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ABSTRACT. - We apply an earlier formulated program for quantization of
nonabelian gauge theories to one-flavour chromodynamics. This program
consists in a complete reformulation of the functional integral in terms of

gauge invariant quantities. For the model under consideration two types
of gauge invariants occur - quantities, which are bilinear in quarks and
antiquarks (mesons) and a matrix-valued covector field, which is bilinear
in quarks, antiquarks and their covariant derivatives. This covector field is
linear in the original gauge potential, and can be, therefore, considered as
the gauge potential "dressed" in a gauge invariant way with matter. Thus,
we get a complete bosonization of the theory. The strong interaction is

described by a highly non-linear effective action obtained after integrating
out quarks and gluons from the functional integral. All constructions are
done consequently on the quantum level, where quarks and antiquarks are
anticommuting objects. © Elsevier, Paris

Key words: Quantum chromodynamics, gauge invariants, bosonization, functional integral,
Grassmann algebra.
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RESUME. - Nous appliquons le programme de quantification des theories
de jauge non-abeliennes, formule precedemment, a la chromodynamique
a une saveur. Ce programme conduit a une reformulation complete de
l’intégrale fonctionnelle en terme de quantites invariantes par rapport aux
transformations de jauge. Dans le modele considere, deux types de quantites
invariantes de jauge apparaissent: des fonctionnelles bilineaires par rapport
aux champs de quarks et anti-quarks (mesons), ainsi qu’un champ de
covecteurs, a valeurs matricielles, bilineaire par rapport aux champs de
quarks, anti-quarks et leurs derivees covariantes. Ce champ de covecteurs
est lineaire par rapport au potentiel de jauge initial et peut donc etre

considere comme un potentiel de jauge « habille » d’une fagon covariante
avec des champs de matiere. L’interaction forte est décrite par une action
effective non-lineaire, obtenue par integration par rapport aux champs de
quarks et de gluons dans Fintegrale fonctionnelle. Toutes les constructions
sont faites a un niveau quantique, avec des champs de quarks et anti-quarks
qui satisfont des relations d’ anti-commutation. @ Elsevier, Paris

1. INTRODUCTION

This paper is a continuation of [ 1 ] and [2]. In [ 1 ] we have proved that
the classical Dirac-Maxwell system can be reformulated in a spin-rotation
covariant way in terms of gauge invariant quantities and in [2] we have
shown that it is possible to perform similar constructions on the level of the
(formal) functional integral of Quantum Electrodynamics. As a result we
obtain a functional integral completely reformulated in terms of local gauge
invariant quantities, which differs essentially from the effective functional
integral obtained via the Faddeev-Popov procedure [3]. In particular, it

turns out that standard perturbation techniques, based upon a splitting
of the effective Lagrangian into a free part (Gaussian measure) and an
interaction part (proportional to the bare coupling constant e), are rather
not applicable to this functional integral. On the contrary, our formulation
seems to be rather well adapted to investigations of nonperturbative aspects
of QED, for a first contribution of this type see [4].

In this paper we show that our program can be also applied to a

nonabelian gauge theory, namely Quantum Chromodynamics with one
flavour. As in the case of QED, we end up with a description in terms
of a of purely bosonic invariants, where jab is built from
bilinear combinations of quarks and antiquarks (mesons) and is a
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287BOSONS IN CHROMODYNAMICS

set of complex-valued vector bosons built from the gauge potential and
the quark fields. A naive counting of the degrees of freedom encoded
in these quantities yields the correct result: The field jab is Hermitean

and carries, therefore, 16 degrees of freedom, whereas is complex-
valued and carries, therefore, 32 degrees of freedom. On the other hand,
the original configuration carries 32 + 24 = 56 degrees of
freedom. Thus, exactly 8 gauge degrees of freedom have been removed.
The main difficulty in our construction comes, of course, from the fact
that the quark fields are Grassmann-algebra-valued. Ignoring this for a

moment, one can give a heuristic idea, how the invariant vector bosons

c~K ~ arise: They may be considered as built from the gauge potential
and the "phase" of the matter field, "gauged away" in a similar way as
within the unitary gauge fixing procedure for theories of nonabelian Higgs
type. (As a matter of fact, in our construction not only the "phase", but
the whole matter field enters.) In reality, this simple-minded gauge fixing
philosophy cannot be applied to Grassmann-algebra-valued objects. Instead
of that one has to start (in some sense) with all invariants one can write
down. Next one finds identities relating these invariants, which however
- due to their Grassmann character - cannot be "solved" with respect to
the correct number of effective invariants. But we show that there exists a

scheme, which enables us to implement these identities under the functional
integral and to integrate out the original quarks and gauge bosons. This
is the main idea of the present paper. As a result we obtain a functional

integral in terms of the correct number of effective gauge invariant bosonic
quantities. Thus, our procedure consists in a certain reduction to a sector,
where we have mesons whose interaction is mediated by vector bosons
Cl-tKL (see Conclusions).
We stress that our approach circumvents any gauge fixing procedure, see

[5]-[8]. The whole theory, including the pure Yang-Mills action is rewritten
in terms of invariants. An important property of the effective theory we
obtain is that it is highly non-linear. This is a consequence of integrating
out quarks and gluons. Thus, as in the case of QED, it is doubtful whether
perturbation techniques can be applied here. The natural next step will be
rather to develop a lattice approximation of QCD within this formulation.

Finally, we mention that our general program of reformulating gauge
theories in terms of invariants has been earlier applied to theories with
bosonic matter fields (Higgs models), both for the continuum case [9], [10]
and on the lattice [ 11 ] .

The paper is organized as follows: In Section 2 we introduce basic
notations and define gauge invariant quantities, built from the gauge
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potential and the (anticommuting) quark fields. Moreover, we prove some
algebraic identities relating these invariants. In Section 3 we derive basic
identities relating the Lagrangian with these invariants. Finally, in Section
4 we show how to implement the above mentioned identities under the
functional integral to obtain an effective functional integral in terms of
invariants. The paper is completed by a short section containing conclusions
and by two Appendices, where we give a review of spin tensor algebraic
tools used in this paper, and present some technical points skipped in the
text.

2. BASIC NOTATIONS AND GAUGE INVARIANTS

A field configuration of one-flavour chromodynamics consists of an
SU(3)-gauge potential (AJLA B) and a four-component colored quark field
(~), where A , B , ... , J = 1,2,3 are color indices, a, b, ... = 1 , 2 , i,:2
denote bispinor indices and J-l, v,... = 0,1, 2, 3 spacetime indices.

Ordinary spinor indices are denoted by K, L,... = 1, 2. The components
of are anticommuting (Grassmann-algebra valued) quantities and build
up a Grassmann-algebra of (pointwise real) dimension 24.
The one-flavour chromodynamics Lagrangian is given by

with

where

are the field strength and the covariant derivative. In contrast to standard
notation, the bar denotes in this paper complex conjugation, gAB and /3ab
denote the Hermitian metrics in color and bispinor space respectively and

are the Dirac matrices (see Appendix A). The starting point for
formulating the quantum theory is the formal functional measure

where
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denotes the physical action. Here, the integral over the anticommuting fields
03C8 and 03C8 is understood in the sense of Berezin ([13], see also [14]- [16]). To
calculate the vacuum expectation value for some observable, i. e. a gauge
invariant function O[A, one has to integrate this observable with
respect to the above measure. The main result of our paper consists in

reformulating the measure .~’ in terms of effective, gauge invariant, degrees
of freedom of the theory (see discussion at the end of Section 4).

Let us define the following fundamental gauge invariant Grassmann-
algebra-valued quantities:

Obviously, Jab is a Hermitian field of even (commuting) type (of rank 2
in the Grassmann-algebra):

whereas the field C~b is anti-Hermitian:

We denote

which is a scalar field of rank 4. Here we introduced

Moreover, for shortness of notation we define the following auxiliary
invariants

and

Vol. 68, n° 3-1998.
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which obey the identities

and consequently

PROPOSITION 1. - The following identities hold

Proof. - To prove these identities we make use of the following relations:

Using the symmetry properties of (see Appendix A) we first calculate

Annales de l’Institut Henri Poincaré - Physique théorique
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Finally, inserting (2.17) we get (2.19). D

Using the block representation of and Cb (see Appendix A),
equation (2.19) leads to four equations, written down in terms of spinor
indices:
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where

Later on, two of these equations will be used to eliminate half of the

Cab -fields under the functional integral. One can show by a straightforward
calculation that all components of the 2 x 2-matrices nT,

and do not vanish identically.
Finally, we note that

which can be seen by inserting the covariant derivative (2.5) into the

definition of 

3. THE LAGRANGIAN IN TERMS OF GAUGE INVARIANTS

To reformulate the Lagrangian (2.1 ) in terms of the gauge invariants
introduced above, we use the same ideas as in the case of QED (see [2]).
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In particular, for the calculation of we have to find a nonvanishing
element of maximal rank in the underlying Grassmann-algebra.

LEMMA 1. - The quantity (X2)4 is a nonvanishing element of maximal
rank in the Grassmann-algebra.
The proof of this Lemma is technical and can be found in Appendix B.

Next, let us introduce the following auxiliary variables convenient for
further calculations:

Moreover, we denote gAB 
LEMMA 2. - The following identity holds

Proof. - To prove (3.2), we make use of (2.21) as well as = YCba
and the symmetry of {3ghde:

Vol. 68, n° 3-1998.
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PROPOSITION 2. - We have

with

where

Moreover, the matter Lagrangian Lmat takes the form

Proof. - To prove this Proposition we make use of identity (3.2):

Annales de l’Institut Henri Poincaré - Physique théorique
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A reordering of factors yields

where we introduced

It remains to calculate Using

we obtain

In the last step the definition of YCab and the identity (2.20) were inserted.

Moreover, the antisymmetry in the color indices (1, J) and the symmetry
in the bispinor indices (zj) were used. Changing the indices in each term
of the above sum separately, the last equation gives

Vol. 68,n° 3-1998.
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where 03B2hijkld is given by equation (3.5). With (2.14) and (3.2) we get

and, finally,

The last step consists in the elimination of the auxiliary variables Bb.
Inserting (2.17) and (2.18) into (3.8) and renaming some indices we get
(3.4). Together with (3.7) this completes the proof of (3.3).
To show (3.6) we simply insert the definition of Jab and Bb into £mat:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Using again (2.17) to eliminate Bb, we obtain equation (3.6). 0

Remarks.

1. Formula (3.3) is an identity on the level of elements of maximal rank
in the underlying Grassmann-algebra. Since the space of elements
of maximal rank is one-dimensional, dividing by a non-vanishing
element of maximal rank is a well-defined operation giving a c-

number. Thus, knowing (x2)4 we can reconstruct 

uniquely just dividing by (X2)4. This means that Proposition 2 gives
us the Lagrangian in terms of invariants Jab and 

2. The additional algebraic identities (2.19), which are basic for getting
the correct number of degrees of freedom, cannot be "solved" on the
level of the algebra of Grassmann-algebra-valued invariants. However,
as will be shown in the next section, it is possible to implement
them under the functional integral. This enables us to eliminate half
the number of components of Cb. The result will be an effective
functional integral in terms of the correct number of degrees of
freedom, see also the Introduction for a discussion of this point.

4. THE FUNCTIONAL INTEGRAL

Now we start to reformulate the functional integral (2.6). For that purpose
we will use the following notion of the ð-distribution on superspace

where u is a c-number variable and U a combination of Grassmann variables

~ and ~ with rank smaller or equal to the maximal rank. Due to the
nilpotent character of U the above sum is finite. This ð-distribution is a

special example of a vector-space-valued distribution in the sense of [17].
From the above definition we have immediately

One easily shows the following
LEMMA 3. - For an arbitrary smooth function f we have
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The above observation leads to a technique, which frequently will be used
in this section:

Here, a denotes any c-number or Grassmann-algebra valued quantity and
g(u) is an arbitrary smooth function of u, such that the rank of a g( U) is

smaller or equal to the maximal rank of the underlying Grassmann-algebra.
Now we introduce new, independent fields ( j, c) associated with the

invariants in a sense, which will become clear in what

follows. Both fields j and c are by definition bosonic and gauge-invariant;
j = is a (c-number-valued) Hermitean spin tensor field of second rank
and c = (c~b) is a (c-number-valued) anti-Hermitean spin-tensor-valued
covector field. We call (j, c) c-number mates of (J, C).
As mentioned earlier, equations (2.22)-(2.25) can be used to substitute

half the number of components of the covector field We choose

as independent variables. Thus (2.24) and (2.25) can be used to
eliminate all components in the diagonal blocks of Cb (see Appendix A).
In the subspace of our bispinorspace, which corresponds to the elements
of the off-diagonal blocks of the field we choose the following basis
elements e p, p = 1... 8:
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A basis in the color space is given by the Gell-Mann-matrices to:, where
a=1...8:

Moreover, we denote

Vol. 68, n° 3-1998.
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PROPOSITION 3. - The functional integral .~’ in terms of the gauge invariant
set (j, c) is given by

with the integral kernel

and

The effective Lagrangian c~ is given by

where

Moreover, among the quantities c~b only the (and their complex
conjugate = are independent. The remaining quantities, 
and c~~L, have to be eliminated in (4.17) due to the following identities:
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Proof. - Using (4.2) we can rewrite (2.6) as follows:

Using Proposition 2, the first Remark after Proposition 2 and Lemma 3, we
get under the functional integral £ = £[j, c].

In a next step we integrate out the components in the diagonal blocks
of the covector field We have

Using identities (2.24) and (2.25), together with (4.4), we get

Vol. 68, n° 3-1998.
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In the last step we used the first two 6-functions of (4.22) to substitute
by its corresponding c-number quantities. (Q(~)"~)~~

and denote the inverse of the 2 x 2-matrices and

respectively, and x2 is given by (4.7). Now we can perform the
integration over c KL and cJ-L k L, which yields

where S[j, c] - 
In a next step we integrate out the gauge potential Observe,

that AJLAB enters ~’ only under the 8-distributions and

Using (2.31), we get

where

is a non-singular 8 x 8 -matrix, and
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which is a function of 03C8 and 7f only. Inserting 1 ~  03A0 03B1=1...8 
where is the c-number mate associated with under the

functional integral we have

Here ~~-1 ) a ~ denotes the inverse of the A simple calculation shows,
that

where we have used the following property of the Gell-Mann-matrices:

A long, but straightforward calculation shows that a non-

singular 8 x 8 -matrix. Thus we obtain

Now, performing the transformation

the functional integral (4.24) takes the form

Vol. 68, n° 3-1998.
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Now we can trivially integrate out and the auxiliary field ~~. We get

It remains to calculate A very long but straightforward calculation
shows, that (,72)2 is a nonvanishing element of maximal rank.
Thus - due to Lemma 1 - there exists a nonzero real number a such that

Inserting - due to (4.4) - an additional factor j 6 ( j - j ) under the
functional integral we can write

Now we can integrate out the auxiliary quantity j and obtain
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where x2 and j2 are given by (4.7) and (4.8), respectively. The number
a has to be absorbed in the (global) normalization factor, which - any
way - is omitted here.

The remaining gauge dependent fields 03C8 and 03C8 occur only in the 8-

distributions. To integrate them out we use the integral representation (4.1 ),
i.e. we insert

Observe that nonvanishing contributions will come from terms which are
of order 12 both in 03C8 and We get

Now we can integrate out 03C8 and 03C8 using equation (B.9). Replacing the
factors 03BBab by corresponding derivatives + yields

where

Vol. 68, n° 3-1998.
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With

we can perform the integration over A, which finally proves the Propo-
sition. D

5. CONCLUSIONS

In this paper we have formulated the functional integral measure (2.6)
of one-flavour chromodynamics in terms of gauge invariant quantities. To
calculate the vacuum expectation value for some observable, one has to
integrate this observable, i. e. a gauge invariant function O[A, with

respect to the above measure. With the tools given in the last sections we
see, that this function can be written down in the form 0 = 

Our method of changing variables used in the proof of Proposition 2 works
in the same way for vacuum expectation values of observables of this
type, yielding an additional factor 0[c~,j~]. This shows that, indeed, we
are dealing with a reduced theory: vacuum expectation values of baryons
(trilinear combinations of quarks) can - in general - not be calculated using
the above functional integral. Only certain combinations, namely - roughly
speaking - such, which are expressable in terms of the j-field, may be
treated this way. This is due to the fact that there exist certain identities

relating bilinear combinations of quarks and antiquarks at one hand and
trilinear combinations of quarks and their complex conjugates on the other
hand. A detailed analysis of such relations can be found in [12].

A. Spinorial structures

Since we are going to work with multilinear (and not only bilinear)
expressions in spinor fields, the ordinary matrix notation is not sufficient for
our purposes. Therefore, we will have to use a consequent tensorial calculus
in bispinor space. For those, who are not familiar with this language we

give a short review of its basic notions. A bispinor will be represented by:

where ~~ is a Weyl spinor belonging to the spinor space S --i- (:2, carrying
the fundamental representation of 8£(2, C) . Besides S we have to consider
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the spaces 5~ Sand S~ where * denotes the algebraic dual and bar
denotes the complex conjugate. All these spaces are isomorphic to S, but
carry different representations of 9L(2, C). In S * acts the dual (equivalent to
the fundamental) representation and in S acts the conjugate (not equivalent)
representation of SL(2, C). The space S is equipped with an 8£(2, C)-
invariant, skew-symmetric bilinear form Since it is non-degenerate, it

gives an isomorphism between S and S*:

There is also a canonical anti-isomorphism between S and S given by
complex conjugation:

Finally, the conjugate bilinear form gives an isomorphism between
S and S*:

To summarize, we have the following commuting diagram:

Formula (A.I) means that a bispinor is an element of S = S x ?*, carrying
the product of the fundamental and the dual to the conjugate representation
of 6~(2, C). We also consider the complex conjugate bispinor

belonging to the conjugate space S = ~’ x S*. The tensor product of 
defines a skew symmetric bilinear form Eab on S, which in turn

gives an isomorphism between S and S*:

Vol. 68, n° 3-1998.
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with

We choose the minus sign in the lower block, because lowering the bispinor

index i a = (i X, i K) according to (A.7) means lowering K and rising
.~. But rising an index needs -E, because we have

The natural algebraic duality between Sand S = S x 5~~ S* x S defines

a Hermitian bilinear form given by .

Thus,

(We stress that a and b are different indices: 1 a 
= (l k, i K) is a

conjugate index corresponding to S and ~ b 
= (1 L, ~ L) is an index from

S.) The relations between spin tensors and space time objects 
are given by

the Dirac 03B3-matrices, which we use in the chiral representation

with
/ - 1 ,..,,, ’B.

In index notation we have
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and

with

Finally, we get

where i a = (i K, 1 K) and ~ b == (1 After pulling down the first
index by the help of Eac, where ~. c = (1 M, i M), we get

which is a symmetric bilinear form, because

The complex conjugate quantity is given by

We also use the following spin tensor

Vol. 68,n° 3-1998.
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Obviously, this tensor is symmetric in the first and in the second pair
of indices seperately. We see from (A.19) and (A.20) that it vanishes,
whenever a and b or c and d are of the same type (both dotted or both
undotted). Thus, the only nonvanishing components are

Finally, observe that second rank spin tensors have a natural block structure.
In particular, for the invariants considered in this paper we get:

. r ,

where ,7~~, and are Hermitean 2 x 2-matrices.

Analogously,

B. Calculation of (X2)4
Obviously (X2)4 is an element of maximal rank in the Grassmann-

algebra, that is

To prove that it is nonzero it remains to calculate the number c E C and to

show, that c ~ 0. From (B.1) it follows by integration that

Using the definition of X2 we have

Annales de l’Institut Henri Poincaré - Physique théorique
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Inserting this into (B.2) we can decompose c into a sum

with

Vol. 68, n° 3-1998.
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where

Here we made use of the following equation

where the sum is taken over all permutations. To prove this formula we
observe, that both sides do not vanish, if and only if every spinor index
occurs exactly three times in the multi-indices (cr) and (dr ) . Furthermore,
both sides are symmetric with respect to every simultaneous transposition
of two pairs of indices, e.g. (cr, dr) and (cs, ds). Therefore, the indices cr
may be ordered on both sides. After having done this, the above formula
can be checked by inspection.
To prove (B.4)-(B.8) we note that only such terms give a nonvanishing

contribution, for which all indices within every E-tensor are different. The
number of such permutations is 64 (4!)3 and it is easy to see that all of
them give the same contribution. Therefore, we can replace the sum over all
permutations by a concrete representation multiplied by the number 64 (4!)~.
The next step is to perform the sum over all indices in (B.4), (B.5), (B.6),

(B.7) and (B.8). A lengthy but simple tensorial calculation gives

Taking the sum we get
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