n &#x3E; 4 and let

N be a rotationally symmetric Riemannian manifold of dimension d, with
a metric of the form (1.1), where g, in addition to { 1.2)-( 1.3) satisfies one
of the following: Either

or else,

Consider the Cauchy problem for a wave map U = u . () : ~VI -~ N. If
the dimension d is large enough, then

l. There exist smooth, compactly supported initial data such that the
corresponding unique smooth solution to { 1.4) develops a singularity
in finite time.

2. If g satisfies { 1.11 ), then there exist Cauchy data (Uo, which belong
to x for all s  n/2 and such that the corresponding Cauchy
problem for ( 1.4) has locally nonunique solutions in 

3. If n is even, then there exists a sequence of smooth compactly supported
initial data { U~ , Ul ) for { 1.4), with

for all s  n /2, such that at the same time T~ --~ 0, where T~ is the
lifespan of the corresponding smooth solution to (1 .4).

We will show that the following is a consequence of the above:

THEOREM 1.2. - There exist smooth Riemannian manifolds N with all
sectional curvatures everywhere negative, such that the Cauchy problem for
a wave map from jR7,1 into N admits a self- similar solution which develops
from smooth Cauchy data of compact support and has a gradient blow-up
in finite time. 

’

We also have the analogous results for the Cauchy problem of Yang-Mills
fields:

THEOREM 1 .3 . - Consider the Cauchy problem in the temporal gaugefo.r
a connection A on the principal bundle x SO (N) satisfying ( 1 .8).

1. For 5  N  8, there exist a family of smooth, compactly supported
Cauchy data such that the co.rresponding unique srnooth solution
develops a singularity in finite time.

Vol. 68, n° 3-1998.
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2. For 5  N  8, there exist Cauchy data (11, E) E x for
all s  (N - 2) ~2 such that the corresponding Cauchy problem has
locally nonunique solutions in for all time

3. For N = 6, 8 there exists a sequence of smooth, compactly supported
initial data with

for all s  (N - 2)/2, such that at the same time T~ --~ 0 where T~
is the lifespan of the corresponding smooth solution.

The proof of Theorem 1.1 consists of constructing self-similar solutions
for the corotational wave map problem in the case n is odd (Theorems 2.2
and 2.4), and then lifting those to create singular travelling waves in

one dimension higher, to cover the case when n is even (Theorem 3.1).
Theorem 1.3 is essentially a consequence of Theorem 1.1 because of the
reduction of the Yang-Mills equations to wave maps as seen in the above.

2. SINGULAR SOLUTIONS IN ODD DIMENSIONS

It is easily seen that equations (1.6) and (1.9) will have a similarity
solution u(03C1,t) = 03C6(03C1/t) if 03C6 satisfies the following ordinary differential

equation in r = p/t:

where f := gg’ and k := £( £ + n - 2), l E N. In the interval [0, 1] the only
possible singularities for a solution to (2.1) are clearly r = 0 and r = 1.

We assume that f satisfies:

We note that (HI) holds for the nonlinearity in the corotational wave

map equation (1.6) as well as the equivariant Yang-Mills equation (1.9).
Moreover, once the solution to (2.1 ) is proved to be bounded, (H2) can
be satisfied by modifying f for large x. The following, third hypothesis is
however not satisfied by the nonlinearity in (1.9), and it only holds for the
one in (1.6) if the target N is geodesically convex:

&#x3E; 0 V~ ~ 0.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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We prove the existence of smooth solutions to (2.1 ) in the following
way: If (H3) holds, we use a shooting argument to construct a solution
that satisfies the appropriate boundary conditions at r = 1. If (H3) does
not hold, we take a variational approach, proving existence of a solution
by minimizing a suitably renormalized functional. This plan is carried out
in §2.3 and §2.4. But first we need to study the behavior of the solutions
of (2.1 ) near the two endpoints.

2.1. The Behavior at r = 0

LEMMA 2.1. - solution to (2.1 ) in (0,1 ) which is bounded near
r = 0. Then we must have f (~(0~~ = 0.

Proof - Suppose this is not true, then ø satisfies the equation

where b(r) := r2), so that bo := b(0) # 0. Let  be the
integrating factor for this equation. Thus

so that  = rn-1 (1-r2)(n-3)/2 = + ... for r small. Thus we have

which upon integration on (a, r) yields

Integrating one more time we obtain

Multiplying by rn-2 and letting r - 0 we obtain

Vol. 68,n° 3-1998.
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so that (n - 2)~(a) = bo/a + ... and thus

which is a contradiction since ~ is assumed to be bounded near the

origin..
LEMMA 2.2. - Let 03C6 be a bounded solution to (2.1) with 03C6(0) = 0 and

0 for small r &#x3E; 0. Then is smooth in a neighborhood of
r = 0.

Proof. - We multiply (2.1) by § and rearrange terms to obtain

By completing the square in the last two terms in the above we have

By (Hl) we know that f(cjJ) &#x3E; 3~/4 for ~ small, i.e. for small r. Since

k &#x3E; rc - 1 we see that

for 0  r  b with b small enough. Integrating the above on [a, b] we obtain

Letting a - 0 and using the fact that cjJ2 has to be increasing close to
r - 0, we obtain

for b &#x3E; 0 small enough.
Now let § = r~w. Then w satisfies

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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We view this as

where A is the Laplacian on By assumption, § is small for small r,
and by (HI), = O(~2) for small ~, so that we have

Let p := 2 + and let B denote the ball of radius b centered at the

origin in Then by (2.3),

so that by elliptic regularity theory, w E with q = p/(l + ~)
and by the Sobolev imbedding theorem, w E with 5 = ~- - 
which implies that s &#x3E; p, i.e. the regularity of w can be improved and
by repeating the argument we can eventually show that w is smooth in a
neighborhood of zero..

2.2. The Behavior at r = 1

If n = 3, then equation (2.1) dictates that for a solution § to be smooth
at r = 1 we must have f (~(1)) = 0. For n &#x3E; 4 however, the situation is
different. If we multiply (2.1) by 1 - r2 and set r = 1, we do not obtain a
value for ~( 1 ) but only a condition that has to be satisfied at the boundary
if ø is to be smooth there:

More generally, let Equation (2.1) can be written as

with and ~(~ - l)r - 2r3 . Thus the equation satisfied is

where

Vol. 68, n ° 3-1998.
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Let

By setting r = 1 in (2.4) we see that a necessary condition for the

smoothness of § at r = 1 is that

where

with ci := qi ( 1 ) and in particular ci = n - 3 - 2 j. Moreover,

where p2 is a polynomial of order i in a1, ..., aj which can be obtained
from the following recursion relation:

In particular, Fj = f1aj + ... + Let

The following proposition is immediate:

PROPOSITION 1. - If n is odd, the set of boundary conditions Bj = 0 for
j = 0, ..., m will form a closed algebraic system for ao, ..., am. The linear

part of this system is lower-triangular, and thus by forward substitution we
can reduce the system to a single nonlinear equation for ao of the

following form: Let a = ~cxo, ... , am) denote a multi-index and let f a be
the function 1 ... ~ f {"2~ ) °~~ . We can find numbers such that the

equation for ao is

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where

Remark 3. - The first nontrivial case is n = 5, where we see that the
two boundary conditions (2.5) for j = 0,1 imply

As a further example, if n = 7, then m = 2 and the boundary conditions are

which again reduce to

LEMMA 2.3. - ~ ~ ~ a solution of (2.1 ) with ~ E C 2 ( (0,1~ ), then

ql G Cm,1 2((0,1]) and Bj = 0 for j = 0,...,m- 1.

Proof - We proceed by induction. Fix j E ~0, ... , m - 1} and assume
ø E CJ’2. Then from (2.4) we have

where + and thus

Kj E C"2. Let M be the integrating factor for this equation. Thus

near r = 1, so that

and

Integrating this on (a, r) and dividing by J-L we obtain

Vol. 68, n° 3-1998.
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which implies that = 1 2(j-m) Kj(1), i. e. Bj = 0, and that

4§16’~) ~ ~~{1) == O{ 1 - r), i.e., E C2 ( ( 0, 1])..

Remark 4. - If n is even, a similar argument shows that a solution which
is at least C a near r = 1 is actually in C 2 -l,a, for all Q  ~.
LEMMA 2.4. - If 03C6 is as in Lemma 2.3 with Bm = 0, then 03C6 E {O,13 )

for all l &#x3E; 1.

Proof - First we show that if 23 m = 0 holds, then § E ((0, 1]) :
Equation (2.4) for j = m can be written as

with (2n - 4)r(l - r~), R~~(r) - and S containing
the remaining terms, which only depend on ~o, ... , . Thus by the
previous Lemma, S E C1,~. In this notation, the boundary condition
~ m = 0 reads

Thus subtracting the two lines above we obtain

It is easy to see that I,II E C=. Let us set ~(1). Thus
y(1) = 0 and by Lemma 2.3, Iyl  From (2.8) we have

which upon integration yields y’(r) - y’(l) == E C~’2
and thus 4&#x3E; ~ C~+~~.
We now proceed by induction on I. Suppose ~ e for

1 2:: 2. Going back to (2.8) we then have I, II e and III e 

Thus the right hand side of the equation for 4&#x3E;m is in and therefore

~ e 
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2.3. The Convex Case

LEMMA 2.5. - Let f satisfy (H 1 ) and (H2). Then for every c E IF~ there
exists a unique solution ~ E 1 ) ) n C1~2 ( ~0, 1~ ) of (2.1 ) such that

If in addition, f satisfies (H3), then ~ &#x3E; 0 and ~’ &#x3E; 0 on (0, 1).
Proof. - Set 03C6 = Equation (2.1 ) is then equivalent to

Let

It follows that h E and equation (2.10) becomes

Note that

and thus w solves equation (2.12) with initial conditions

if and only if w solves the integral equation

Vol. 68, n° 3-1998.
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where

Equation (2.13) is solved locally by a contraction mapping argument. It
follows that there exists a unique, maximal solution w E C~([0,~))
(with 0  R*  1 ) of (2.12) such that w(0) = c and w’(0) = 0. The
solution w is maximal in the sense that if R*  1, then ~(r) -~ oo as
r /’ R*. Furthermore, since h E it follows easily from (2.13)
that w E C~([0,R*)). Therefore, there exists a unique, maximal solution
~ E C’°° ( ~0, R* ) ) (with 0  R*  1) of (2.1 ) such that (2.9) is satisfied.

~ is maximal in the sense that if R*  1, then ~(r) - oo as r / R*.
Multiplying equation (2.1 ) by r~ ( 1 - we obtain

Integrating the above identity on (0, r), with 0  r ~ R*, we obtain

It follows from (2.15) and (H2) that

for ~T/2  r  1~*, with ~ = ~* 2 ~ +~* ~ . Since (1 - r) -1~2 is integrable
on (0,1), this implies that § is bounded on [0, R*); and so, R* = 1 and § is
bounded on [0,1). Estimate (2.16) now implies that there exists K’ such that

which implies that § E C~([0,l]).
It also follows from (2.9) that cP’ &#x3E; 0 for r small. Suppose that cP’ has a

first zero ro E (0,1). It follows from (2.1 ) and (H3) that ~" ( ro ) &#x3E; 0, which
is absurd..

Remark 5. - If we now let r - 1 in (2.1~) we obtain

Thus we see that if = 0, then for n # 2, cjJ must be the constant
solution ~ = 0. Therefore for n # 2 there are no nontrivial solutions to
(2.1) with cjJ( 0) == = 0.
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LEMMA 2.6. - Suppose that f satisfies (H1-H3) and that there exists

03C30 &#x3E; 0 such that  0, with Cm as in (2.6). Then for k &#x3E; 0 large

enough there exists s* E (0, so ) such that if there exists a solution ~ to (2.1)
with = s*, then Bm = 0 and hence 03C6 is in 1]).

Proof - We need to show that the equation (s, k) = 0 has a solution
in s for k fixed and large enough. Notice that by (H3), 0 unless

ao = 0, which by virtue of Remark 5 leads to the trivial solution ~ - 0. 
A

long but straightforward calculation shows that C.,.,2, the coefficient of the

highest degree in p?-,-a,, has the following form

where the index set A is as follows:

We observe that for rx E A if ao = 0, then 0:2 = a3 = "’ = am = 0

as well, and thus 03B11 = m. Now because of this and (HI) we have that

&#x3E; 0. Hence for large enough k, &#x3E; 0.

Now suppose that there exists so &#x3E; 0 such that Cm(so)  0. Then for

large enough k, k)  0. Since pm is obviously continuous in s it

thus follows that for each large enough k there exists s* E (0, so) such that

k) == 0, and thus the boundary condition Q3m = 0 is satisfied, so

that by Lemma 2.4 the corresponding solution is in C~([0,1]). N

We now need to show that there exists a c &#x3E; 0 such that the solution

to (2.1)-(2.9) achieves ~( 1 ) = s* . This is done in the course of the following
four Lemmas. For notational convenience, we denote by ~~ the solution

of (2.1 )-(2.9).

LEMMA 2.7. - The mapping c ~ ~~ is continuous as a map of

[0,00) -4 C([0,l]).

Proof. - We proceed in three steps:

Step 1. - For every 0  E  1, the mapping c is continuous

from [0,oo) - C ( ~0,1 - 6]). This follows from a classical continuous
dependence argument applied to equation (2.10).

Step 2. - If cn -- c, then -- ~~ ( 1 ) : Let E &#x3E; 0. Since 

is an increasing function of r, we have &#x3E; and so

&#x3E; c~~ ( 1 - E), by Step 1. Since E was arbitrary, we
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obtain Therefore it remains to show that

lim ~~ ( 1 ) . To see this we argue by contradiction: Assume
that there exists 8 &#x3E; 0 and a subsequence, which we still denote 
such that &#x3E; + 8. Since is bounded, it follows easily
from (2.15) that there exists K independent of n such that 
and ~ (r)  K for ~ ~ r  1. Therefore, there exists M &#x3E; 0

independent of n such that ~c~(~) &#x3E; for r  1.

It follows that

if 1 - r is small enough. This contradicts Step 1.

Step 3. - Conclusion. We argue by contradiction. Suppose that there
exists a 8 &#x3E; 0 and a subsequence, still denoted by (cn)n2::0, and a sequence
(rn)n2::0 E [0, 1] such that 4 &#x3E; 8. It follows from Step 1

that rn --~ 1 as n -~ oo, and so -- ~~ ( 1 ) . Therefore, for n large
enough, we have øc(l)1 &#x3E; 8/2. Since ~(1). it

follows from Step 2 that ~c(l); and so, we have

~~ ( 1 ) - 8/2 for n large enough. Let now 0  E  1 and

let no be large enough so that r n 2: 1 - E for n &#x3E; no. It follows that

~)  and so, by Step 1, ~)  ~~ ( 1 ) - b f 4 for n

large enough. But this is absurd since ~~ ( 1 - E) -~ as E / 1..

Let / E R) verify assumption (H1-H3), and further assume that

/ is increasing on [0, oo) and that /  f on [0, oo). Given c &#x3E; 0, let us

denote by ~~ and ~c the solutions to (2.1 )-(2.9) corresponding to f and
f respectively.
LEMMA 2.8. - For every c &#x3E; 0, we have ~~  ~e.

Proof - Since  ~ f it follows that h  h where h is as in (2.11 ).
Therefore, since w = and w = are constructed by a contraction

mapping argument applied to equation (2.13), it follows that there exists

ro &#x3E; 0 such that ~  ~~ and ~~  ~~ on [0, ro]. Set now z = ~~-
We have z &#x3E; 0 and z’ &#x3E; 0 on [0, ro]. Furthermore,
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Setting

we obtain

and so, since z(ro) &#x3E; 0 and z’(ro) &#x3E; 0,

for r &#x3E; ro. This implies easily that z’ &#x3E; 0. Hence z &#x3E; 0 on [ro, 1] as

well..

LEMMA 2.9. - The mappings c ~ Øc and c ~ ø~ are increasing as maps
°. f ~0, °° ) -~ C([0,l]).

Proof - Let c’ &#x3E; c and set z = ~e~ - c~~ . We have z &#x3E; 0 and z’ &#x3E; 0
for small r, since z - ( c’ - c)r~ and z’ - ~(c’ - near r = 0. On
the other hand, we have

If there exists r such that z’(r)  0, then there exits r’ such that z(r’) &#x3E; 0,
z’(r’) = 0, and  0, which is ruled out by the above equation. It
follows that z’ &#x3E; 0 on (0,1] and thus z &#x3E; 0 on (0,1]. N

Finally, we have

LEMMA 2.10.

Proof. - We argue by contradiction: Assume (2.17) is false. Let
Let 6 &#x3E; 0 be fixed and small. From (2.16) we know

|’c(r)| ~ K|03B1|/1-r for r &#x3E; 8, so that |c(r) - c(1)| ~ A 1 - r
for r &#x3E; b with A independent of c. Also by Lemma 2.3, since
~(1) = kf (~~(1))/(n - 3), we have that ~~~.(r)~  B for r &#x3E; 6, with B
independent of c. These uniform bounds imply that a E C~((0,l]), and
that a solves the equation (2.1) in (0, 1). Since a’ &#x3E; 0, c~ is monotone and
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thus can be extended as a bounded continuous function to [0,1]. Hence by
Lemma 2.1, /(a(0)) = 0, which implies that

since we are assuming that f satisfies (H3). Now because of this and (2.9)
we have that

On the other hand, by Lemma 2.2, a is C1 near r = 0. Thus we obtain a
contradiction and the Lemma is be proved..

Let Pm be the homogeneous polynomial of degree m in m + 1 variables
defined as follows:

where are as in Proposition 1.

THEOREM 2.1. - Let f satis, fy (Hl -H3). l~ f

then for l positive and large enough equation (2.1) with k == + n - 2)
will have a solution 03C6 E C~([0, 1]) with

Furthermore, ~ will be monotone increasing on [0,1].

Proof. - The hypothesis of the theorem implies that Cm (s)  0, where

Cm is as in (2.6). By Lemma 2.6 for I large enough there exists a s* E (0, s)
such that a solution § with ~(1) = s * will be smooth in [0,1].
By (H2) we can assume that f(t) ~ 8t for all t ~ 0 and some 8 &#x3E; 0.

Then, there exists a function / E (R, (~~ satisfying (H 1- H3) such that
/ is increasing and /  f on [0,oo). By Lemma 2.10 there exists a c’

such that ~(1) &#x3E; s * , and thus by Lemma 2.8, &#x3E; s * , so that by
Lemma 2.7, there exists a 0  c  c’ such that = s * . .

We can now apply this result to wave maps:

THEOREM 2.2. - Let n &#x3E; 5 be an odd integer. If d is large enough, then the

equation (1.4) for a wave map from into Nd admits solutions which are

self-similar inside a null cone, provided the function f = gg’ satisfies (2.19).
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These solutions develop from smooth Cauchy data of compact support, and
suffer a gradient blow-up in finite time.

Proof. - The function f = gg’ satisfies (HI) and (H2) by assumption, and
if (2.19) holds for s = so, then we can change f for s &#x3E; so such that (H3) is
also satisfied. By Theorem 2.1 the resulting solution § to (2.1 ) is monotone
and stays below so, so that it will not be affected the modification.
With R as large as required by Lemma 2.6, let d = d(?~), and let

eo : S~’~ 2014~ Sd-1 be the eigenmap constructed in Remark 1. Let $
be the harmonic map of the hyperbolic space Hn into Nd defined by

= §(r)90(w). We then use this ~ to construct a self-similar wave
map as in §1.3. t

Notice that f is the derivative of a metric coefficient for the target
manifold N. It thus follows that in seven or more dimensions, the condition
on N for the existence of smooth solutions to (2.1 ) involves metric
derivatives of order 3 or higher, and thus is not a curvature condition.

Thus, in seven dimensions, we can find examples of negatively curved
targets that admit self-similar wave maps:

Proof of Theorem 1.2. - Let g~~~ _ u + 13 2 ~c3 - ~5, with b to be
determined later, and let N be the rotationally symmetric Riemannian
manifold whose metric is given by (1.1). Thus f ~u~ = 
u + 40b2~c3~3 + ... + 5u 9. If we set h ( u) : .- f(u) f"(u) + 2 f’~~~2, then
by Theorem 2.2 a sufficient condition for the existence of a self-similar
wave map from 1R7,1 into N is that  0 for some s &#x3E; 0 and that
d = dim N is large enough. Now g"(u) = 20u(b2 - u2) so that g"(b) = 0
and we can easily check that

so that h(b)  0 for .61  b  1.075. On the other hand, the metric on
N is of the form ( 1.1 ). If we let e 1 = ~ and e, - ~ for j = 2,..., d
and denote by K2~ the sectional curvature of the two-plane spanned by ei
and e j, then it is easy to compute that

Hence N has all its sectional curvatures everywhere negative provided
g"(u) &#x3E; 0 and !~(~)j I &#x3E; 1 for u &#x3E; 0. Both these conditions are obviously
satisfied for u  b - 8, where 8 is chosen sufficiently small such that
h(b - 8) is still negative. For u &#x3E; b - 8 we can easily modify g so that they
still hold. The self-similar solution constructed above will not be affected
by this modification since it remains below b - 8..
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2.4. The Nonconvex Case

Suppose now that the function f in (2.1) has a second zero, f(~*) = 0
with ~* &#x3E; 0, so that (H3) does not hold. For the Yang-Mills equation this
is the case with ~* = 1, and for wave maps this implies that the target N is
not geodesically convex. We present a variational argument similar to the
one in [13], for the existence of a smooth solution to (2.1) with ~(1) = ~.

Let

It is easy to check that (2.1) is the Euler-Lagrange equation for a stationary
point of this functional. Let

so that the measure of integration in ~~ can be denoted by dh. Let the
function space Xo be defined as the closure of

with respect to the same norm. For u E Xo we have

Now let

THEOREM 2.3. - Let E.~ be as in (2.21), with and g : ~ -- I~ a

smooth function with the following properties:
1. == 0, g’(0) == 1,

2. There exists ~ * &#x3E; 0 such that g’ ( ~* ~ = 0 and g’(s) &#x3E; 0 for 0  s C ~ *,
3. g"(~*) ~ O.

Let X* be as in (2.23). Then for l large enough such that

-4.~(.~ + n - 2)g(~* )g" (~* ) &#x3E; (n - 2)2 the variational problem
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has a smooth solution § such that

Proof - We begin by modifying g as follows: Let

We then extend 9 outside the interval [20142~ ~ 2~] as a periodic function with
period 4~. Let G(s) := 2g2(s) and let G* := We thus have that

1. Ge C2(1R),
2. 0  G  G*,
3. G(s) = G(2cP* + s) = G(2cp* - s) for all s E R.
The theorem is proved with g replaced by 9 in (2.21). We then prove

that the minimizer is contained in [0, ~*~, and therefore is not affected by
the modification.

We are going to show that EP is a Cl functional over X* which is

bounded below.

Let

Now let u, v E X*. We have

We have u - v E Xo and G’ ( v ) E Xo since G’(§*) = 0. Therefore, by
the above Lemma,

which establishes the continuity of Furthermore, for 03C8 E Xo,

establishing that E~ is Cl.
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To show that ~~ is bounded below, in (2.29). We then have
that for all u ~ X * and for E &#x3E; 0 small enough,

where we have used (2.22). On the other hand, we obviously have

so that putting all this together,

which shows that E~ is bounded below.

Let Eo be the infimum of Eg over X*, and let un be a minimizing
sequence. By (2.30) we have that ~n is a bounded sequence in and
thus we can extract a subsequence, also denoted by un such that

for some cjJ E X*. Let 8 E (0, 2 ~ be fixed. If we write in the

following form:

we see that the first term is a convex functional and hence is lower semi-
continuous with respect to weak convergence, while the second term is
positive and hence lower semi-continuous by Fatou’s lemma, and finally
the third term is continuous by the dominated convergence theorem since
for 8  r  1,

which is integrable with respect to dh, and We thus have

which implies that = Eo, i.e. the infimum is achieved and the

convergence is strong. ~ solves (2.1 ) in (0, 1 ) , and by (2.22) is certainly C~
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near r = 1, so that by Lemma 2.3 it belongs to C"~° 2 ((0, 1~), ~ra = (n-3)/2,
and boundary conditions 93 j = 0 are satisfied for j = 0, ... , m - 1. This
however, means that ~’(1) _ ~(1) == "’ = ~~~"~(1~ = 0 since we have
fo = = 0. It follows that 23m = 0 is automatically satisfied, and by
Lemma 2.4 (~ is C°° near r = 1. Moreover, (2.25) holds.
To prove (2.26), we use the following Lemma:

[0,1]  ~.
Then one can always construct a continuous function ~ that is monotone
nondecreasing, 0  ~  ~*, and  with equality holding iff

monotone.

Proof. - We use the symmetries of the (modified) function g: Since by
construction G(s) = G(2j03C6 ± s) for all j ~ Z, by successive reflections of
the graph of ~ across the lines ~ = ~~ we can rearrange ~ to lie between
0 and 4&#x3E;* without changing at all. Now suppose 03C8 is not monotone.
Let smax E [0,1) be a point where ’lj; has a local maximum, and let [a, b]
be the largest interval contained in [0,1) and containing smax such that
 ( a) and for s E [a, b] . We define the rearrangement
~ by setting ~(9) := for s E [a, b] and q3(s) :== otherwise. Since

g is increasing on [0, 4&#x3E;*] it is easy to see that  Repeating
this procedure we can eliminate all local maxima of 03C8 so that the final
rearrangement {; is monotone on (0, 1). M

Finally, we need to address the behavior of § near r = 0:

LEMMA 2.12. - Let ~ E X* be a minimizer of E~ with Ee(~~  0. Then

~(0~ = 0 and smooth near r = 0.

Proof. - By the previous Lemma, 0  ~  ~*, so that § is bounded
and thus by Lemma 2.1 we have f (~(0)) = 0, which means that either
~(0) = 0 or else ~(0) = ~~. But since § is monotone and ~(1) = ~~, the
latter case implies that 4&#x3E; == 4&#x3E;* on [0,1], which contradicts the assumption
Ep~~~  0. Hence ~(0) = 0 and therefore by Lemma 2.2, 4&#x3E; f"V cr~ for r
near 0..

Since Eg [§*] = 0, we prove that the minimizer 03C6 has negative energy by
taking a variation that decreases the energy of the constant map ~ = 4&#x3E;*.
First we need to show the following:

LEMMA 2.13.
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Proof. - Let 6 be the left hand side of the above. We first show that
6 &#x3E; ( ~ Z z ) 2: For all w E Xo we have

This is because

The boundary term vanishes since (1 - r)(n-1)/2 by (2.22), while
(1 - r)(n-3)/2. Moreover, by Holder’s inequality,

which establishes (2.31). Now let

We can easily compute that

which completes the proof..

LEMMA 2.14. - For l large enough, there exists a function ~ E Xo such that

for small enough E &#x3E; 0.

Proof. - The constant function ~,~ is a critical point of E~. We compute
the second variation of E~ at ~:
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with v := -~G~(~) = -.~~.~ + n - 2)~(~)~(~). Since by assumption,
g" ~ ~,~ ) ~ 0, we can take £ large enough so that v &#x3E; ( n 2 2 ) 2 . Then by the
previous Lemma, there must exist an 7J E Xo such that

i.e., the second variation is negative and hence E~ can be made negative..
Remark 6. - For the Yang-Mills equation ( 1.9) we have .~ = 2, so that

v = -(2~)(-1)(~) = n &#x3E; ( ~’ ~ 2 ) 2 only if n  7. Indeed, the above
argument shows that for n &#x3E; 8, the second variation at ~* is positive, so
that the constant map ~ ~ ~* is a minimizer for E,~.

This completes the proof of Theorem 2.3..
We can now apply this result to wave maps and Yang-Mills fields:

THEOREM 2.4. - Let g satisfy (1.11). For d large enough, equation { 1.4)
for a wave map U : -- Nd admits solutions which are self-similar
inside a null cone. Moreover, there exist Cauchy data which belong to HÎoc
for all s  n/2, such that the corresponding Cauchy problem has two
distinct solutions.

Proof. - Theorem 2.3 applies and produces a smooth function § that
solves (2.1 ) (with the original, unmodified f ), for 0  r  1. We can then
proceed as in the proof of Theorem 2.2 to construct a self-similar wave map.
Now § can be extended to r &#x3E; 1 as a smooth solution of (2.1 ). Let

Then § satisfies

so that by (1.3) we have that for large r,

Integrating this on (2, r) we get
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so that integrating once more, we obtain ~~r~  C, i.e., cjJ remains bounded
as r - oo. We can now use this information to rewrite (2.32) as:

so that upon integration we have

and thus we obtain the following asymptotic behavior for § as r - oo :

We prescribe the following Cauchy data for (1.6):

Let H be the ball of radius R centered at the origin in and let Dx denote
the pseudo-differential operator R". Thus

which shows that E for s  n/2. It is not hard to see

(cf. [13]) that u(t, p) = is a weak solution of the Cauchy problem
(1.6-2.34). This solution is in fact smooth everywhere except at the origin
of the spacetime and therefore is definitely in for all time.

One can also check that

is another weak solution to the same Cauchy problem (cf. [13]). This
solution is singular on the null cone r = t: Since pCj) (1) = 0 for

j  m = n’ 2 3 , it follows that if 9 denotes differentiation in a direction

transverse to the null cone, then has a jump discontinuity across
the cone, and thus u E for s  n~2. .
Remark 7. - Since ~(~ 0) == ~,~ ~ 0, the map U : M - N defined by

U(t, p, w) = in addition to being singular on the null cone, is
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also singular on the central line p = 0. It is easy to see that this singularity
is once again in Hs for s  n~2.
And now the analogous result for Yang-Mills fields:

THEOREM 2.5. - For n = 3, 5, 7, equation ( 1.9) admits solutions which

are self-similar inside a null cone. These solutions develop in finite time

from Cauchy data that are smooth and of compact support. Moreover, there

exist Cauchy data in with s  n /2 such that the corresponding Cauchy
problem for ( 1.9) has two distinct Hsloc solutions.

Proof. - Since here f is fixed to be 2, in order for Theorem 2.3 to apply
and give a smooth § that solves (2.1) in [0,1], we need to restrict n, as in
Remark 6. We then note that g( u) = u( 1- u /2) satisfies ( 1.3), and the rest
of the proof is the same as that of the previous theorem..

3. SINGULAR SOLUTIONS IN EVEN DIMENSIONS

We now consider a wave map U from the Minkowski space M = 

into a rotationally symmetric target N, where n &#x3E; 3 is odd. We introduce

cylindrical coordinates (t, r, z, w) on M as follows: For x E M, we let

With (u, 8) coordinates on N as before, the corotational Ansatz reads:

u = u(t, p, z), 9 = and u is a solution to

One obvious solution to the above which develops singularity in finite

time is to take u to be self-similar in (p, t) and independent of z, i.e.

~(~~) == where ~ is a solution to (2.1). This solution, however,
at time t = 0 will develop a singularity along a whole line, and in particular
will not be in H(n+l)/2-E at t = 0. This can be rectified by precomposing
the map with a Lorentz boost: For /3 &#x3E; 1 let L~ be the following Lorentz
transformation: L# : : M -- M,

We then let u == U o L~, i. e. ,
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Note that L~ is an isometry of M, and thus wave maps are invariant under
precomposition with Therefore (3.2) is a solution to (3.1). The effect
of the boost is to tilt the line of singularity of ~c so that it is no longer
contained in a time-slice, and thus (3.2) at each instant t is singular only
at one point: p = 0, z with the singularity developing at the speed
(3 &#x3E; 1. Such singular travelling waves have been used by Balabane [ 1 ], [2],
Lindblad [9], and Lindblad-Sogge [ 10] to obtain counterexamples to global
and local regularity results for nonlinear wave equations. In this section
we prove the following theorem about singular solutions of (3.1 ). Similar
results for the equivariant Yang-Mills equation follow easily.
THEOREM 3.1. - Let n &#x3E; 3 be an odd integer and let N be a rotationally

symmetric Riemannian manifold of large enough dimension d and with a
metric of the form ( 1.1 ) such that either ( 1.10-2.19) or ( 1.11 ~ is true. Then
the following hold:

( 1 ) Equation (3 .1 ) for a corotational wave map from into N

admits singular travelling wave solutions of the form (3.2).
(2) There exists a sequence (u(, ~1 ~ of smooth compactly supported

Cauchy data for (3.1 ) such that

for all s  n 21, while at the same time Tj -~ 0, where Tj is the

life-span of the corresponding smooth solution ~c3.

(3) If ( 1. I 1 ) holds, then there exists Cauchy data in with s  n 21
such that the corresponding Cauchy problem for (3.1 ) has two distinct

solutions.

Proof. - In order to have a Cauchy problem for (3.1 ) with initial data
which are smooth and of compact support, we need to use a cut-off function.
Let a &#x3E; 0 and ~3 &#x3E; 1 be fixed. Let

We prescribe Cauchy data at t == 0 which is supported in a ball centered at
xo :== (0,... ~ 0, 2014a) E Let ~ be a smooth solution to (2.1) provided
by Theorem 2.1 or Theorem 2.3 and let

where
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with

It is then clear that inside the following truncated past null cone

the solution to the Cauchy problem for (3 .1 ) with the above data is exactly
(3.2). The first singularity of this solution takes place at time t  T. This

proves the first statement in the theorem (See Figure 1).

Let := ~(1/~). Then by (2.27) and (2.33) we have

so that 1/1 E HS(IR) for all s &#x3E; 0. Let 03BE := 03B2t + z 03B22 - 103C1. Thus inside KR(xo)
the solution is u(t, p, z) = 03C8(03BE) and we have
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Let denote the ball of radius r centered at zo in It is not

hard to see that at time t, for /3 close to 1,

This shows that the solution remains in for s  Now, given such
an s, let s’ &#x3E; s be such that s’  By the Sobolev inequality,

Let p := ~~. By the "Leibnitz Rule" for fractional derivatives (cf. [ 11 ] ),
we then have

On the other hand,

so that finally

+ 1 - 2 s’ . If we now set a = (/3 - 1) ---r- we then have
C(/3 - 1)~ - 0 as ~3 - 1. At the same time T = J - 0,

proving the second statement in the theorem.

Finally, let x be as in (3.4), and let us have the following Cauchy data
for (3 .1 ):

Note that by Remark 7 the corresponding Cauchy data ( Uo, for (1 .4)
is in for s  ~ 21. Now, inside the cone an obvious solution
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to the Cauchy problem for (3.1 ) with the above data is u - ~. For t &#x3E; T

however, we also have another solution inside this cone, namely

where § is the solution to (2.1 ) provided by Theorem 2.3. By previous
remarks, ~ is also in and this proves the third statement in the

theorem..
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