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ABSTRACT. — We apply an earlier formulated program for quantization of
nonabelian gauge theories to one-flavour chromodynamics. This program
consists in a complete reformulation of the functional integral in terms of
gauge invariant quantities. For the model under consideration two types
of gauge invariants occur — quantities, which are bilinear in quarks and
antiquarks (mesons) and a matrix-valued covector field, which is bilinear
in quarks, antiquarks and their covariant derivatives. This covector field is
linear in the original gauge potential, and can be, therefore, considered as
the gauge potential “dressed” in a gauge invariant way with matter. Thus,
we get a complete bosonization of the theory. The strong interaction is
described by a highly non-linear effective action obtained after integrating
out quarks and gluons from the functional integral. All constructions are
done consequently on the quantum level, where quarks and antiquarks are
anticommuting objects. © Elsevier, Paris
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286 J. KDOWSKI, G. RUDOLPH AND M. RUDOLPH

RESUME. — Nous appliquons le programme de quantification des théories
de jauge non-abéliennes, formulé précédemment, 3 la chromodynamique
a une saveur. Ce programme conduit & une reformulation compléte de
I’intégrale fonctionnelle en terme de quantités invariantes par rapport aux
transformations de jauge. Dans le modele considéré, deux types de quantités
invariantes de jauge apparaissent: des fonctionnelles bilinéaires par rapport
aux champs de quarks et anti-quarks (mésons), ainsi qu’un champ de
covecteurs, a valeurs matricielles, bilinéaire par rapport aux champs de
quarks, anti-quarks et leurs dérivées covariantes. Ce champ de covecteurs
est linéaire par rapport au potentiel de jauge initial et peut donc étre
considéré comme un potentiel de jauge « habillé » d’une fagon covariante
avec des champs de matiére. L’interaction forte est décrite par une action
effective non-linéaire, obtenue par intégration par rapport aux champs de
quarks et de gluons dans I’intégrale fonctionnelle. Toutes les constructions
sont faites 2 un niveau quantique, avec des champs de quarks et anti-quarks
qui satisfont des relations d’anti-commutation. © Elsevier, Paris

1. INTRODUCTION

This paper is a continuation of [1] and [2]. In [1] we have proved that
the classical Dirac-Maxwell system can be reformulated in a spin-rotation
covariant way in terms of gauge invariant quantities and in [2] we have
shown that it is possible to perform similar constructions on the level of the
(formal) functional integral of Quantum Electrodynamics. As a result we
obtain a functional integral completely reformulated in terms of local gauge
invariant quantities, which differs essentially from the effective functional
integral obtained via the Faddeev-Popov procedure [3]. In particular, it
turns out that standard perturbation techniques, based upon a splitting
of the effective Lagrangian into a free part (Gaussian measure) and an
interaction part (proportional to the bare coupling constant e), are rather
not applicable to this functional integral. On the contrary, our formulation
seems to be rather well adapted to investigations of nonperturbative aspects
of QED, for a first contribution of this type see [4].

In this paper we show that our program can be also applied to a
nonabelian gauge theory, namely Quantum Chromodynamics with one
flavour. As in the case of QED, we end up with a description in terms
of a set (j°°, c k") of purely bosonic invariants, where j*° is built from
bilinear combinations of quarks and antiquarks (mesons) and c,x” is a
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BOSONS IN CHROMODYNAMICS 287

set of complex-valued vector bosons built from the gauge potential and
the quark fields. A naive counting of the degrees of freedom encoded
in these quantities yields the correct result: The field j9° is Hermitean
and carries, therefore, 16 degrees of freedom, whereas c,x” is complex-
valued and carries, therefore, 32 degrees of freedom. On the other hand,
the original configuration (A# AB,wj‘f,) carries 32 + 24 = 56 degrees of
freedom. Thus, exactly 8 gauge degrees of freedom have been removed.
The main difficulty in our construction comes, of course, from the fact
that the quark fields are Grassmann-algebra-valued. Ignoring this for a
moment, one can give a heuristic idea, how the invariant vector bosons
cux’ arise: They may be considered as built from the gauge potential
and the “phase” of the matter field, “gauged away” in a similar way as
within the unitary gauge fixing procedure for theories of nonabelian Higgs
type. (As a matter of fact, in our construction not only the “phase”, but
the whole matter field enters.) In reality, this simple-minded gauge fixing
philosophy cannot be applied to Grassmann-algebra-valued objects. Instead
of that one has to start (in some sense) with all invariants one can write
down. Next one finds identities relating these invariants, which however
— due to their Grassmann character — cannot be “solved” with respect to
the correct number of effective invariants. But we show that there exists a
scheme, which enables us to implement these identities under the functional
integral and to integrate out the original quarks and gauge bosons. This
is the main idea of the present paper. As a result we obtain a functional
integral in terms of the correct number of effective gauge invariant bosonic
quantities. Thus, our procedure consists in a certain reduction to a sector,
where we have mesons %, whose interaction is mediated by vector bosons
cux™ (see Conclusions).

We stress that our approach circumvents any gauge fixing procedure, see
[5]-[8]. The whole theory, including the pure Yang-Mills action is rewritten
in terms of invariants. An important property of the effective theory we
obtain is that it is highly non-linear. This is a consequence of integrating
out quarks and gluons. Thus, as in the case of QED, it is doubtful whether
perturbation techniques can be applied here. The natural next step will be
rather to develop a lattice approximation of QCD within this formulation.

Finally, we mention that our general program of reformulating gauge
theories in terms of invariants has been earlier applied to theories with
bosonic matter fields (Higgs models), both for the continuum case [9], [10]
and on the lattice [11].

The paper is organized as follows: In Section 2 we introduce basic
notations and define gauge invariant quantities, built from the gauge
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288 J. KJOWSKI, G. RUDOLPH AND M. RUDOLPH

potential and the (anticommuting) quark fields. Moreover, we prove some
algebraic identities relating these invariants. In Section 3 we derive basic
identities relating the Lagrangian with these invariants. Finally, in Section
4 we show how to implement the above mentioned identities under the
functional integral to obtain an effective functional integral in terms of
invariants. The paper is completed by a short section containing conclusions
and by two Appendices, where we give a review of spin tensor algebraic
tools used in this paper, and present some technical points skipped in the
text.

2. BASIC NOTATIONS AND GAUGE INVARIANTS

A field configuration of one-flavour chromodynamics consists of an
SU(3)-gauge potential (A, ,”) and a four-component colored quark field
(¥%), where A,B,....,J = 1,2,3 are color indices, a,b,... = 1,2,1,2
denote bispinor indices and g, v, ... = 0,1,2,3 spacetime indices.

Ordinary spinor indices are denoted by K, L, ... = 1, 2. The components
of (14 ) are anticommuting (Grassmann-algebra valued) quantities and build
up a Grassmann-algebra of (pointwise real) dimension 24.

The one-flavour chromodynamics Lagrangian is given by

L= Egauge + Lmat; (21)
with 1 B
Loauge = —gF,WABFWB : (2.2)

Lonat = =m PG Bur g8 43 — Im{¥3 Bu (1#)°, 9B (D,93)}, (2.3)

where 5
Fuv,® = 8,A,4% - 8,4,,% +ig[A,,A,],°, (2.4)
Dy = 0,9% +ig AuAB ¥p (2.5)
are the field strength and the covariant derivative. In contrast to standard
notation, the bar denotes in this paper complex conjugation, g® and 3,
denote the Hermitian metrics in color and bispinor space respectively and

(7”)1’C are the Dirac matrices (see Appendix A). The starting point for
formulating the quantum theory is the formal functional measure

F= /Hd¢ [1d% HdAeiS[A,w,J], (2:6)

S[A, ¢, ¢] = /d“wE[A,t/J,E] (2.7)

where
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denotes the physical action. Here, the integral over the anticommuting fields
v and 1 is understood in the sense of Berezin ([13], see also [14]- [16]). To
calculate the vacuum expectation value for some observable, i.e. a gauge
invariant function O[A,%,], one has to integrate this observable with
respect to the above measure. The main result of our paper consists in
reformulating the measure F in terms of effective, gauge invariant, degrees
of freedom of the theory (see discussion at the end of Section 4).

Let us define the following fundamental gauge invariant Grassmann-
algebra-valued quantities:

jab = -ﬁgAB ,‘p%, (2.8)

Cpbt = 9% g*B (Duply) — (D) g2 . (2.9)

Obviously, 7 is a Hermitian field of even (commuting) type (of rank 2
in the Grassmann-algebra):

T =45 g4 g = gl gABys = gl g iy = g, (2.10)

whereas the field Cl‘j" is anti-Hermitian:

ab ba
Cyb = —C’H . (2.11)
We denote
Jz = jabﬁacbdeda (212)

which is a scalar field of rank 4. Here we introduced

Butea = 5 e (1)

Moreover, for shortness of notation we define the following auxiliary
invariants

X% =4 Bpees Paa { T T TS + 2T 7% 4}
=4 jadjbejcf {Bbcef /Bad + 2,8bcde ﬁaf}, (213)

and
B;j" = 9% g8 (DY), (2.14)

Vol. 68, n® 3-1998.



290 J. KIIOWSKI, G. RUDOLPH AND M. RUDOLPH

which obey the identities

Byt — Bl = C1, (1.15)
B + B+ = 9,J" , (2.16)
and consequently
a 1 a a
B = 5 ((8,T°%) + C2), (2.17)
Nba 1 a a
Bbe = 5 ((8,T%) = C2). (2.18)

PrOPOSITION 1. — The following identities hold

XZ (Czb + (8ujab))
= —4(C? + (0T ")) Bes (T*T + 2 Bgnae T*1T™ T*)
—8(C% +(8,T)) Bes Bonae
x (Jhegefged 4 ged ght gee 4 ghd gee gef). (2.19)

Proof. — To prove these identities we make use of the following relations:

EABC 6DEF =gAD gBE gCF +gAE‘ gBF gCD _,__gAF gBD gCE

_ gAF ¢BE (CD _ JAE (BD (CF _ jAD (BF (CE (3 9()

GABC' EF :eABF gEC + 6BCF gEA + ECAF

g gFB. (2.21)

Using the symmetry properties of G4n4. (see Appendix A) we first calculate
X2 Be =x% g*B 5 (D,ap)
=4 Byhae Beg {TFTHATH + 27479 T} g%P 44 (D)
=4 Bonae Ber § gCF gD gHE 4 9 (OD(GEHF) (AB
X PG v 0E wh v v ¥A (Dut)

=92 ﬁghde ﬁcf {gCFgGDgHE + gCDgGEgHF + gCEgGFgHD

_ gCEgGDgHF _ gCFgGEgHD _ gCDgGFgHE} gAB
X P& Yh v Yl v 0% (Duh)
=2 Bynae Bo ECCH FPE gAB e bl pZ by ol 5 9% (Dubly)

Annales de I'Institut Henri Poincaré - Physique théorique
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=2 Bynde Bop ECH { (FDB gAE | [DEB jAF | EFB gAD}
x Pg vF V& VD U v5 U5 (Dutp)
=92 ,thde /Bcf {2€CGH EF'DB gAE + ECGH 6DEB gAF}
X P& vk & Vb Wl vE A (Duvh)
=2 Bynde Bes (2 gCF gGD gHB gAE

+ ZQCDgGBgHFgAE + 2gCBgGFgHDgAE

_ ngBgGDgHFgAE _ 2gCDgGFgHBgAE

_ 9 gCF yGBgHD jAE

+ gCDgGEgHBgAF + gCEgGBgHDgAF + gCBgGDgHEgAF

_ gCBgGEgHDgAF _ gCEgGDgHBgAF _ gCDgGBgHEg
X PG ¥k 9% vh vl vs ¥ (Duvp)

= — 4 Bynae Bey 2T ST T B +2 70T T BY
+2 jyfjhdjaeB;b + jcdj-gejafBLLb
+ jcejhdjafsz + jgdjhejafB;b}

= — 4B Bey (T T + 2 Bghae T4 T T*)
_ 8Bﬂb ,thde ,3cf (jhejcfjad + jcdjhfjae + jhdjcejaf)'

AF}

Finally, inserting (2.17) we get (2.19). O

Using the block representation of 7% and Cl‘jb (see Appendix A),
equation (2.19) leads to four equations, written down in terms of spinor
indices:

Cune™ QTN =ClE (65 3 X2 = QUI)¥ 1y ) = (0uTne™) QI

— (8, TMEY QUK yy + (8, TKY) x° (2.22)
O™ QU iexr =Cpars, (81 X2 = QUT)K™ ) = (OuTys) Q)™
~ (BT M) QT kext + (0uTic1) X* (2.23)
CuM™E Q(T)iexr =Cune™ (5™ X2 = QD)™ ) = (BuTn") Q)™
— (BT ™EY QT ) ks + (0T ™) X2 (2.24)
Cnais QUIYEM =C, M1 (5% 34 22 = QUIV ) = (BuTags) QIS
— BTN QN 4y + (8,T5 ;) X? (2.25)
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where

QI ™ =8( = T*TM +270° T M T, i + 2T 3 To™ T ©

+ JN(:)JOA'(JKM + T TN x TM

+2I"M 7T Txo) (2.27)
QU)X 3 =8 (=TT + 2T T TE©

+2J0°TN yT" 5 +277 MJO,-VJKO

+2 JoMjNOJ#N + jNNjoOJKM

+ 2\7NMJOOJKN

+ TN INCTH yy + 2 Tou InCTHN) (2.28)
QUM =8 (= T2 T M + 2,0 "M TR +2 7N  ToM TKO

+ TN T TN+ T T g TEM

+2T"MITC R Ts) (2.29)
Qs =8 (= T Ticar + 2jNNjoMJK? +270° T y T

+ ZJNMJONJKO + QJoMjNOJKN + jNNjOOJKM

+ 2T JoC Tk + To™ InC Tyens

+ 2 Tom InC T™). (2.30)

Later on, two of these equations will be used to eliminate half of the
C;jb-ﬁelds under the functional integral. One can show by a straightforward

calculation that all components of the 2 x 2-matrices Q(T) KM , QT )K A
Q(J)EM and Q(J )y do not vanish identically.
Finally, we note that

G = 2T A + (T @) ¥ O,

2.31
which can be seen by inserting the covariant derivative (2.5) into the
definition of C°.

3. THE LAGRANGIAN IN TERMS OF GAUGE INVARIANTS

To reformulate the Lagrangian (2.1) in terms of the gauge invariants
introduced above, we use the same ideas as in the case of QED (see [2]).

Annales de UInstitut Henri Poincaré - Physique théorique
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In particular, for the calculation of L gauge We have to find a nonvanishing
element of maximal rank in the underlying Grassmann-algebra.

LemMA 1. — The quantity (X 2)4 is a nonvanishing element of maximal
rank in the Grassmann-algebra.

The proof of this Lemma is technical and can be found in Appendix B.

Next, let us introduce the following auxiliary variables convenient for
further calculations:

VO = eABC 44 Y. (3.1)
Moreover, we denote 14® = gAB 4.
LeEmMA 2. — The following identity holds
X2 g8 = (7,)gn €N Py g PE D VIT {2 Bee (1) pat Pea (1) g
(3.2)
Proof. — To prove (3.2), we make use of (2.21) as well as VO = Vb
and the symmetry of Bgnde:
X2 gAB =4 Bynae Bop {TT T T + 270 T T} g*P
=4 /thde ﬂcf {gCFgGDgHE
+2gCOPgOEGHE Y gAB Y L g ol Pl v
:2ﬁghde ﬁcf {QCFgGDgHE

+gCDgGEgHF _I_gCEgGFgHD _ gCEgGDgHF

_ gCFgGEgHD _ gCDgGFgHE}

x P P vh V& Uh Vi v
=2 Bynde Bes ECH FPE g B e 1/’{* Egd’dp E‘P%
=2 Byhde ﬂcfECGH {EFDB gAF 4 ¢DEB gAF | (EFB gAD}
X Yo ¥f 0% ¥h Vi Ve
=(Vu)gh (7*)de Ber €7
x {2 FDB gAE + (PEB gAF}%¢§@¢%@¢%
=(1)gn €T G VG TG Bes (1) ae
x {2 yBfd W gAE 4y Bde 1/)5 gAF}
=m€ccﬂ @%@Wm v Bef

X {2 Bee (V") ga + Bea (7") ge}-

Vol. 68, n® 3-1998.
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ProposITION 2. — We have

1
(X2)4 ['gauge = g(G;w)ab (Gw)cd ebe ele (3-3)

with
2.X2
ig
4
+ E €ha ﬂcdefgb ﬂklmnop jcfjdgjknjlo

X {@uT ®) 04T ™) - Ci2 (8,yT™")
+ (0, T7) Ot - O O, (3.4)

(Guu)ab = €ha ﬂcdefgb ijjdg(a[qu]h)

where

ﬁabcdef =2 {ﬂabdeﬁcf +2 /Babefﬂcd
+ ﬁbcdeﬁaf + 2ﬂbcefﬁad + ﬁcadeﬂbf + 2Bcaefﬂbd}- (35)

Moreover, the matter Lagrangian L. takes the form

'Cmat =—-m ﬁab jab - % Im{ﬁab (ﬂ/ﬂ)bc (8ﬂjac) + ﬂab (’Y“)bc CZC}'
(3.6)

Proof. — To prove this Proposition we make use of identity (3.2):

(X*)* Lauge
- _ = (X2)4 F[LVABF”VBA7

(X2)? (Fy , X (P 52 27)

78 (X%)? (Fuvac 998 X2)(F* gp gP* X?)

O (Fuvc iy 97 T VTG
X VBab {2ﬂea (70)60 + :Bec (’yo)ba})
X (Fl (vs)ij €17 4% i gy P en

X VA2 Bu (7*)1a + Bra (V0)ix})-

Annales de I’Institut Henri Poincaré - Physique théorique
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A reordering of factors yields

1 —— a7 cm
(X*)* Lgauge =3 (X2 VAR (3g); €1 ) i ¥y Fuvac S, Vhwa) €
x (X2 VB (7)1 @FC YT YL GG F* 5o ¥y Veare) €

1 m v n
=: g (Guu)md € (G” )nc Ed P (37)
where we introduced
’ngcd i= 2 fBab (7)ca + Bad (1) eb-

It remains to calculate (G, )ma. Using
1
FuVAC¢Cb = E (D[uDu]d}ﬁl)v

we obtain

(Gun)ma =X2 VA (75)i eI ) bt b Fryac ¥5, Vhkid
1 T .
=% X2 VAR ()i €1 4 il (DpuDuph) (Thita) €am

2 — T a
:E x? ’72kld €am (’Yé)ij ’1’?{ "/JZL WI Py ’l/)]hf (D[uDu]'l.bA)

HKgILgJA HL IA_ JK +gHAgIKgJL}'

x {g +9""9"g

In the last step the definition of V¢ and the identity (2.20) were inserted.
Moreover, the antisymmetry in the color indices (I, J) and the symmetry
in the bispinor indices (4, j) were used. Changing the indices in each term
of the above sum separately, the last equation gives

2 '—.—_—_—
(GuuJma =3 X2 gHE gIL g7 A gk bt 9% b5 By (DD ¥s)
X {Voria (V6)ij + Vinea (¥6)sn + Wfkm (Y6)hi } €am

2 ey
ZE X2 Jhkal :7]gJA(D[pDu]"/)$) ﬁhijkld €am»

Vol. 68, n° 3-1998.
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where (34,114 is given by equat}on (3.5). With (2.14) and (3.2) we get
2 i —
(Guwyma =7 2% T T Dy (45 974(Duyy3))

- (D[u’ﬁg) QJA(Du]lbfZ)} Bhrijkid €am
2 ) .
=—X° jhkal(D uBL}) Brijrid €am

g

_ E'XQ g’4 T 7D Mbﬂ) (Du)¥%) Bhijkid €am

—E x? jth“(D[uB,’ﬁ) Bhijkid €am
2 ——_ ~7 e Jn

=g ()& PG v g v

X VAP L2 Bey (V") n + Ben (77 )po}

x J" T (D) (Du¥2) Brijktd €am

D) ‘ .
=% X2 T TN DB Brishia €am

2 kit e
+ 'ZZ jhkj leEFG EBCA ¢é ’l,b{,—\ ,"bz_} ¢$J3 ¢C
X B[T;J (DV]"/}Z) (70)f9 ﬂhijkld €am ’Ygopn
2 . .
=%§ X2 jhkal(D[uB;']l) Bhijkid €am

4: i - o f —— c
n - Tk Fil BB gFC (GA i LS

X B[T,llj (D)%) Bhijiia Befgben Eam,

and, finally,
2 . .
(Guv)pma =.— A2 Jhkjll(a wBL]) Bhijkid €am

+ jhkj”jebjfc B B ﬁhz]kld ﬂefgbcn €am- (3 8)

The last step cons1sts in the elimination of the auxiliary variables B“”
Inserting (2.17) and (2.18) into (3.8) and renaming some indices we get
(3.4). Together with (3.7) this completes the proof of (3.3).

To show (3.6) we simply insert the definition of 7** and B2 into Ly,q4:

‘Cmat = —mﬁﬂab gAB ¢bB - Im{ﬁﬂab (’Y”)bc gAB (D,uch)}
= —m fap T = Im{Ba (v*)°, B}

Annales de I'Institut Henri Poincaré - Physique théorique
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Using again (2.17) to eliminate ij”, we obtain equation (3.6). O

Remarks.

1. Formula (3.3) is an identity on the level of elements of maximal rank
in the underlying Grassmann-algebra. Since the space of elements
of maximal rank is one-dimensional, dividing by a non-vanishing
element of maximal rank is a well-defined operation giving a c-
number. Thus, knowing (X'?%)* Lgauge, We can reconstruct Lgqqge
uniquely just dividing by (AX'2)%. This means that Proposition 2 gives
us the Lagrangian in terms of invariants 7 and CZ”.

2. The additional algebraic identities (2.19), which are basic for getting
the correct number of degrees of freedom, cannot be “solved” on the
level of the algebra of Grassmann-algebra-valued invariants. However,
as will be shown in the next section, it is possible to implement
them under the functional integral. This enables us to eliminate half
the number of components of Czb. The result will be an effective
functional integral in terms of the correct number of degrees of
freedom, see also the Introduction for a discussion of this point.

4. THE FUNCTIONAL INTEGRAL

Now we start to reformulate the functional integral (2.6). For that purpose
we will use the following notion of the §-distribution on superspace

oo

A T

(w)U™, (4.1)

where u is a c-number variable and U a combination of Grassmann variables
% and v with rank smaller or equal to the maximal rank. Due to the
nilpotent character of U the above sum is finite. This §-distribution is a
special example of a vector-space-valued distribution in the sense of [17].
From the above definition we have immediately

= /5(u - U)du. (4.2)

One easily shows the following

LeMMA 3. — For an arbitrary smooth function f we have

f(w)é(u—U) = f(U)6(u - V). (4.3)

Vol. 68, n° 3-1998.
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The above observation leads to a techmque which frequently will be used
in this section:

/f(a)é(u—U)du=/ ( gg";)é( —U)b6(u— @) duda

- /f(%g)) 5(u— U)8(U — @) dudi. (4.4)

Here, o denotes any c-number or Grassmann-algebra valued quantity and
g(u) is an arbitrary smooth function of u, such that the rank of a g(U) is
smaller or equal to the maximal rank of the underlying Grassmann-algebra.

Now we introduce new, independent fields (j,c) associated with the
invariants (7, Cﬁb) in a sense, which will become clear in what
follows. Both fields j and ¢ are by definition bosonic and gauge-invariant;
j = () is a (c-number-valued) Hermitean spin tensor field of second rank
and ¢ = (¢2’) is a (c-number-valued) anti-Hermitean spin-tensor-valued
covector field. We call (4, ¢) c-number mates of (J,C).

As mentioned earlier, equations (2.22)-(2.25) can be used to substitute
half the number of components of the covector field CZ*’. We choose
C#KL as independent variables. Thus (2.24) and (2.25) can be used to
eliminate all components in the diagonal blocks of C’;" (see Appendix A).
In the subspace of our bispinorspace, which corresponds to the elements
of the off-diagonal blocks of the field Czb, we choose the following basis
elements e,, p = 1...8:

0010 000 1 00 0 0
1o oo o0 0000]| 0010
“1=1p 00 0o 27000 0 5=10 0 0 0
0000 000 0 0000
0000 0000
000 1 0000
“4=1p0 00 0] %7100 0 (4.5)
0000 0000
000 0 0000 00 0 0
~lo o0 o0 o0 o000 _fooo0o0
=10 10 0| ““ oo o0 o0 8= 10 0 0 0
000 0 1000 0100
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A basis in the color space is given by the Gell-Mann-matrices ¢n, where
a=1...8

0 0 1 0 0 — 0 0 0
ta2=10 0 O ts=10 0 O te=10 0 1 (4.6)
1 0 0 i 0 0 01 0
0 0 O 1 1 0 O
t=|0 0 -2 ts=—|(0 1 O
0 2z O V3 0 0 -2
Moreover, we denote
2 _ -ad :be ;cf
X = 4] J ) {ﬁbcef 6ad + 2ﬁbcde /Baf}v (47)
j2 = jab /Bacbd dea (48)

-\ O 2 a sC a4 C o
M(5), =4g2{§y pJa+275%7 b}(ep)ab (e”).?, (4.9)

Q)™ =8 (—%ix™ + 250 NMJKN+2J ~nJjo jKO

+2]OM NO]KN+2JONJNM O+2] N.]

ik 433 NJK +21NMJONJKO) (4.10)

QU)X yy =8 (5255 3y + 23" iomd™® + 250%™ wi® &

+ 25 y1dond®C + 2ionri O x + inN o xy

+25nwrdoC 5N + G0N inCi% yp + 250xin O;KNY (4.11)
Q(j)KM —8( 32 KM+2]OO NM KN+2] NjOMJKO

+2] MNO KN+2]ON.7NM KO+2] JOM]KO

+3N o NJKM+JO Al KM+2]NM]ONj o) (4.12)
Q) kar =8(~ J]KM+2.7 NJoaIx +2Jo J MJKN

+25" MJONJK +2JOMJ Cjn +IinYi0%ikm

+ 255 rdo ik + 50N inCiknr + 2donin k™). (4.13)
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PROPOSITION 3. — The functional integral F in terms of the gauge invariant
set (j,c) is given by

F= / [ ds de K[j]e*SUel, (4.14)

with the integral kernel

. 6 O3)?
KUl =13 3ami0), 77057

b1babrb babsbgbyy bgbgbgb
X €cycacrero €caesegerr Ecseacocrs € 10407010 (020508011 b3bebobi2

12
X {H goer 3j?,br } 5(;) (4.15)

r=1

and
Slj,c] = / d*z L[5, c]. (4.16)

The effective Lagrangian Llj,c] is given by

[’[Ja ] 4(Guu)ab (G V)cd Ebc eda - mﬁabjab

8(x?)
_élm{ﬁab(v")bc(a )+ B () i}, (417)
where

2 2
(GHV)Gb =_Zg_ €ha ﬂcdefgb] of dy(a[uci]h)

4
+ Z‘; €ha 5cdefgb ﬁklmnop ] f]dgj i jto

X {(a[njep)(ar/]jmh) - c[e,f (au]jmh)
+ (3ug?) et - cp ety (4.18)

Moreover, among the quantities c“b only the c, k™ (and their complex
conjugate c,* i = cux™) are lndependent The remaining quantities, c LK
and c,LK L, have to be eliminated in (4.17) due to the Jollowing identities:

Curci, =QU) ™) ear {5 x° = QUM )eu™ 1 — Budng) QUMY

—(0ud™ ) QU™ + (3™ 1) %} (4.19)
P =@M X = QU eun™ = (9uin") QUM ™
= (0u3"™) QUi)ar + (Buire™) x}. (4.20)
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Proof. — Using (4.2) we can rewrite (2.6) as follows:

F= / [Ty [ do [] dAeistaw
% /dedca(j—J) §(c - C). (4.21)

Using Proposition 2, the first Remark after Proposition 2 and Lemma 3, we
get under the functional integral £ = L[j, c].
In a next step we integrate out the components in the diagonal blocks

of the covector field c"b We have

6(c—C)

= I ot -co)

w=1..4
a,b=1,2,i,2

IT ™ - Cux®ybe,*; - 0,5,
K50
X 8, = Cugp) 8(en™t — €50 (4.22)

Using identities (2.24) and (2.25), together with (4.4), we get

H 8(Curs — Cuxt) 5(CMKL_C#KL)
H 8(eurci = (QU) ™) e Q) VMC,pst)

L;"

X 6(c, X = (Q(U) AN Q) 1y O M)
H (i = (QU) ™ rnQI)YMC,111)

ey QU™ N QI u €M) |
= H 6(C[I,KL - (Q(j)—l)KN{(‘SNM x?— Q(j)NM)OuM

pu=1...4
K,L=1,2

= OuTagi) QI)™ = (BT ¥ 1) QI + (8,77 1) 47}
X 8(c,™ P = (QU) KN {(6x™ X2 = Q(T) ™) Cpns
= BuIa") QUIINY = (0.TME) Q(T) iy + (BT )X?})
= H §(CMKL Q)™ )KN{(5NMX —Q(J)NM) u

KL 12
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= (Buirei) Q™ —,(aujMa Q(j)NM + (8, 1) Y

X 8(eu ™t = (QU) TN X - QUIN")Cune”

- (aujML) Q(J)NM - (8uj )Q(J)NM + (Ouin )X2})
I 8uxe = (@ ™rend (6% w x* = QU y)en™

= i) Q™ = (2,3™ 1) Q)Y s + (0,5~ 1) X*D)

X 8(c,™" = Q)T M(6xM X = QU epar”

= (uinr®) QUIN™ = (05™) QUi st + (D) X*))-

In the last step we used the first two é-functions of (4.22) to substitute
CHM ; and C,LM by its corresponding c-number quantities. (Q(5)™") g5
and (Q(j)~H)XN denote the inverse of the 2 x 2-matrices Q(j)NX and
Q(J) v - respectively, and x?2 is given by (4.7). Now we can perform the
integration over c,;; and c,*, which yields

F:/Hw HdTbHdA/dea(j-J)
X/ H dcuKdeukL 6(C”KL —CuKL)

p=1...4
K,L=1,2

x 6(c,; — €K ;) ei Sl (4.24)

where S[j,c] = S[j, c#KL,cuKL-]
In a next step we integrate out the gauge potential A” 4. Observe,
that Au 4~ enters F only under the §-distributions &§(c,x’ — HKL ) and

6(c,®; C’“KL) Using (2.31), we get
}'=/Hd1/) ITd% H dA,m/de(S(j—J)

/ II Ay 8(up = Vo Ay — Fupth,F)) ¢ 50, (4.24)

where . , c :
V" 1= 2ig Y4 g8 e (ep)a (t%)B (4.25)

is a non-singular 8 X 8-matrix, and

Fuo(,B) = (¥5 678 (0u408) + Vo8 978 (8,95)) (e,)a’s  (4.26)
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which is a function of 4 and % only. Inserting 1 = [ Ha 1s dy,® 0(y,* —
Y,%), where y,* is the c-number mate associated with )J,, , under the
functional integral we have

5(C,up - ypaApa - fup('d)vw))
= 6(Cup - ypﬂyaﬁ(y—l)ag Aua - fﬂp("p’;p_))
= b(cup — ypﬁyaﬂ(y_l)aa Ao — fup("/’aa))'

Here (y~')®, denotes the inverse of the y*,,. A simple calculation shows,
that

V" V7s = ~4g° U g*B e (e,)a” (t9)5° 05 9PF par (7). (t5)"
= 4¢? {g ¥ g ¥ 9PF Yup
- 29598 Yop 3 gPF ¢dB} (ep)a’ (€7)c"
_ g2 { 2Tt Jam} (ep)a (7).
=MJ),”

where we have used the following property of the Gell-Mann-matrices:
gy _C F 2. ccF Fg¢ C
(t )B (tg)E = —553 bg" +26p" bg . (427)

A long, but straightforward calculation shows that M (7),” is a non-
singular 8 x 8-matrix. Thus we obtain

(C/_Lp ypaAua fup(’l/hzl;))
= (S(CM, - (J)pa(y—l)ao Aua - fup('ﬁba;;))
= 5(C“p - M(j)pa(y_l)a,, Aua - fup("/)aa))

Now, performing the transformation
Ay =M3G)," (™%, Apa,s (4.28)

the functional integral (4.24) takes the form

F = /Hdszmp II d4.,

p=1..4
p=1..8
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x/deé(j—J)/ IT dv" 6™ =25

X / H deyp 6(cup — Aup - f/w(z/)’a))

x (det[M(5), (y~1),]) L e Sl

= [Tlaw 147 T] ads [Tlaist-9)

></ IT v 6t~ -2,
X / H dCM, 6(C;Lp - A;Lp - fHP(d)?E))

1 o
X —— det oa e’S[J’C].
dopa (), el

Now we can trivially integrate out flup and the auxiliary field y,*. We get
]-':/qu/; [1ET /deé(j -J)

___i__ o is[j,c]
X/lL“%memﬁmum .

p=1...8

It remains to calculate det[)?,]. A very long but straightforward calculation
shows, that (72)?det[)?,] is a nonvanishing element of maximal rank.
Thus — due to Lemma 1 — there exists a nonzero real number a such that

(T?)%det[Y7q) = a (XH)™ (4.29)

Inserting — due to (4.4) — an additional factor [ []dj 6(j — j) under the
functional integral we can write

2)2

det[y7.] = U ()" (X" (430

(72)? (72)2 (72

Now we can integrate out the auxiliary quantity 7 and obtain
F= / [Tav [ dv
. . (x®)* Sl
X djdeé(j — T e Sl
J TMie866 =9 gy ey
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where x2 and ;2 are given by (4.7) and (4.8), respectively. The number
a has to be absorbed in the (global) normalization factor, which — any
way — is omitted here.

The remaining gauge dependent fields ¢ and % occur only in the §-
distributions. To integrate them out we use the integral representation (4.1),
i.e. we insert

5(j— ) = / [T dhexpl2mi Mg (57 — %)

. ab 12 (27!‘2)“
:/Hd/\e%”’\alﬂa Z———~n' (_)\abjab)n.

n=0

Observe that nonvanishing contributions will come from terms which are
of order 12 both in % and . We get

c (XQ) i S[j,c]
F= /Hd’”n‘“ﬁ/H‘”d BoTM (), TG
< de iy (qyiz BT (5 ey
)12 (X2)4

= [TTd;d 5t
/H J ot 12! det[M(j),,"](P)2e
12
« [Tave T
=1

N 12
X /Hmp [Ide [T 7"
=1

Now we can integrate out ¢ and ¢ using equation (B.9). Replacing the
factors A, by corresponding derivatives ﬁa—b yields

fz/dech[j]eiS[j’c] /Hd)\eQ"i’\j,

where

L 64 (X2)4
KUl =131 deint (3,777

b1bsbrb babsbgb b3bgbob
X €cycacrero Ecacsescrs €cscacocts € 10407010 (020508011 030609012

X ﬁﬂaTCT 9 /Hd/\ e27ri>\j
r=1 8jarbr .
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With
J T e = s)

we can perform the integration over A, which finally proves the Propo-
sition. |

5. CONCLUSIONS

In this paper we have formulated the functional integral measure (2.6)
of one-flavour chromodynamics in terms of gauge invariant quantities. To
calculate the vacuum expectation value for some observable, one has to
integrate this observable, i.e. a gauge invariant function O[A, ), ], with
respect to the above measure. With the tools given in the last sections we
see, that this function can be written down in the form O = O[C%*, 7 ].
Our method of changing variables used in the proof of Proposition 2 works
in the same way for vacuum expectation values of observables of this
type, yielding an additional factor O[c‘:f’, §°%]. This shows that, indeed, we
are dealing with a reduced theory: vacuum expectation values of baryons
(trilinear combinations of quarks) can — in general — not be calculated using
the above functional integral. Only certain combinations, namely — roughly
speaking — such, which are expressable in terms of the j-field, may be
treated this way. This is due to the fact that there exist certain identities
relating bilinear combinations of quarks and antiquarks at one hand and
trilinear combinations of quarks and their complex conjugates on the other
hand. A detailed analysis of such relations can be found in [12].

A. Spinorial structures

Since we are going to work with multilinear (and not only bilinear)
expressions in spinor fields, the ordinary matrix notation is not sufficient for
our purposes. Therefore, we will have to use a consequent tensorial calculus
in bispinor space. For those, who are not familiar with this language we
give a short review of its basic notions. A bispinor will be represented by:

1

a_ ¢K) _ | 4
vt= (cpk e | (A1)
©5

where ¢ is a Weyl spinor belonging to the spinor space S = C?, carrying
the fundamental representation of SL(2,C). Besides S we have to consider
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the spaces S*, S and S*, where * denotes the algebraic dual and bar
denotes the complex conjugate. All these spaces are isomorphic to S, but
carry different representations of SL(2, C). In S* acts the dual (equivalent to
the fundamental) representation and in S acts the conjugate (not equivalent)
representation of SL(2,C). The space S is equipped with an SL(2,C)-
invariant, skew-symmetric bilinear form ex . Since it is non-degenerate, it
gives an isomorphism between S and S*:

S 3 (¢%) — (¢1) = (¢" exr) € 5™ (A.2)

There is also a canonical anti-isomorphism between S and S given by
complex conjugation:

§3 (¢%) = (¢F) = (§F) € S. (A.3)

Finally, the conjugate bilinear form €;; gives an isomorphism between
S and S*:

53 (%) = (pp) = (9" i) € 5™ (A-4)
To summarize, we have the following commuting diagram:

s — S

| | (A.5)

S* — 5%

Formula (A.1) means that a bispinor is an element of S := § x S*, carrying
the product of the fundamental and the dual to the conjugate representation
of SL(2,C). We also consider the complex conjugate bispinor

(Ei

_ 7L 73

V= (‘?L) - 21 ' (4.6)
P2

belonging to the conjugate space S = S x S*. The tensor product of e,
and —eXL defines a skew symmetric bilinear form €,; on S, which in turn
gives an isomorphism between S and S*:

S35 W) = () = (V" €ar) € S*, (A7)
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with

€KL 0
€ap = . (A.8)

0 KL

We choose the minus sign in the lower block, because lowering the bispinor
ipdex 7 a = (1 K,| K) according to (A.7) means lowering K and rising
K. But rising an index needs —e, because we have

€xi M = —5KM. (A.9)

The natural algebraic duality between S and § = S x §* = §* X S defines
a Hermitian bilinear form (3,5 given by

By Bavh(e) = o) Pk + PIK d(s)- (A.10)

Thus,

ﬁab = (A'll)

51&' L 0

(We stress that a and b are different indices: | a = (| K ,1 K) is a
conjugate index corresponding to Sand | b= (] L, L) is an index from
S.) The relations between spin tensors and space time objects are given by
the Dirac y-matrices, which we use in the chiral representation

with
0 ot
L A.12
¥ (M 0 ) ) (A12)

o' = —eo"e= (1,—0%). (A.13)
In index notation we have
o* = (0" i), (A.14)
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and )

o = (amMN),
with
~uMN _ _ MK—pg— LN _ MK NL -p _
o =€ T otgpe =€ € 0, =€

Finally, we get
0 O'“LK

(7H)ab = )

Ko
KL 0

MK NL _pu .
€ O-LK

309

(A.15)

— O'MNJM.

(A.16)

(A.17)

where 1a = (1 K, K) and | b= (| L,1 L) After pulling down the first

index by the help of €,., where | ¢ = (] M,T M), we get

0 O"L]"M

(7#)cb = (7”)111, €ac =

O.uIML 0

which is a symmetric bilinear form, because

Yy Ve Ylzy = ) M 0o + Py oM L Ba)-

The complex conjugate quantity is given by

o,
0 ot

We also use the following spin tensor
1—
/Babcd = i(vu)ab ('Y,u)cd-

Vol. 68, n° 3-1998.
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Obviously, this tensor is symmetric in the first and in the second pair
of indices seperately. We see from (A.19) and (A.20) that it vanishes,
whenever a and b or ¢ and d are of the same type (both dotted or both
undotted). Thus, the only nonvanishing components are

Bty = Brin™ = g My = g M = —M i 6Ey. (A22)

Finally, observe that second rank spin tensors have a natural block structure.
In particular, for the invariants considered in this paper we get:

KL K,
J* I
J® = , (A.23)
j I\"L j KL
where JKL, 7, xi» J K i and Jgx® are Hermitean 2 x 2-matrices.
Analogously,
KL K
CKL | ¢,
Ceb = (A.24)
v L
Cul\' CuKL'

B. Calculation of (X?)*

Obviously (X?)* is an element of maximal rank in the Grassmann-

algebra, that is

@) =c[Jv ¥

(B.1)

To prove that it is nonzero it remains to calculate the number ¢ € C and to
show, that ¢ # 0. From (B.1) it follows by integration that

c= /(X2)4 [T dv J]d?.

Using the definition of X? we have

(B.2)

4
(X2)4 = H 4 (ja‘rdrjbrerjcrfr + 2jarfrjbrdrjcrer)5brcrerfrﬁard,-

r=1
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Inserting this into (B.2) we can decompose ¢ into a sum

with

C1

C2

C3

Cq

Cs

Vol. 68, n°

c=c+ca+c3+cy+cs, (B3)

4
=44 /H jardrjbrerjcrfrﬂbrcrerfr ,Ba,rdr H dTp Hdzz

:-(W 64 (4' 344 H(ﬂbrcrerfr 6‘% Igarzr ,Bbrgr I@Crk )

X €irigjaks €izgijaks €igjokiky €
4 g4 yridiky prisgake rrisjsks yriajaka

=674 U€1f1d1 U ez fadz U e3 fads U €4 fady

edi1daes fs edze1eafs Ed352f1f4, (B4)

didses f> ed2e1eafs €d3€2f1f4

X €iyigjaks €igjyjaks €igjzkika

4
=24 44 / H ja'frjbrdrjcrerﬂbrcrerfr ﬂa,‘dr Hd¢ Hd"/_}

_pdod 44 21.7'1’61 1252k z3.73"73 tajaky
=6"2"4 Ulfldl Uezfzdz e3 fads U54f4d4

. didsesfo daereqfs _dzesfif.
X €iriggsks €izgyjaks €igjakiky € 20 gl gfaealn 4 (B5)

=24 C1,

3
<8 [T 5003 e

r=1

X ja4f4jb4d4jc4e4 ﬁb4c4e4f4 ﬂa4d4 Hd¢ Hd'l/;

—g493 g4 7rirgiky lzjzkz i3J3ks yriajaks
=6"2"4 U€1f1d1 ez fada U€3f3d3 U€4f4d4

d e d d d
X Eivigjoka €izjrjaks Eiajakiky €713 ¢herdafs eacafie (g

2
:22 44 6 /H jardrjbrerjcrfrﬂbrc,«erfr Iga,dr

r=1

2
X /H J“stjbsdajcsesﬂbscsesfs Ba,a, Hd¢ Hdl/_i

_pd o2 44 t1j1k1 yrisjake yriziaks prisjaks
=624 6U€1f1d1 Uezfzdz Ueafsds U64f4d4

d; fad doeyd
X €iyiggaky €ingyjaks €igjokiky € tfads fo eherdacs €f362f164v (B7)

3
5 |l rJr rdy rer
=2 44/ ..7“ fjb d jc € ;Bb,\crerfr /Bardr
=1

x ja4d4jb4e4jc4f4ﬂb404e4f4 ﬁa4d4 Hd'(/) Hdd;

—64 95 44 [rtdrky prizizks yrisjsks prisjaks

=624 Uelfldl Uezf2d2 U83f3d3 U€4f4d4
dyd d d

X €iyigjaks €izj1jaks Cizjokyky efidadac efdieaes e 2elf4’ (BS)

3-1998.
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where
ik
;}d ﬂbcef ﬂad ﬂaz ﬂb] ﬂCk

Here we made use of the following equation
12
/Hd%b [Jdw [J 7o
1 . r=1
= m H gertr 20: €loyloyloglog Elog. log €log... L.,

d d d 3oy dog...d

X €1 71 € 78 €

dag...dalz, (Bg)

where the sum is taken over all permutations. To prove this formula we
observe, that both sides do not vanish, if and only if every spinor index
occurs exactly three times in the multi-indices (c,) and (d,.). Furthermore,
both sides are symmetric with respect to every simultaneous transposition
of two pairs of indices, e.g. (¢,,d,) and (cs, d;). Therefore, the indices c,
may be ordered on both sides. After having done this, the above formula
can be checked by inspection.

To prove (B.4)-(B.8) we note that only such terms give a nonvanishing
contribution, for which all indices within every e-tensor are different. The
number of such permutations is 6*(4!)% and it is easy to see that all of
them give the same contribution. Therefore, we can replace the sum over all
permutations by a concrete representation multiplied by the number 6* (4!)3.

The next step is to perform the sum over all indices in (B.4), (B.5), (B.6),
(B.7) and (B.8). A lengthy but simple tensorial calculation gives

¢ =44642732 = 219 36,
cp =4%6424 2732 = 923 36
cy =44 64232433 = 21937
cs =44642323335 = 218375
cs —446%959433 — 92137
Taking the sum we get
c=12'%3%79.
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