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ABSTRACT. - We prove the existence of some asymptotic observables
for N-body Stark Hamiltonians, and study their spectral properties, in

particular, their relation to the spectrum of the Hamiltonian H. @ Elsevier,
Paris
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RESUME. - Nous prouvons 1’ existence de quelques observables

asymptotiques pour le hamiltonien de Stark a N-corps, et etudions leurs
caracteres spectraux, surtout leur relation avec le spectre hamiltonien H.
(c) Elsevier, Paris

1. INTRODUCTION

In this paper, we study some asymptotic observables for N-body Stark
Hamiltonians.

We consider a system of N particles moving in a given constant electric
field £ E Rd, ~ ~ 0. Let and rj E Rd, 1  j  N, denote the mass,
charge and position vector of the j-th particle, respectively. The N particles
under consideration are supposed to interact with one another through the
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248 T. ADACHI

pair potentials rk), 1  j~  1~  N. Then the total Hamiltonian
for such a system is described by

where £ . ?7 = Rd and the interaction V is given as
the sum of the pair potentials

As usual, we consider the Hamiltonian H in the center-of-mass frame.
We introduce the metric (r, f) = Tj for r = (ri,..., ,rN) and
f = (~1, ... , E We use the notation Irl ‘ = (r, r~ 1~2. Let X
and Xcm be the configuration spaces equipped with the metric (" .), which
are defined by

These two subspaces are mutually orthogonal. We denote by 7r : RdxN ---~
X and - Xcm the orthogonal projections onto X and

Xem, respectively. For r E we write x = prr and 

respectively. Let E E X and Ecm ~ Xcm be defined by

respectively. Then the total Hamiltonian fl is decomposed into 7J =
H 0 I d + I d 0 Tern’ where Id is the identity operator, H is defined by

Tern denotes the free Hamiltonian Tern acting
on and A (resp. Acm) is the Laplace-Beltrami operator on X
(resp. Xcm). We assume that lEI # 0. This is equivalent to saying that

ek/mk for at least one pair (j, k). Then H is called an N-body
Stark Hamiltonian in the center-of-mass frame.

Annales de l’lnstitut Henri Poincaré - Physique théorique



249N-BODY STARK HAMILTONIANS

A non-empty subset of the set {1,...,TV} is called a cluster. Let Cy,
1  ~ ~ be clusters. If = {1,..., X ~ and Cj n Ck = 0 for
1  j  l~  m, a = ~ Cl , ... , is called a cluster decomposition. We
denote by #(a) the number of clusters in a. We denote by A the set of
cluster decompositions. We let a, b E A. If b is obtained as a refinement of
a, that is, if each cluster in b is a subset of a cluster in a, we say b C a,
and its negation is denoted by b ct a. We note that a C a is regarded as a
refinement of a itself. If, in particular, b is a strict refinement of a, that is, if
b C a and b # a, this relation is denoted by b ç a. We denote by a = ( j, k)
the (N - 1)-cluster decomposition {(~ ~), (1),..., (3) , ..., (k) , ..., (N)~.
Next we define the two subspaces xa and Xa of X as

We note that X a is the configuration space for the relative position of j-th
and k-th particles. Hence we can write = These spaces
are mutually orthogonal and span the total space X Xa, so that
L2 ~X ~ is decomposed as the tensor product L2(X) = L2(xa) (g) 
We also denote by 7r" : X - X a and ~r~ : X - X~ the orthogonal
projections onto xa and Xa, respectively, and write xa = and

x a = 03C003B1 x for a generic point x E X . The intercluster interaction Ia
is defined by

and the cluster Hamiltonian

governs the motion of the system broken into non-interacting clusters of
particles. Let Ea = 7r" E and 7r~ E. Then the operator Ha acting
on L2(X) is decomposed into

where H°‘ is the subsystem Hamiltonian defined by

Vol. 68, n° 3-1998.



250 T. ADACHI

Ta is the free Hamiltonian defined by

and 0394a (resp. is the Laplace-Beltrami operator on Xa (resp. By
choosing the coordinates system of X, which is denoted by x = 
appropriately, we can write A" = and A~ = (~a f ~, where
V = 8xa = ~~c~x~‘ and = 8xa = ~~c~~a are the gradients on X ~
and Xa, respectively. We note that we denote by xa (resp. xa) a vector
in X~ (resp. Xa ) as well as the coordinates system of X~ (resp. Xa ). We
write p = pa = and pa = 

We now state the precise assumption on the pair potentials. Let c be
a maximal element of the set {a E A I E" = 0} with respect to the
relation c . As is easily seen, such a cluster decomposition uniquely exists
and it follows that Ea = 0 if Q C c, and E" # 0 if Q ~ c. Thus
the potential Va with Q ct c (resp. Q C c) describes the pair interaction
between two particles with (resp. = If, in

particular, ek/mk for any j ~ k, then c becomes the N-cluster
decomposition. We make different assumptions on Va according as Q ~ c
or a C c. We assume that E is a real-valued function

and has the decay property

We should note that we may allow that the potentials have some local
singularities, in particular, Coulomb singularities if d &#x3E; 3 (see [HMS1D.
But, for the simplicity of the argument below, we do not deal with the
singularities. Under this assumption, all the Hamiltonians defined above

are essentially self-adjoint on Co . We denote their closures by the same
notations. Throughout the whole exposition, the notations c, p’, p and 
are used with the meanings described above. We make some remarks about
potentials. For (resp. 0  p’  1), Va is called a short-range
(resp. long-range) potential. For ex ~ c, if p &#x3E; 1/2 (resp. 0  p ~ 1/2),
Vo, is called a short-range (resp. long-range) potential. If we consider

the problem of the asymptotic completeness for long-range N-body Stark
Hamiltonians, we should study the Dollard-type (resp. Graf-type) modified
wave operators under the assumptions (V.I) and (V.2) (resp. (V.I) and
(V.3)) (cf. [Al], [ATI-2], [Gr2], [JO], [JY], [HMS2] and [Wl-2]).

Annales de l’lnstitut Henri Poincaré - Physique théorique



251N-BODY STARK HAMILTONIANS

We assume that a ~ c. Then the subsystem Hamiltonian Ha does not
have the Stark effect, that is, E~ = 0. Hence it may have bound states in

We denote by the pure point spectrum of and define

Ta = UbCa We note that {0}
if ~ ( a ~ _ N. We also denote the direction of E by w = and write

z = ~~, cv~. We should note that z = ~~a, c,v~ because of w~ = 0. We set

XII E XII and = x - xII E and write 1faX-L.

Then we can write xa = We also write £a = (~~al, for the

coordinates dual to x~) and denote by pa = (pa,l, p~)
the corresponding velocity operator. If we write all I = we see that

pll = -i~~ and = Let Ica be the intercluster interaction
obtained from H~ :

For N-body long-range scattering, some asymptotic observables are very
useful for showing the asymptotic completeness for the systems without
the Stark effect. In particular, the asymptotic energy has been used by
Enss [E], Sigal-Soffer [SS 1-2], Derezinski [D2] and Gerard [G], and the
asymptotic velocity has been used by Enss [E], Derezinski [Dl-2] and
Zielinski [Z]. Especially, Derezinski [D2] studied the spectral properties
of the asymptotic energy and the asymptotic velocity, too. We concern

ourselves with the asymptotic observables for N-body Stark Hamiltonians.
We now formulate the results obtained in this paper. We use the following

convention for smooth cut-off functions F with 0  F  1, which is often
used throughout the discussion below. For sufficiently small 6 &#x3E; 0, we
define

and F(di  s ~ d2) = F(s &#x3E;  ~2). The choice of 8 &#x3E; 0 does
not matter to the argument below, but we sometimes write Fs for F when
we want to clarify the dependence on 8 &#x3E; 0. ~..

THEOREM 1.1. - Suppose that V satisfies (V.I), and (V.2) or (V.3).
Let f E being the space of continuous functions on X

Vol. 68, n° 3-1998.
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vanishing at infcnity. Then the following strong limits exist:

This result implies that IIlp - o(ltl) and ~|x -
as t - ±~ for 1/; E D, where D is some

appropriate dense set of (see [Gr2] for the two-body case). This
fact was pointed out by [A2] in the term of propagation estimates. In
particular, (1.2) implies that the particles asymptotically concentrate in any
conical neighborhood of E, and this fact has played an important role
for the proof of the asymptotic completeness for long-range N-body Stark
Hamiltonians given by [Al], [ATI-2] and [HMS2]. Theorem 1.1 can be
proved by the results of [A2]. The following theorem is a refinement of
the above properties.

THEOREM 1.2. - Suppose that V satisfies (V 1), and (V.2) or (V.3). Let
fi E 12 E 91 E and y2 E Coo(Xc)’ Then the
following strong limits exist:

( 1.5) (resp. ( 1.7)) equals ( 1.6) (resp. ( 1.8)). Moreover, there exists a

unique vector in X1 (resp. XC) of commuting self-adjoint operators 
(resp. P~’~ (H)) such that (1.3) (resp. (1.4)) equals (resp.
f 2 (Pe’~ ~H) )~. Pi (H) and commute with H.

Annales de l’lnstitut Henri Poucare - Physique théorique



253N-BODY STARK HAMILTONIANS

This result implies that  C03C8
 as t - ±~ for some positive constants C,

and C~. In particular, we should note that the asymptotic velocity Pf(H)
perpendicular to the vector E exists and commutes with H. Here we

may construct the asymptotic observables by following the argument of
Derezinski [Dl-2]: Denoting (1.3) by for any open set e C X1,
we define

Clearly, Ee are orthogonal projections that satisfy

for any open sets 0i and 02 . As usual, we may extend the definition of
Ee to arbitrary Borel subsets 8 C We obtain a map

defined for every Borel subset 8 C X1 that satisfies the following
conditions:

( 1 ) Ee is an orthogonal projection,
(2) ~=0,
(3) if e = en and for j ~ k we have ej n 0398k = 0, then

(4) E03981 E03982 = E03981~03982.
Since, as usual, for any Borel function g on we may define the

integral

we may construct the asymptotic velocity pt (H) as

The notion of the asymptotic velocity is very useful for showing the
asymptotic completeness for N-body long-range scattering without the Stark
effect, and, in fact, J.Derezinski [D2] constructed the asymptotic velocity

Vol. 68, n° 3-1998.
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and used it to prove the problem. Also, he showed some properties of it, in
particular, the relation between the asymptotic energy and it. He also showed
the existence of the asymptotic "intercluster momentum" for

the time-dependent Hamiltonian == -ð./2 + + W(t, x),
which is defined by

for g E where is the propagator generated by
He studied the relation between the asymptotic velocity and the

asymptotic "intercluster momentum". The property that (1.5) (resp. (1.7))
equals ( 1.6) (resp. ( 1.8)) is an analogue of his results. However, both for N-
body Schrodinger operators and for N-body Stark Hamiltonians, we have
not known the existence of the asymptotic "innercluster momentum" yet:
For example, in the case of N-body Schrodinger operators, the asymptotic
"innercluster momentum" should be defined by

for g E Thus we here consider the asymptotic velocity and
"intercluster momentum" only.
Of course, in the way similar to the above one, we may construct the

asymptotic velocity parallel to E by virtue of Theorem 1.2. But
it is easily seen that cannot commute with H since E ~ 0.
Then we need some alternative asymptotic observables for H to study the

spectral properties of H in terms of the asymptotic observables for H.
Now we consider some asymptotic energy for H. The following result is
an analogue of Derezinski’s result for N-body Stark Hamiltonians, but we
have to require that V satisfies (V. 1), and (V.2) with p &#x3E; 1/2 or (V.3).

THEOREM 1.3. - Suppose that V satisfies ~Y 1), and (V.2) with p &#x3E; 1 /2
or (V.3). Let h E (R). Then there exist the following strong limits:

where Tjj == p§ /2 - )E[z. Moreover, there exists a unique self-adjoint
operator T±~ (resp. T/ ) such that (1.9) (resp. (1 .10)) equals h(Tj/) (resp.
h(T))). P/(H) (resp. Pc,±(H)), T±~ (resp. T/) and H are mutually

Annales de l’Institut Henri Poincaré - Physique théorique



255N-BODY STARK HAMILTONIANS

commutative. They have the following properties:

where

In §4, we will state a result analogous to this result under the assumption
that V satisfies (Vl) and (V.2) with 0  p  1/2.
The idea of the proofs of Theorems 1.2 and 1.3 is as follows: The key

fact used in order to prove Theorems 1.2 and 1.3 is Theorem 3.3 (see §3.).
This theorem is also the key fact for proving the asymptotic completeness
for N-body Stark Hamiltonians in [AT2]. It implies that we can replace the
propagator e-itH generated by the full Hamiltonian H by the propagator
Uc( t) generated by the appropriate time-dependent Hamiltonian Hc( t). Then
we may change the original problem into the one in the frame accelerated by
E (the moving frame). Consequently, we have only to study the asymptotic
observables for the time-dependent N-body Schrodinger operator 
which were studied by Derezinski [D2].

Throughout this paper, we consider the case when t - 00. Other cases
can be treated similarly.
The plan of this paper is as follows: In §2, we collect the known results

to be used in later sections. In §3, we prove Theorems 1.2 and 1.3. In §4,
under the assumption that V satisfies (V.I) and (V.2) with 0  p  1/2,
we study a property analogous to the one of Theorem 1.3.

2. KNOWN RESULTS

In this section, we collect the known results to be used in later sections.
First, we recall the spectral properties of N-body Stark Hamiltonians, which
has been studied by Herbst-Møller-Skibsted [HMS1]. We use the following
notations throughout this paper. Let cv = be the direction of E.
We denote the coordinate z E R by z = (x, o), so that H is written as
H = -A/2 - + V. Let A = (w, p) = We should note that

are bounded, where 8j and 8k are any components of V.

Vol. 68,n° 3-1998.
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THEOREM 2.1. - Suppose that V satisfies (V.1), and (V.2) or (V.3). Then
(1) H has no bound states.

(2) Let 0  cr  Then one can take 8 &#x3E; 0 so small (uniformly
in A E R) that

Next we recall the almost analytic extension method due to Helffer and
Sjostrand [HeSj], which is useful in analyzing operators given by functions
of self-adjoint operators. For two operators B1 and B2, we define

For mER, let be the set of functions f E C°° (R) such that

If f E with mER, then there exists / E C(X) (C) such that f (s) = f (s)
0

and
.-:::::- = , . , , _, , . , ._.,. 1 1Bae,~ L,1Bae _ _ _ ..

Such a function /(() is called an almost analytic extension of f. Let B be a
self-adjoint operator. If f E F-m with m &#x3E; 0, then f (B) is represented by

For f E :::m with m E R, we have the following formulas of the asymptotic
expansion of the commutator:

RM is bounded if there exists k such that m + k  M and +

is bounded. Similarly, R~ is bounded if there exists k such that

Annales de l’Institut Henri Poincaré - Physique théorique



257N-BODY STARK HAMILTONIANS

m + k  M and (B + is bounded. For the proof, see [G].
We use the above formulas frequently.

Next, we state the known results about asymptotic observables for N-

body Hamiltonians without the Stark effect, which we will frequently use to

prove Theorems 1.2 and 1.3. The results were obtained by Derezinski [D2]
and used for showing the asymptotic completeness for N-body long-range
scattering (see Sect. 4 of [D2]).

Let HM be an N-body Hamiltonian without the Stark effect:

where each satisfies (V.I). Then, as in §1, we define the cluster
Hamiltonian HM,a and subsystem Hamiltonian HM, a E A, as follows:

Here we recall that V~(x) = We introduce a time-dependent
potential W (t, x) which is a smooth real-valued function on R x X such
that

for some ff &#x3E; 0. Then we define time-dependent Hamiltonians

We denote by UM,w(t) (resp. the propagator generated by
(resp. where we say that U(t) is the propagator

generated by H(t) if is a family of unitary operators such that
for 03C8 E D(H(l)), 03C8t = is a strong solution of id03C8t/dt = 
03C81 = 
The following theorem was proved by Derezinski [D2] (see Theorems 4.1,

4.2 and 4.3 of [D2]). The proof is based on the Grafs idea [Gr1], but we
omit it.

THEOREM 2.2. - (1) For any h E Coo(R), the following strong limits exist:

Vol. 68, nO 3-1998.
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There exists a unique self-adjoint operator (resp. 
such that (2.3) (resp. (2.4), (2.5)) equals (resp. 

" ,

(22 For any q E there exist

and they equal each other. There exists a unique vector in X~, of commutin g

self-adjoint operators such that the limits (2.6) and (2.7) equal
Moreover, and commute, and

(3) Let J E Cb(X), being the space of bounded continuous

functions on X. Then there exists

There exists a unique vector in X of commuting self-adjoint operators
such that the limit (2.9) equals J(P+(HM,w)). Moreover,
and commute, and

(4) When 0,

Here E© (P) is the spectral projection of a vector in X of commuting

self-adjoint operators P onto a Borel subset 0 of X, and 
is the

eigenprojection of H.
l~l 1

3. PROOF OF THEOREMS 1.2 AND 1.3

In this section, we prove Theorems 1.2 and 1.3. First we assume 
that V

satisfies (Y 1), and (V.2) or (~ 3~. We begin with stating the propagation

Annales de l’ lnstitut Henri Poincaré - Physique théorique
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estimates for the propagator which were obtained by [AT2] (see
Propositions 3.1, 3.2, 3.5 and 3.7 of [AT2]). We omit the proof.

PROPOSITION 3.1. - Let h E 

(1) Then there exists M » 1 dependent on h such that for 03C8 ~ L2 (X ),

and, for 03C8 E S(X), S(X) being the Schwartz space on X,

(2) Let 0  v  |E| and L &#x3E; 0. Then for any 03C8 E L2(X),

(3) Let M be as in (I) and v be as in (2). Fix E1 &#x3E; 0 and r &#x3E; 0. Assume
that q E So(X) _ ~q E C°°(X) ::; vanishes in

{~; E X I 1 - y, ~~I &#x3E; r}, where c,~ = 
Then

(4) Let M, v and q E ,S’o ~X ~ be as above. Let denote one of the
following three operators

Then

By taking account of this proposition and following the argument of
[AT2], we introduce an auxiliary time-dependent Hamiltonian which
approximates the full Hamiltonian H:

Let qc ~ So (X) be such that qc = 1 in r(w, t1, E|/3), and qc = 0 outside
~E~~4~- Let 9, E So(X) be such that 9. = 1 in 2£1, 

Vol. 68, no 3-1998.
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and iic = 0 outside r(w, 3ei , By definition, it follows that = qc.
We define

We should note that = ~). By the assumption
(V.2) or (V.3), We obeys the estimate

Then we define the time-dependent Hamiltonian

and denote by Uc(t) the propagator generated by Hc(t), that is, 
is a family of unitary operators such that for 03C8 E D(Hc(1)), 03C8t = 

is a strong solution of id03C8t/dt = = 

Then we have the following proposition which is an analogue of

Proposition 3.1 for the propagator Uc(t). The result was obtained by 
(see Propositions 4.1-4.4 of [AT2]). We omit the proof.

PROPOSITION 3.2. - Let h E Cf(R).
(1) The there exists M » 1 dependent on h such that for 03C8 E L2(X),

and, for 03C8 E S(X),

(2) Let 0  v and L &#x3E; y 0. Then for any 03C8 E L2 (X ),

(3) Let M be as in (1) and v be as in (2 ). Fix tl &#x3E; 0 and r &#x3E; 0. Assume

that q E vanishes in E1, r). Then

Annales de l’lnstitut Henri Poincaré - Physique théorique
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(4) Let M, v and q E be as above. Let denote one of the
following three operators

Then

If we have the above two propositions, we can prove the following
theorem and its corollary, which are the key facts for showing the asymptotic
completeness for N-body Stark Hamiltonians in [AT2] (see Theorems 4.5
and 4.6 of [AT2]). We omit the proof.

THEOREM 3.3. - Let the notations be as above. Then there exist the
following strong limits

COROLLARY 3.4. - (Asymptotic clustering) Let the notation be as above.
Then for 03C8 E L2(X), there exists E L2 (X ) such that as t ~ 00.

Now we prove Theorem 1.2. For this sake, we introduce a family of
the unitary operators on L2(X) as follows: For u(x) E 
we define

We also introduce the time-dependent Hamiltonian

where we recall that -A/2 + acts on L2(X) and does not
have the Stark effect. We denote by UM,c(t) the propagator generated by

where = Id. The family of transformations 
was introduced by Jensen-Yajima [JY], by which Stark Hamiltonians are
Vol. 68, n ° 3-1998.
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transformed into Hamiltonians without constant electric fields (see also
[AH] and [H]). In fact, we see by the argument similar to [JY] that

This representation has played an important role to prove the asymptotic
completeness of the Dollard-type modified wave operators for N-body Stark
Hamiltonians in [AT2]. We should note that the observables p_L, p‘
and which we consider in Theorem 1.2 do not undergo a change under
the transformation T (t). We also note that for f E (X ),

By virtue of the relations (3.18) and (3.19), we have only to apply Theorem
2.2 to the propagator in order to prove the existence of the

asymptotic velocities ( 1.3) and (1.4), and of the limits (1.6) and (1.8),
since the time-dependent potential satisfies the estimate (2.2) with
a = 2p by virtue of (3.7). It is sufficient to show that (1.3) and (1.6) exist.

Proof of the existence of (~.3) and (1.6~. - By Theorem 3.3, we have only
to show that there exists the strong limit

for f ((x - Etz/2)/t) = fl(x1/t) with fl E in the case for

proving the existence of (1.3), or for f ( (z - Et~ /2) /t) = 
with 91 E Coo(~t)) in the case for proving the existence of (1.6). If we
obtain the limit (3.20), the limits (1.3) and (1.6) can be written as

and, hence, we see that there exist (1.3) and (1.6). Now, by (3.18) and
(3.19), the limit (3.20) can be written as

Annales de l’Institut Henri Poincaré - Physique théorique
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Thus, by applying Theorem 2.2, we see that the limit (3.21) exists, that is,
(3.20) exists. In particular, the asymptotic velocities and (H)
exist, and they commute with H. D
Next we prove the existence of the limits ( 1.5) and (1.7). Obviously, we

have only to show the existence of (1.7). We need the following lemma.
Proof of the existence of (1. 7). - It is sufficient to prove that for any

92 E Co (~e~, there exists (1 .7). The Heisenberg derivative of g2 ~p~ - Et)is calculated as follows: By (3.7),

Thus, by using Cook’s method, we see that (1.7) exists. 0
Next we prove that ( 1.7) equals (1.8). We need the following lemma.
LEMMA 3.5. - Ler 03C8 ~ S(X). Then as t ~ oo,

Proof - The Heisenberg derivative of Xc - ~~t + ~’t2~2 is

Thus, by integration, we have (3.22). D

Proof of (1.7)=(1.8). - We have only to show that for any g2 ~
(1.7) equals (1.8). By a calculus ofpseudodifferential operators

we have 
’

Thus, by Lemma 3.5, we see that for 03C8 E S(X),

This implies that (1.7) equals (1.8). D

Vol. 68,n° 3-1998.
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Now we prove Theorem 1.3. Here we assume that V satisfies (V. I ) and
(V.2) with p &#x3E; 1/2. The case where V satisfies (V.1) and (V.3) can also
be proved similarly. First we prove the existence of the limits (1.9) and
(1.10). Then we obtain the existence of the asymptotic energies and

T~ by the similar argument to the one of Derezinski [D2]. Obviously, it

is sufficient to prove that (1.10) exists.

Proof of the existence of (1.10). - We have only to show that for any
h E (1.10) exists. We shall prove the existence of the following
limit:

If we have the limit (3.23), the limit ( 1.10) can be written as

and, by Theorem 3.3, we see that (1.10) exists. Since Te commute with
He, the Heisenberg derivative of is

By using the almost analytic extension method and the fact that

~z~ -1 ~2p~h’ ~T~) is bounded, we have, by virtue of (3.7),

Since 2p &#x3E; 1, by using Cook’s method, we see that (3.23) exists. D

Taking account of that (resp. commute with T~ (resp. Tc). we
see that PI(H) (resp. P~~+(H)) commute with T~~ (resp. Tj). Also, by
using the argument similar to the one for showing the intertwining property
of the wave operators, we have T~~ and T~ commute with H. Thus we are
interested in the joint spectrum of those commuting self-adjoint operators.
We introduce the new time-dependent Hamiltonian

and denote by Uc,G(t) the propagator generated by Hc,G(t). Since we
may write
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we should note that, denoting by the propagator generated by 
we may write

We also note that, by virtue of (3.7), satisfies the estimate

Now we shall replace Uc(t) by 
LEMMA 3.6. - Let V; E S(X). Then as t - oo,

Proof - Since the Heisenberg derivatives of pc - Et are

we have (3.28) and (3.30) by integration. Also, the Heisenberg derivativesof Xc - Et2/2 are

By integration, we have (3.29) and (3.31), by virtue of (3.28) and (3.30). 0
PROPOSITION 3.7. - Suppose that V satisfies (V.l), and ( V 2) with p &#x3E; 1 /2or (V.3). Then there exist the following strong limits:

Proof - We have only to prove that for any 03C8 E S(X), the limits (3.32)and (3.33) exist. We prove the existence of (3.33) only. We may show theexistence of (3.32) similarly. Since
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we have, by virtue of (3.7) and Proposition 3.7,

Since 2p &#x3E; 1, by using Cook’s method, we see that (3.33) exists. 0

Combining Theorem 3.3 with Proposition 3.7, we have the following
proposition.

PROPOSITION 3 .8. - Suppose that V satisfies (V. I), and (~ 2~ with p &#x3E; 1 /2
or (V.3). Then there exist the following strong limits:

Proof of (1.12). - Now we write

Noting that HC = we may apply Theorem 2.2. Thus we have
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Moreover, we shall prove the existence of the asymptotic energy .~-I~ : For

We have only to prove that for h E the limit (3.37) exists. For
this sake, we show that the following strong limit exists:

The Heisenberg derivative of is

where we used the fact that is bounded. Since 2p &#x3E; 1,

by Cook’s method, we see that (3.38) exists. Then we may write the limit

(3.37) as

and thus we see that ~f~ exists. Taking account of the fact 

I d + I d 0 Tc, we also obtain that for h E Coo(R),

Also, by virtue of (3.26), we have

and, hence, we see = R. Combining this fact with
(3.36) and (3.39), we obtain

Finally we prove that for h E 

If we have (3.41), ( 1.12) follows from (3.40). We have only to prove that
for any h E and 03C8 = hl(H)y E with jal E Co (R),
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We define x) associated with hl as in (3.5). Then, by virtue of
Proposition 3.1, the right-hand side of (3.42) may be written as

where we used the fact that x) - x)h(H) = O(t-2p). Thus
the proof of (1.12) is completed. 0

By Theorem 1.2, we know that (1.5) equals (1.6),
and (1.7) equals (1.8). From this fact, we have for g3 E 

and thus we see that = and = +

(P~,1(H))2/2). Therefore, (1.11) follows from this fact, (1.12) and

Xa,1- Xc,..L. D

4. LONG-RANGE CASE

In this section, we prove an analogue of Theorem 1.3 under the

assumption that V satisfies (V.I) and (V.2) with 0  p  1/2. The
result which we want to show is the following theorem.

THEOREM 4.1. - Suppose that V satisfies (V.1) and (V.2) with 0  p 

1/2. Then

where = H~ 0 Id + and = (pc,1~2~2.
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REMARQUE 4.2. - Under the assumption of Theorem 4.1, we do not know
whether the asymptotic energies and Tj exist or not. But, the results
of [A2] roughly say that along the time evolution and as t - oo,

where x(t) = if 0  p  1/2, and x(t) = logt if p = 1/2. Hence,
if we see that

hold, we have that along the time evolution and as t - oo,

and this seems to imply that the asymptotic energies and T~ do not
exist. We think that this may be caused by the slowly decreasing of the first
derivatives of the intercluster potential But we do not know whether

(A) hold or not, that is, the estimates of [A2] are optimal or not.
To prove Theorem 4.1, we need some propositions and lemmas.

PROPOSITION 4.3. - Suppose that a C c, 8 C X~,1, 
is a compact set of and satisfying that J = 1 on O.
Put = Wc(t, xa) + Then for t &#x3E; 1

Now define the time-dependent Hamiltonian (t) as (t) --

Ha + and denote by (t) the propagator generated by
Then there exist the asymptotic velocity and the

strong limits
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where is the spectral projection of a vector in X of commuting
self-adjoint operators P onto a Borel subset e of X. The limit (4.4) equals
~~2 a~*. Moreover the following relations hold.

where = Id + Id @ and = (p~,±)~/2.
Proof. - The proof of this proposition is essentially similar to that of

Proposition 4.7 of [D2J.
In §3, we proved the existence of the strong limit (3.20), which implies

the existence of the asymptotic velocity Pi ). Combining this with
Theorem 3.3, we have

by the definition of the asymptotic velocities. Since we easily see that (4.2)
holds, we can prove the existence of the asymptotic velocity 
in the way similar to that of proving the existence of ~1 (I~c?yY~ ~. Now we
shall show the existence of the strong limits

which implies that by noting that by virtue of (4.8),

there exist the strong limits (4.3) and (4.4). We prove the existence of (4.9)
only. The existence of (4.10) may be proved similarly.

Put + ~t2~2~ + and define

the time- dependent Hamiltonian 

HM,a + We denote by (t) the propagator generated
by ( t ) . By the argument similar to [JY], we see that
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Here we used the fact that = x1/t. Then by (3.18) and
(4.11 ), we can rewrite (4.9) as

Here we used the fact that

which follows from the fact that = x1/t and the
definition of the asymptotic velocities P1(Hc,wc) and 
Hence we have only to prove the existence of the strong limit

Since the time-dependent Hamiltonians which we have to consider now do
not have the Stark effect, this may be shown by the argument quite similar
to that of the proof of Proposition 4.7 of [D2]. Therefore (4.9) exists.
The other statements except (4.6) and (4.7) follow from the intertwining

relation

which is seen by definition.
We shall show that (4.6) and (4.7) hold. To prove (4.6), we first prove

the existence of the asymptotic energy H: w . We have only to prove the
existence of for any h E For h E we can

rewrite as 
c

by using the fact that h(Hc) - h(Hc(t)) = O{t-2P~. The existence
of (4.15) follows from the fact that for h E C~(R), the Heisenberg
derivative is C {t- t 1+2P~ ) . Similarly, we may prove the
existence of the asymptotic energy since the Heisenberg derivative

is for h E C~(R).
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Next we prove the relation

for h E C~(R). We have only to prove (4.16) for h E Cy(R). We should
note that for h E C~(R),

by virtue of the almost analytic extension method (see the proof of

Theorem 4.5 of [AT2]). We have for any h E and 1/J = E

L2(X) with some hi E 

by virtue of Propositions 3.1 and 3.2. Since the set E L2 (X ) B 
forsome hi E is dense in L2(X), we see that (4.16)

holds. Hence, by virtue of (4.16), we have only to prove the relation

In virtue of (4.14), we may write and 

Take J E C~°(Za,1) such that JJ = J and J = 1 on e. Any 
vector in

Ran can be approximated by vectors § E S(X) such that

Hence we have only to consider (4.18) for such Here we need the

following lemma.
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LEMMA 4.4. - Let 03C6 E S(X). Then as t - oo,

Proof. - First we are concerned with and Since the Heisenberg
derivative is (4.21) with replacing p1
by pa,± is obtained by integration. Since the Heisenberg derivative

is we have (4.22) with replacing X-L by Xa,-L, by
integrating (4.21) in t.

Next we consider the statements of the lemma associated with pa and x~.
We note that p~‘ is bounded for f E .~’~1~2, and E 

for g E ;:1/2 and 03C6 E S(X). Thus we first prove

for g G .~’1~2, which implies (4.21) with replacing p1 by p~ holds. Since the
Heisenberg derivative (~)~(~f~) is 0, we have (4.23) by integration.
Moreover, since the Heisenberg derivative D ~a ,W~ (~~ is pa, we have
(4.22) with replacing x1 by ~. D 

’ "

Continuation of the proof of Proposition 4.3. - For h G 

we shall compute with above ~. We put

~(~~) = W~ Bt~ x) -I- ‘JBx~,,1- It~-~a B~~ -- ~~ Bt~ ~~ -~ ‘~(xa~l1 t~Ia ~xc l ~
which satisfies

for t ~ I . By noting that xa E X and using Lemma 4.4 and the facts that
== 0 ~~d *

xa j/ ~xa i#a (t, za + we have
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by virtue of the almost analytic extension method. (4.25) implies that
commutes with Hence, by using (4.19), (4.20)

and (4.26), we have 

where we used the fact that J = 1 on e. This implies that (4.18) holds.
As for proving (4.7), we show the existence of the asymptotic energies
H:J.. and Ha &#x3E; 1 &#x3E; ~, a only, since the proof of (4.7) can be quite similar to
that of (4.6). We prove the existence of only. That of can

be shown similarly. We write 
~ 

for h E By noting that = and applying Theorem 2.2,
we see that the asymptotic energy 7~ exists. The proof of Proposition
4.3 is completed. D 

’

Now we shall introduce the propagators which can approximate the
propagators a C c, asymptotically. In the following, we follows
the argument in [AT2].
We first note that the propagators Ua,Wa (t) , a C c, can be decomposed as

where is the propagator generated by the time-dependent
Hamiltonian

+ xa ) on We should note that E E Xa for
Then we shall introduce the propagators by which the propagators

(t) can be approximated asymptotically.
We construct an approximate solution to the Hamilton-Jacobi equation
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associated with Without loss of generality, we assume that

1/ min(03C1’, 2p) is not an integer. Set L = [1/ 203C1)], so that

( L + &#x3E; 1. We first define Ko(t, ça) by

Then Ko satisfies

We further define Kj(t, 1 ~ j  L, for t &#x3E; 1 inductively as the

solution to

where

LEMMA 4.5.

uniformly in ~a.

P~oof. - The proof is quite similar to that of Lemma 6.1 in [AT2] . The
lemma is easily verified by induction. The solution Kj is given by

In particular, we have

and hence K1 obeys the estimates in the statement of the lemma by (4.2).
Assume that K m, 1  j - 1, satisfies the estimates in the lemma.

Then it follows that c~’~ ~’~_I(~, = O~t-.~ This proves that Kj
also satisfies the desired estimates and the proof is completed. D
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The approximate solution S(t, ~d) to the equation (4.28) is now defined by

~2014"

Then we have for t 2:: 1,

and hence it follows from Lemma 4.5 that

uniformly in We also consider the time-dependent Hamiltonian

and denote by the propagator generated by Ha(t). We put
Y(t,ça) = + Et) and = Then
Ua (t) is explicitly represented by

LEMMA 4.6. - Let the notations be as above and 1/) E Then as
t --~ oo,

Proof. - Let = We calculate the Heisenberg
derivative We write = fla(t) + 

It follows from (4.30) that

Noting that -(L + 1) min(p’, 2p)  -1, (4.33) is proved by this estimate.
We also have
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by a simple calculus of pseudodifferential operators. Hence the Heisenberg
derivative ( t) 4.Ï&#x3E; ( t) takes the form

This yields

and hence (4.32) follows immediately from the Gronwall inequality. D

By Lemma 4.6, we have the following proposition.

PROPOSITION 4.7. - There exist the strong limits

Proof. - By a simple calculus of pseudodifferential operators, we have

Combinin g this fact with Lemma 4.6, we have the proposition. D

Now we define the time-dependent Hamiltonian by = Ta +
and denote by the propagator generated by 

Since T~, commutes with is explicitly represented by

We shall replace Ua(t) by We need the following proposition.

PROPOSITION 4.8. - There exist the strong limits

Proof. - By virtue of (4.31 ) and (4.34), we have only to prove that as

t - oo, converges locally uniformly in

~~, . We write

We note that ~t~Y(~~ ~~)~ _ + Et) + +

Et) = ~C~z~~a’~~ ~~~ Ça + Et) + a + ~ZP~ ) as t - 00 uniformly
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in ~a, by the definition of Y(t, ça) (see also the proof of Lemma 4.5). Then
we see that as s - oo,

holds locally uniformly in ~ and uniformly in 0 ::; r ~ 1. Here we
used the fact that +~~)) = and

+~~)) = O(s-~+2014~’.2~))) hold locally uniformly
in ~ and uniformly in 0 ::; r  1. Hence we see that

holds locally uniformly in Ça and uniformly in 0  T  1. This implies
the proposition. D

Combining the above two propositions, we have the following
proposition.

PROPOSITION 4.9. - There exist the strong limits

Here we define the time-dependent Hamiltonian Ha (t) by

on L~(X) = L2(xa) 0 L2(Xa), and denote by the propagator
generated by Then, by noting (4.27), the following proposition is
an immediate consequence of Proposition 4.9.

PROPOSITION 4.10. - There exist the strong limits
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By virtue of Proposition 4.10, we have the existence of the asymptotic
velocity and asymptotic energies and which

satisfy

Thus we shall consider the relation between and

Here we shall introduce the "conditional" asymptotic energy

T+~,Wa as follows :

PROPOSITION 4.11. - Let the notations be as above. Let h E Then

there exists the strong limit

Moreover, there exists a unique self-adjoint operator such that (4.40)

equals a). P+(Ha,Wa), H+a,Wa, H+a,,Wa and yya 
are mutually

commutative, and satisfy 
’ ~ ’ ’ ~ ’ 

Proof - As for the existence of (4.40), it is sufficient to prove that

for h E C~(R). Since = 0, we see that (4.40) exists for

h E In fact, we have

The mutual commutativity of and is

trivial by their definitions. Now we introduce the asymptotic energy 
as follows: For h E Coo(R), 

’ 

There exists since D~)~(~) = 0 for /KE and we see that

by their definitions, commutes with P~(~~J, ~~~ ~~ 1, W~,
and T- , and that 
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where we used the fact that

In the other way, by using (4.11) and the fact that =

we have

Combining this with Theorem 2.2 (2) and using the fact that
= we obtain

where is defined by

for 9 E Coo(~_L). Moreover, we see that the asymptotic observable
exists since = 0 for g ~ By their

definitions, satisfies

Combining this with (4.37) and (4.48), we have

Then by noting that Ta + (pa,)2/2 and that T~ and (pa,)2/2
are mutually commutative, we obtain

by virtue of (4.49). Combining (4.45) with (4.50) and (4.51), we have (4.41 )
and (4.42). 0

By virtue of Proposition 4.10, we may rewrite Proposition 4.11 in terms
of the asymptotic observables for the propagator (t) as follows:

Annales de l’lnstitut Henri Poincaré - Physique theorique



281N-BODY STARK HAMILTONIANS

PROPOSITION 4.12. - Let the notations be as above. Let h E C(X)(R). Then
there exists the strong limit

Moreover, there exists a unique self-adjoint operator T+~,a such that (4.52)

equals ). P+(Ha,Wa ), H+a,Wa, H+a,,a and are mutually

commutative, and satisfy

Here we need the known results for N-body systems without the Stark

effect, which were obtained by Derezinski [D2] (see Lemmas 4.10 and

4.12 of [D2]).
LEMMA 4.13. - Let the notations be as in 32. For any a E A,

Completion of the proof of Theorem 4.1. - We shall use Proposition 4.3 to
reduce the statements for H to those for the time-dependent Hamiltonians

We should note that

By virtue of (4.11), we have

where we used the fact = Ha = HM, a C e. By using
this, (4.43), (4.47), Proposition 4.12 and Lemma 4.13, and noting that

R, we obtain
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But the closure of the right-hand side of (4.57) is the right-hand side
of (4.56). This implies the theorem. D
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