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ABSTRACT. — We prove the existence of some asymptotic observables
for N-body Stark Hamiltonians, and study their spectral properties, in
particular, their relation to the spectrum of the Hamiltonian H. © Elsevier,
Paris
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RESUME. — Nous prouvons [I’existence de quelques observables
asymptotiques pour le hamiltonien de Stark a N-corps, et étudions leurs
caractres spectraux, surtout leur relation avec le spectre hamiltonien H.
© Elsevier, Paris

1. INTRODUCTION

In this paper, we study some asymptotic observables for N-body Stark
Hamiltonians.

We consider a system of N particles moving in a given constant electric
field £ € R%, € # 0. Let my, e; and 7; € R%, 1 < j < N, denote the mass,
charge and position vector of the j-th particle, respectively. The NV particles
under consideration are supposed to interact with one another through the
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248 T. ADACHI

pair potentials Vi (r; — rx), 1 < j < k < N. Then the total Hamiltonian
for such a system is described by

= 1
H = Z {—%A,j—ej£~rj}+\/,

1SN J

where £ -1 = Z;’:l &;n; for & n € R? and the interaction V' is given as
the sum of the pair potentials

V= Z I/jk.(’l”j - Tk).

1<j<k<N

As usual, we consider the Hamiltonian H in the center-of-mass frame.
. . ~ N ~

We introduce the metric (r,7) = }>,_, myr; - ¥; for r = (ry,...,7x) and

F = (f1,...,7n) € RN, We use the notation |r| = (r,7)}/2. Let X

and X, be the configuration spaces equipped with the metric (-, -), which

are defined by

X = {reRdXN

Z m;r; = 0},

1<GEN
Xem={reR"N|rj=rfor1<j<k<N}.

These two subspaces are mutually orthogonal. We denote by 7 : RV —
X and 7oy @ RN — X, the orthogonal projections onto X and
Xem, respectively. For r € RN, we write £ = 77 and Zey = TemT,
respectively. Let £ € X and E., € X.n be defined by

E:w<ﬂe,...,fiv—e), Ecm:wcm(e—le,...,ifig),
my m

my 1 my

respectively. Then the total Hamiltonian H is decomposed into H =
H®Id+ Id® T, where Id is the identity operator, H is defined by

H:—%A—(E,:E)—FV on L*(X),

T, denotes the free Hamiltonian Ty, = —Acn/2 — (Fem, Zem) acting
on L?(X.m), and A (resp. A.p) is the Laplace-Beltrami operator on X
(resp. X.m). We assume that |E| # 0. This is equivalent to saying that
e;/m; # ex/my for at least one pair (j,k). Then H is called an N-body
Stark Hamiltonian in the center-of-mass frame.
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N-BODY STARK HAMILTONIANS 249

A non-empty subset of the set {1,...,N} is called a cluster. Let Cj,
1 < j < 'm, be clusters. If U, ¢ ;<,, Cj = {1,..., N} and C; N Cy, = @ for
1<j<k<m,a={C,...,Cy} is called a cluster decomposition. We
denote by #(a) the number of clusters in a. We denote by A the set of
cluster decompositions. We let a, b € A. If b is obtained as a refinement of
a, that is, if each cluster in b is a subset of a cluster in a, we say b C a,
and its negation is denoted by b ¢ a. We note that a C a is regarded as a
refinement of q itself. If, in particular, b is a strict refinement of a, that is, if
b C a and b # a, this relation is denoted by b G a. We denote by a = (j, k)
the (N — 1)—cluster decomposition {(j, k), (1),...,(7), ..., (%),...,(N)}.
Next we define the two subspaces X* and X, of X as
X*= {r €eX ijrj = 0 for each cluster C' in a},
jeC
X, ={re X |r;=r for each pair a = (j, k) C a}.

We note that X is the configuration space for the relative position of j-th
and k-th particles. Hence we can write V,, () = Vj;(r; —ri). These spaces
are mutually orthogonal and span the total space X = X* & X,, so that
L*(X) is decomposed as the tensor product L?(X) = L?(X*) ® L*(X,).
We also denote by n* : X — X* and 7, : X — X, the orthogonal
projections onto X* and X,, respectively, and write z* = 7%z and
T, = T, x for a generic point x € X. The intercluster interaction I,
is defined by

L(z) =) Va(z®),
aga
and the cluster Hamiltonian

1 a a a\ __ o
Ho=H-1I,=~;A~(E,2)+V*, V' )= Valz®),

aCa

governs the motion of the system broken into non-interacting clusters of
particles. Let E* = 7* E and E, = 7w, E. Then the operator H, acting
on L?(X) is decomposed into

H,=H*®Id+I1d®T, on L*(X*) ® L*X,),
where H® is the subsystem Hamiltonian defined by
1
H® = —5A" - (E*,z*)+V*  on L*X?),
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250 T. ADACHI

T, is the free Hamiltonian defined by

1
T, = —iAa — (Eq,x,) on L*(X,),

and A® (resp. A,) is the Laplace-Beltrami operator on X (resp. X,). By
choosing the coordinates system of X, which is denoted by z = (z°, z,),
appropriately, we can write A = |V*> and A, = |V,|%, where
V® = 0pa = 9/02* and V, = 9,, = 9/0x, are the gradients on X
and X,, respectively. We note that we denote by z* (resp. z,) a vector
in X¢ (resp. X,) as well as the coordinates system of X (resp. X,). We
write p = —tV, p* = —iV® and p, = —iV,.

We now state the precise assumption on the pair potentials. Let ¢ be
a maximal element of the set {a €A ' FORRES 0} with respect to the
relation C. As is easily seen, such a cluster decomposition uniquely exists
and it follows that E* = 0 if o C ¢, and E* # 0 if a ¢ ¢. Thus
the potential V,, with a ¢ ¢ (resp. @ C c¢) describes the pair interaction
between two particles with e;/m; # ex/my, (resp. ej/m; = ex/my). If, in
particular, e;/m; # eyx/my for any j # k, then ¢ becomes the N-cluster
decomposition. We make different assumptions on V,, according as « ¢ ¢
or @ C c. We assume that V,(z*) € C°°(X“) is a real-valued function
and has the decay property

(V1) |05 Va(a®)]
(Vi2) |97 Vala®)|
(V3) |9 Va(a®)|
with p + > 1.

O(lz*|=H0) o ce, o >0,
Oa"|"+9/2), a e, p>0,
O(jz|~etrlfD)ag e, p, >0

I

I

We should note that we may allow that the potentials have some local
singularities, in particular, Coulomb singularities if d > 3 (see [HMS1]).
But, for the- simplicity of the argument below, we do not deal with the
singularities. Under this assumption, all the Hamiltonians defined above
are essentially self-adjoint on C§°. We denote their closures by the same
notations. Throughout the whole exposition, the notations ¢, p’, p and p
are used with the meanings described above. We make some remarks about
potentials. For a C ¢, if p’ > 1 (resp. 0 < p’ < 1), V, is called a short-range
(resp. long-range) potential. For o ¢ ¢, if p > 1/2 (resp. 0 < p < 1/2),
V. is called a short-range (resp. long-range) potential. If we consider
the problem of the asymptotic completeness for long-range IN-body Stark
Hamiltonians, we should study the Dollard-type (resp. Graf-type) modified
wave operators under the assumptions (V.1) and (V.2) (resp. (V.1) and
(V.3)) (cf. [Al], [AT1-2], [Gr2], (JO], JY], [HMS2] and [W1-2]).
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N-BODY STARK HAMILTONIANS 251

We assume that a C c¢. Then the subsystem Hamiltonian H* does not
have the Stark effect, that is, £ = 0. Hence it may have bound states in
L?(X“). We denote by 0,,(H*) the pure point spectrum of H°, and define
To = Upca Opp(H®) and &, = Uy, opp(H"). We note that o, (H*) = {0}
if #(a) = N. We also denote the direction of E by w = E/|E| and write
z = {x,w). We should note that z = (z,,w) because of w* = 0. We set

Xj={zeX|z=quwforyeR}, X, =XoX)

z) = 2w € X and ; = x —x) € Xy, and write Z, 1 = X .
Then we can write z, = (&4,1,|). We also write £, = (£4,1,§) for the
coordinates dual to 2, = (2,,1,2)) and denote by p, = =iV, = (pa,1,P)))
the corresponding velocity operator. If we write J; = wd., we see that
py = —i0) and p, 1 = p, — p. Let I be the intercluster interaction
obtained from H°¢:

@) =Iz) = Y, Vala®).

aCec,aa

For N-body long-range scattering, some asymptotic observables are very
useful for showing the asymptotic completeness for the systems without
the Stark effect. In particular, the asymptotic energy has been used by
Enss [E], Sigal-Soffer [SS1-2], Derezifiski [D2] and Gérard [G], and the
asymptotic velocity has been used by Enss [E], Dereziiski [D1-2] and
Zielinski [Z]. Especially, Derezifiski [D2] studied the spectral properties
of the asymptotic energy and the asymptotic velocity, too. We concern
ourselves with the asymptotic observables for N-body Stark Hamiltonians.

We now formulate the results obtained in this paper. We use the following
convention for smooth cut-off functions F' with 0 < F' < 1, which is often
used throughout the discussion below. For sufficiently small § > 0, we
define

F(s<d)=1 for s<d—-6, =0 for s>d,
F(s>d)=1 for s>d+6, =0 for s<d,
F(s=d)=1 for |s—d|<é =0 for |s—d|>26

and F(d, < s < dy) = F(s > d1) F(s < d). The choice of § > 0 does
not matter to the argument below, but we sometimes write Fs for F' when
we want to clarify the dependence on § > 0.

THEOREM 1.1. — Suppose that V satisfies (V.1), and (V.2) or (V.3).
Let f € C(X), Coo(X) being the space of continuous functions on X
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252 T. ADACHI

vanishing at infinity. Then the following strong limits exist:

_ aH (P— B\ g
s lim e f( t )e = 1(0), (L1)
[ T 3t itH
s = tl}iﬂooe f )¢ = £(0). (1.2)
This result implies that ||[p — Et|le"*#¢|| = o(|t|]) and |||z —

Et?/2]le=Hey|| = o(|t|?) as t — oo for ¢» € D, where D is some
appropriate dense set of L?(X) (see [Gr2] for the two-body case). This
fact was pointed out by [A2] in the term of propagation estimates. In
particular, (1.2) implies that the particles asymptotically concentrate in any
conical neighborhood of E, and this fact has played an important role
for the proof of the asymptotic completeness for long-range N-body Stark
Hamiltonians given by [Al], [AT1-2] and [HMS2]. Theorem 1.1 can be
proved by the results of [A2]. The following theorem is a refinement of
the above properties.

THEOREM 1.2. — Suppose that V satisfies (V.1), and (V.2) or (V.3). Let
f1 € Coo(X 1), fo € Co(X©), g1 € Coo(X)) and g2 € Coo(X,). Then the

following strong limits exist:

s — Jim_ eH f) (x:)e_”H, (1.3)
s — tl}:rtn e f, ( tc>e_“H, (1.4)
s — tl}imoo g (p, — Et)e ", (1.5)
s— t_liinoo ety <£”_tj) e itH (1.6)
s— lim e gy (p. — Et)e "tH (1.7)
s — t_l}in et g, (Lﬁﬁ) e itH, (1.8)

(L.5) (resp. (1.7)) equals (1.6) (resp. (1.8)). Moreover, there exists a
unique vector in X ) (resp. X°) of commuting self-adjoint operators Pf(H )
(resp. P>*(H)) such that (1.3) (resp. (1.4)) equals f, (Pf(H)) (resp.
f2(Po*(H))). PE(H) and Po*(H) commute with H.
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This result implies that |||p. — Etle”®Hy|| < C, and ||z —
Et?)2|e " || < C|t| as t — Foo for some positive constants Cy,
and Cy. In particular, we should note that the asymptotic velocity Pf(H )
perpendicular to the vector E exists and commutes with H. Here we
may construct the asymptotic observables by following the argument of
Derezifiski [D1-2]: Denoting (1.3) by «(f1), for any open set © C X,
we define

Eg =sup {'y(fl) | f1E€C(X1),0< fi <1,suppfi C @}.
Clearly, Fo are orthogonal projections that satisfy
Ee, o, = Eo,ne,

for any open sets ©; and ©,. As usual, we may extend the definition of
Eg to arbitrary Borel subsets © C X ;. We obtain a map

@HE@

defined for every Borel subset © C X, that satisfies the following
conditions:

(1) Ep is an orthogonal projection,
(2) Ep =0,
(3) if © =J;.; O, and for j # k we have ©; N ©) = 0, then

N
E@IS-— lim ZEG"’
n=1

N—oco

4) Feo,Fo, = Eg,ne,-

Since, as usual, for any Borel function g on X, we may define the
integral

[ ster) ),

we may construct the asymptotic velocity P(H) as

PE(H) = / 21 dE(z.).

The notion of the asymptotic velocity is very useful for showing the
asymptotic completeness for /V-body long-range scattering without the Stark
effect, and, in fact, J.Dereziriski [D2] constructed the asymptotic velocity

Vol. 68, n° 3-1998.



254 T. ADACHI

and used it to prove the problem. Also, he showed some properties of it, in
particular, the relation between the asymptotic energy and it. He also showed
the existence of the asymptotic “intercluster momentum” DE(H o w) for
the time-dependent Hamiltonian Hys o w () = —A/2 4+ V*(z) + W (¢, z),
which is defined by

§ — t—ligloo UM,a,W(t)*g(pa)UM,a,W(t)

for ¢ € Cuo(X,), where Upqw(t) is the propagator generated by
Hpa,w (t). He studied the relation between the asymptotic velocity and the
asymptotic “intercluster momentum”. The property that (1.5) (resp. (1.7))
equals (1.6) (resp. (1.8)) is an analogue of his results. However, both for V-
body Schrodinger operators and for N-body Stark Hamiltonians, we have
not known the existence of the asymptotic “innercluster momentum” yet:
For example, in the case of N-body Schrddinger operators, the asymptotic
“innercluster momentum” should be defined by

s tlzlz’l:noo UM,a,W (t)*g(pa)UM,a,W (t)

for ¢ € Coo(X*). Thus we here consider the asymptotic velocity and
“intercluster momentum” only.

Of course, in the way similar to the above one, we may construct the
asymptotic velocity “P”i(H )” parallel to £ by virtue of Theorem 1.2. But
it is easily seen that “P”i(H')” cannot commute with H since E # 0.
Then we need some alternative asymptotic observables for H to study the
spectral properties of H in terms of the asymptotic observables for H.
Now we consider some asymptotic energy for H. The following result is
an analogue of Derezifiski’s result for N-body Stark Hamiltonians, but we
have to require that V' satisfies (V.1), and (V.2) with p > 1/2 or (V.3).

THEOREM 1.3. — Suppose that V satisfies (V.1), and (V.2) with p > 1/2
or (V.3). Let h € Coo(R). Then there exist the following strong limits:

BT itH —itH
s tl}inooe h(T”)e , (1.9)
s—, ligl e p(T.)e H (1.10)
where T = p2/2 — |E|z. Moreover, there exists a unique self-adjoint

operator T”i (resp. Tci ) such that (1.9) (resp. (1.10)) equals h(T”i) (resp.
WTE)). PE(H) (resp. Po*(H)), T”jE (resp. T*) and H are mutually

Annales de I'Institut Henri Poincaré - Physique théorique



N-BODY STARK HAMILTONIANS 255

commutative. They have the following properties:
+ +
U(H’P_L(H)’TH

1
= U {(A,ga,J_a/\H) I A= iég,J_ + )‘“ + 7, fa,_L € Xa,.Ly)‘II € R1 TE ga},
aCe (1.11)
o(H, P**(H), TY)
1
= {2 [A=5(€)° + A+ 7, & € XI, A €R, T €LY,

ace (1.12)
where X, | = X, © X% and X = X°© X“.

In §4, we will state a result analogous to this result under the assumption
that V' satisfies (V.1) and (V.2) with 0 < p < 1/2.

The idea of the proofs of Theorems 1.2 and 1.3 is as follows: The key
fact used in order to prove Theorems 1.2 and 1.3 is Theorem 3.3 (see §3.).
This theorem is also the key fact for proving the asymptotic completeness
for N-body Stark Hamiltonians in [AT2]. It implies that we can replace the
propagator e~ generated by the full Hamiltonian H by the propagator
U.(t) generated by the appropriate time-dependent Hamiltonian H..(¢). Then
we may change the original problem into the one in the frame accelerated by
E (the moving frame). Consequently, we have only to study the asymptotic
observables for the time-dependent N-body Schrédinger operator Hpy (),
which were studied by Dereziniski [D2].

Throughout this paper, we consider the case when ¢ — co. Other cases
can be treated similarly.

The plan of this paper is as follows: In §2, we collect the known results
to be used in later sections. In §3, we prove Theorems 1.2 and 1.3. In §4,
under the assumption that V' satisfies (V.1) and (V.2) with 0 < p < 1/2,
we study a property analogous to the one of Theorem 1.3.

2. KNOWN RESULTS

In this section, we collect the known results to be used in later sections.
First, we recall the spectral properties of N-body Stark Hamiltonians, which
has been studied by Herbst-Mgller-Skibsted [HMS1]. We use the following
notations throughout this paper. Let w = E/|E| be the direction of E.
We denote the coordinate z € R by z = (z,w), so that H is written as
H=-A/2—|E|z+V.Let A= (w,p) = —i0,. We should note that

(2)20;(H +10)7", (2)7'0;04(H + )" : L*(X) — L*(X)
are bounded, where 9; and 0;, are any components of V.

Vol. 68, n° 3-1998.



256 T. ADACHI

THEOREM 2.1. — Suppose that V satisfies (V.1), and (V.2) or (V.3). Then
(1) H has no bound states.

(2) Let 0 < 0 < |E|. Then one can take § > 0 so small (uniformly
in A € R) that

Fs(H = \)i[H, A|F5s(H = \) > o Fs(H = \). (2.1)

Next we recall the almost analytic extension method due to Helffer and
Sjostrand [HeSj], which is useful in analyzing operators given by functions
of self-adjoint operators. For two operators B; and By, we define

ad}, (B2) = Ba, adp (By) = [adp "(By), Bi], n>1.
For m € R, let 7™ be the set of functions f € C*°(R) such that
|F®(s)] < Cu(s)™*, k> 0.

If f € F™ with m € R, then there exists f € C°°(C) such that f(s) = f(s)
for s € R, supp f(¢) C {¢C € C: [Im¢| < d(1+ |Re(|)} for some d > 0
and

0 F(O1 < OOy~ MIm (M, M 2 0.

Such a function f(¢) is called an almost analytic extension of f. Let B be a
self-adjoint operator. If f € F~™ with m > 0, then f(B) is represented by

18) = 3= [ 3OB -0 dcnd

For f € F™ with m € R, we have the following formulas of the asymptotic
expansion of the commutator:

B fB) = 3 T a3 (8) + Rag

g

S|~

(f (B)ady(Br) + Ry

n=1

R =5~ / 3 F(QB ~ Q) ad(B)(B — ()™M d¢ A,
)M +1

Ry =0 / (OB = ) Mad¥ (By)(B - ¢) d¢ A T,

Ry is bounded if there exists k such that m + k < M and ad¥ (B1)(B +
z')"c is bounded. Similarly, R}, is bounded if there exists k such that

Annales de UInstitut Henri Poincaré - Physique théorique
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m+k < M and (B + i) *ad¥ (B,;) is bounded. For the proof, see [G].
We use the above formulas frequently.

Next, we state the known results about asymptotic observables for N-
body Hamiltonians without the Stark effect, which we will frequently use to
prove Theorems 1.2 and 1.3. The results were obtained by Derezifiski [D2]
and used for showing the asymptotic completeness for N-body long-range
scattering (see Sect. 4 of [D2]).

Let Hys be an N-body Hamiltonian without the Stark effect:
1
Hy =—-5A+V on L3(X), V()= Za:va(xa),

where each V,(z*) satisfies (V.1). Then, as in §1, we define the cluster
Hamiltonian Hys , and subsystem Hamiltonian Hj;, a € A, as follows:

1 a 2 a — o
Hypo = —§A+V on L3(X), V3(x) ~azcava(x ),

1
Hy = —EAG + V* on L%(X®).

Here we recall that V(z) = V*(z*). We introduce a time-dependent
potential W (¢, z) which is a smooth real-valued function on R X X such
that

07 (t, )| < Cp(t)~ D, £ >1 (2:2)
for some o > 0. Then we define time-dependent Hamiltonians

HM’W(t) =Hy + W(t,.’L‘),

Huow(t) = Huo + Wit z).

We denote by Up,w(t) (resp. Unrew(t)) the propagator generated by
Hyw(t) (resp. Hprow(t)), where we say that U(t) is the propagator
generated by H(t) if {U(t)}:>1 is a family of unitary operators such that
for v € D(H(1)), ¥, = U(¢t)% is a strong solution of idy,/dt = H(t)1,
Y1 = 9.

The following theorem was proved by Dereziriski [D2] (see Theorems 4.1,
4.2 and 4.3 of [D2]). The proof is based on the Graf’s idea [Grl], but we
omit it.

THEOREM 2.2. — (1) For any h € Coo(R), the following strong limits exist:

s — tEI& UM’W(t)*h(HM)UM,W(t), (23)
s = lim Unga,w ()" h(Hpt,a)Unt,a,w (1), (2.4)
s — tllglo Untyo,w (8)"R(Hy)Ung,a,w (2). (2.5)

Vol. 68, n° 3-1998.
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There exists a unigue self-adjoint operator HJ-\F/I,W (resp. HR},Q’W, HX/}?“W )
such that (2.3) (resp. (2.4), (2.5)) equals h(H]‘\"/IYW) (resp. h(H;{/La’W),
h(Hyiw))

(2) For any g € Coo(X,), there exist

§— tl.l_;rg UM,a,W(t)*g(pa)UM,a,W(t)7 (26)
. « [ La
5= lim Unsw (0" (52) Unt o (8), (2.7)

and they equal each other. There exists a unique vector in X, of commuting
self-adjoint operators D} (H y,q,w ) such that the limits (2.6) and (2.7) equal
9(DF (Hut,a,w)). Moreover, DY (Hy ow) and HY; o w commute, and

o 1
i = Hiihy + 5(DF (Haraw))* (28)

(3) Let J € Cy(X), Co(X) being the space of bounded continuous
Sfunctions on X. Then there exists

There exists a unique vector in X of commuting self-adjoint operators
P*(Hpw) such that the limit (2.9) equals J(P+(Hyw)). Moreover,
P*(Huw) and Hf; yy, commute, and

D:(HM’Q’W) = P+(HM,a,W)a- (210)
(4) When W(t,z) = 0,
Eqoy(P*(H)) = EP(H). (2.11)

Here Eo(P) is the spectral projection of a vector in X of commuting
self-adjoint operators P onto a Borel subset © of X, and EPP(H) is the
eigenprojection of H.

5)
o(Hiss P (Huaw)) = J {060 [ A= 5847 &€ X r €&},
“ (2.12)

3. PROOF OF THEOREMS 1.2 AND 1.3

In this section, we prove Theorems 1.2 and 1.3. First we assume that V
satisfies (V.1), and (V.2) or (V.3). We begin with stating the propagation
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estimates for the propagator e~*#  which were obtained by [AT2] (see
Propositions 3.1, 3.2, 3.5 and 3.7 of [AT2]). We omit the proof.

ProposiTioN 3.1. — Let h € C5°(R).
(1) Then there exists M >> 1 dependent on h such that for 1 € L*(X),

dt)| L (=) —itH

and, for ¢ € S(X), S(X) being the Schwartz space on X,
< dt (z) ~itH

[ 4 upanc

(2) Let 0 < v < |E| and L > 0. Then for any ) € L*(X),

2
< Clvl?, 3.1)

2 < oo. (3.2)

[ Sr (-2 < 2 < Dpamemyl <omir. o)

(3) Let M be as in (1) and v be as in (2). Fix €1 > 0andr > 0. Assume
that ¢ € So(X) = {q € C=(X) | 10¢q(z)| < Cp(z)~1P1} vanishes in
Nw,e1,7) ={z € X | (w,z/]z]) > 1 - €1, |x| > r}, where w = E/|E).
Then

[P 5)m (52 < o ancrevns

(4) Let M, v and q € So(X) be as above. Let ®(t) denote one of the
following three operators

F(Sew) F(3e2) £ De(E e

<Cllyl?. (3.4)

Then
s — lim O(t)h(H)e " = 0.

By taking account of this proposition and following the argument of
[AT2], we introduce an auxiliary time-dependent Hamiltonian H_(t) which
approximates the full Hamiltonian H:

Let g € So(X) be such that g. = 1in I'(w, €1, |E|/3), and g, = 0 outside
I'(w, 2€1,|E|/4). Let G. € So(X) be such that §, = 1 in I'(w,2¢,|E|/4),
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and g, = 0 outside I'(w, 3¢1, | E|/5). By definition, it follows that §.q. = ¢..
We define

octr) = P(5 <) p(% 2 o (35)

Wo(t, ) = Wa(t,2°, 3.) = F<t2 > B I)qc(x)I @).  (3.6)

We should note that ¢ (¢, z)I.(z) = ¢.(t,z)W.(t,z). By the assumption
(V.2) or (V.3), W, obeys the estimate

107 7 We(t 2)| < Conp(t) ™™ ((8) + (2)/2)~CeHID, 4 >0 (3.7)
Then we define the time-dependent Hamiltonian
H.(t) = H. + W.(t,2), (3.8)

and denote by U,(t) the propagator generated by H.(t), that is, {Uc(t)}+>1
is a family of unitary operators such that for ¢» € D(H.(1)), ¥ = U.(t)y
is a strong solution of idy;/dt = H.(t)y:, 1 = 9.

Then we have the following proposition which is an analogue of
Proposition 3.1 for the propagator U, (). The result was obtained by [AT2]
(see Propositions 4.1-4.4 of [AT2]). We omit the proof.

ProposITION 3.2. — Let h € C§°(R).
(1) The there exists M >> 1 dependent on h such that for ) € L*(X),

[ (& =mr)ranm

and, for ¥ € S(X),

2
<Oyl (3.9)

2

%“F(%x—) > M) MHOD9] <oo.  (310)

(2) Let 0 < v < |E| and L > 0. Then for any v € L*(X),

/100 %'F( L <2 < S)h(H)UL(?) 1/;” <ol (3.11)

(3) Let M beasin(l)and v be as in (2). Fix ¢, > 0 and r > 0. Assume
that q € So(X) vanishes in T'(w, €1,7). Then

J G2 5)r( < m)
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(4) Let M, v and q € Sy(X) be as above. Let ®(t) denote one of the
Sollowing three operators

P(Ga). ez ed). p(E2)r(Warle

Then
s — tllglo O(t)h(H.(t))U.(t) = 0.

If we have the above two propositions, we can prove the following
theorem and its corollary, which are the key facts for showing the asymptotic
completeness for N-body Stark Hamiltonians in [AT2] (see Theorems 4.5
and 4.6 of [AT2]). We omit the proof.

THEOREM 3.3. — Let the notations be as above. Then there exist the
following strong limits

Q.=s5- tlim By (t), (3.13)
0 = s = lim Ue(t)*e . (3.14)

CoRroLLARY 3.4. — (Asymptotic clustering) Let the notation be as above.
Then for ) € L*(X), there exists ), € L*(X) such that as t — oo,

e_itH¢ = Ue(t)pe + o(1). (3.15)
Now we prove Theorem 1.2. For this sake, we introduce a family of

the unitary operators {T'(t)}:cr on L?(X) as follows: For u(z) € L*(X),
we define

(T(t)u)(z) = etlBl==it’|EF /6, <x - gtz). (3.16)
We also introduce the time-dependent Hamiltonian
c E 2
HM’C(t) = HM,C + W, t,x% x, + Et = HM,c + WM,C(t), (317)

where we recall that Hy;. = —A/2 4+ V°(z) acts on L*(X) and does not
have the Stark effect. We denote by U M,(t) the propagator generated by
Hpg,o(t), where Ups (1) = Id. The family of transformations {T() }ter
was introduced by Jensen-Yajima [JY], by which Stark Hamiltonians are
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transformed into Hamiltonians without constant electric fields (see also
[AH] and [H]). In fact, we see by the argument similar to [JY] that

This representation has played an important role to prove the asymptotic
completeness of the Dollard-type modified wave operators for N-body Stark
Hamiltonians in [AT2]. We should note that the observables p, , x, /t, p°
and z°/t which we consider in Theorem 1.2 do not undergo a change under
the transformation 7'(t). We also note that for f € Co(X),

()" f(m - th)T(t) ~ f(2). (3.19)

By virtue of the relations (3.18) and (3.19), we have only to apply Theorem
2.2 to the propagator Ujps.(t) in order to prove the existence of the
asymptotic velocities (1.3) and (1.4), and of the limits (1.6) and (1.8),
since the time-dependent potential Wy .(t) satisfies the estimate (2.2) with
o = 2p by virtue of (3.7). It is sufficient to show that (1.3) and (1.6) exist.

Proof of the existence of (1.3) and (1.6). — By Theorem 3.3, we have only
to show that there exists the strong limit

s - Jim Uc(t)"f ( “t%ﬁ) () (3.20)

for f((x — Et?/2)/t) = fi(zo/t) with fi € Co(X 1) in the case for
proving the existence of (1.3), or for f((z—Et?/2)/t) = g1 ((z—Et*/2) /1)
with g1 € C(X))) in the case for proving the existence of (1.6). If we
obtain the limit (3.20), the limits (1.3) and (1.6) can be written as

E 42
. ; z— 5t »
s — lim ethf( 2 )6 itH

t—oco t

—Q, (s ~ lim U(t)" f (“' —ﬁﬁ) Uc(t)) QO

and, hence, we see that there exist (1.3) and (1.6). Now, by (3.18) and
(3.19), the limit (3.20) can be written as

s = Jim T()Unro(t)" £ (3 ) UnteOT() 7 (3.21)
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Thus, by applying Theorem 2.2, we see that the limit (3.21) exists, that is,
(3.20) exists. In particular, the asymptotic velocities P} (H) and Pt (H)
exist, and they commute with H. [

Next we prove the existence of the limits (1.5) and (1.7). Obviously, we
have only to show the existence of (1.7). We need the following lemma.

Proof of the existence of (1.7). - 1t is sufficient to prove that for any
92 € C5°(X.), there exists (1.7). The Heisenberg derivative of go(p, — Et)
is calculated as follows: By (3.7),

d .
DHC(t)g2(pc - Et) 2592(}70 - Et) + Z[Hc(t)v g2(pc - Et)]
:i[Wc(t7 x)v92(pc - Et)] = O(t—(1+2p))'
Thus, by using Cook’s method, we see that (1.7) exists. [J
Next we prove that (1.7) equals (1.8). We need the following lemma.

LEMMA 3.5. — Let ) € S(X). Then as t — oo,
E
(ze=prt+ e Yorow

Proof. — The Heisenberg derivative of Te — pct + Et?/2 is

= O(tmx(0.1=20)y (3.22)

DHc(t) (xc - Pct + gtz) = thWc(tax) = O(t_2p)'

Thus, by integration, we have (3.22). O

Proof of (1.7)=(1.8). — We have only to show that for any g, €
C§e(X,), (1.7) equals (1.8). By a calculus of pseudodifferential operators,
we have

x — Z42
92( = | = 92(p. - Et)

1 —Etz [ Ct Etz
=/ <Vc!)2<9x = +(1—0>(pc—Et)),¥2— o
0

E 42

i 1 T — =t
t o7 [ Bega| 0——2—+ (1-0)(p. — Et) |do.
0

t
Thus, by Lemma 3.5, we see that for Y € S(X),

x — £42
<g2 ( t2 ) - 92(pc - Et)) Uc(t)"/)

This implies that (1.7) equals (1.8). O

— O(tmax(—l,—2p)).
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Now we prove Theorem 1.3. Here we assume that V" satisfies (V.1) and
(V.2) with p > 1/2. The case where V satisfies (V.1) and (V.3) can also
be proved similarly. First we prove the existence of the limits (1.9) and
(1.10). Then we obtain the existence of the asymptotic energies T”Jr and
TF by the similar argument to the one of Derezifiski [D2]. Obviously, it
is sufficient to prove that (1.10) exists.

Proof of the existence of (1.10). — We have only to show that for any
h € C§°(R), (1.10) exists. We shall prove the existence of the following
limit:

s — tlim U.(t)"h(T.)U.(%). (3.23)
If we have the limit (3.23), the limit (1.10) can be written as
s — lim etHp(T,)e " tH
=Q, (3 - lim Uc(t)*h(Tc)Uc(t))Q’;,

and, by Theorem 3.3, we see that (1.10) exists. Since T, commute with
H._, the Heisenberg derivative of h(T.) is

DHc(t)h(Tc) = i[Wc(tv ‘/17)7 h(Tc)]

By using the almost analytic extension method and the fact that
(z)~Y/2p.h/(T.) is bounded, we have, by virtue of (3.7),

DHc(t)h(Tc) = O(t_zp).

Since 2p > 1, by using Cook’s method, we see that (3.23) exists. [

Taking account of that z /¢ (resp. £°/t) commute with T (resp. T), we
see that P}(H) (resp. P>+ (H)) commute with T”Jr (resp. T:F). Also, by
using the argument similar to the one for showing the intertwining property
of the wave operators, we have Tlr and 7" commute with H. Thus we are
interested in the joint spectrum of those commuting self-adjoint operators.

We introduce the new time-dependent Hamiltonian
c c E 2
H.c(t) = H.+ W.g(t, %), Wcg(t,z%) =Wtz ,—2—t , (3.24)

and denote by U.(t) the propagator generated by H.g(t). Since we
may write

H.ct)=Hi(t)®@Id+1d®T., Hg(t)=H®+ W.g(t,z°), (3.25)
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we should note that, denoting by Ug(t) the propagator generated by Hg (t),
we may write

Uea(t) = Ug(t) @ 701, (3.26)
We also note that, by virtue of (3.7), W, s(t) satisfies the estimate
1070 W, (,5°)] < Cump(£) ™™ ({8) + (2%)/?) =10, (3.27)
Now we shall replace U.(t) by U, g(t). '
Lemma 3.6. — Let oy € S(X). Then as t — oo,

l(pe — Et)U(t)¥]| = O(1), (3.28)
(xc - gtz) Uc(t)sz = 0(t), (3.29)
l(pc — Et)U.c()9]l = O(1), (3.30)
(=~ 57) U.o(t)] = 00 (331)

Proof. — Since the Heisenberg derivatives of p, — Et are
DHC(t)(pc — Et) = O(t—(l+2p)), DHC,G(t)(pc - Et) =0,
we have (3.28) and (3.30) by integration. Also, the Heisenberg derivatives
of z, — Et?/2 are
E E
DHc(t) (xc - 5752) = p. — Et, DHE,G(t) (370 - Etz) = p. — Et.
By integration, we have (3.29) and (3.31), by virtue of (3.28) and (3.30). O

PROPOSITION 3.7. — Suppose that V satisfies (V.1), and (V.2) with p > 1/2
or (V.3). Then there exist the following strong limits:

s— tlim U(t)"Ue (), (3.32)
s — tlim U.c(t)*U.(t). (3.33)

Proof. — We have only to prove that for any v € S(X), the limits (3.32)
and (3.33) exist. We prove the existence of (3.33) only. We may show the
existence of (3.32) similarly. Since

U Vi) = U (1) i W (t,%) — Walt,2)U(0),
Wc,G(t7 xc) - Wc(ta ‘T)

1
= —/ <VCWc (t, z% 0z, + (1 - G)Etz),xc — Ez€2>d€,
A 2 2
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we have, by virtue of (3.7) and Proposition 3.7,

4 (Ueali) U() = 0.

Since 2p > 1, by using Cook’s method, we see that (3.33) exists. [J

Combining Theorem 3.3 with Proposition 3.7, we have the following
proposition.

ProposITION 3.8. — Suppose that V satisfies (V.1), and (V.2) with p > 1/2
or (V.3). Then there exist the following strong limits:

Qe =5 lim U, (1), (3.34)
Qg =s— lim U c(t) e . (3.35)

Proof of (1.12). — Now we write
f2(Pe*(H)) =s ~ lim et fz<%>e_i”{
. * xc *
=QC,G (8 - tl—l—glo Uc,G(t) f2 (—t—> UC’G(t)> Qc,G

~eof (5= jim e 1 (5 )50 @ 1}
:Qc,GfZ(PC’+(H(C?))Qz,G7
h(HOT) =5 — tlim etHp(H)e H

=Q.c (8 — lim Uc,G(t)*h’(Hc)Uc,G(t)) G
~Quo (s — lim Ug()" h(HOUE(®)) @ 1d} 2%
=Qe.c(M(HZ') ® 1d)Q .
Noting that H¢ = Hj,, we may apply Theorem 2.2. Thus we have
o(HE*, PO (H)) =o(HE*, P+ (HE))
=056 | X = € 47 & e Xg T e bl

aCc
(3.36)
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Moreover, we shall prove the existence of the asymptotic energy H, +: For
h € Co(R),

h(HF) = s = lim e Hh(H.)e . (3.37)

We have only to prove that for h € C5°(R), the limit (3.37) exists. For
this sake, we show that the following strong limit exists:

s — tlim Uec(t)*h(H)Uc a(t). (3.38)
The Heisenberg derivative of h(H.) is
Dy, oyh(He) = ilWes(t, o), h(He)] = O(t™*),

where we used the fact that (z)~/2V°h/(H,) is bounded. Since 2p > 1,
by Cook’s method, we see that (3.38) exists. Then we may write the limit
(3.37) as

W(H) = Q65— lim Uea(t) h(H)Uea(t) ),

and thus we see that H} exists. Taking account of the fact H. =
H¢® Id+ Id ® T,, we also obtain that for h € Co(R),

h(H}) = h(H + TF). (3.39)
Also, by virtue of (3.26), we have
WTT) = Qe c(Te)2 6

and, hence, we see that o(7.}) = o(7.) = R. Combining this fact with
(3.36) and (3.39), we obtain

o(HS,P*(H),T])
1
= U {INE ) | A= 5(gg)? +A+T, EEXLANER, TEES.

aCce

(3.40)
Finally we prove that for h € C(R),

h(H) = h(H). (3.41)

If we have (3.41), (1.12) follows from (3.40). We have only to prove that
for any h € C3°(R) and ¢ = hy(H)y € L*(X) with h; € C§°(R),

h(H)p = lim e h(H,)e "y, (3.42)
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We define ¢ (t,x) associated with h; as in (3.5). Then, by virtue of
Proposition 3.1, the right-hand side of (3.42) may be written as

Jlim e B h(H,)e Hy)

= tlim e Hh(H,)p.(t,z)e"

= lim e H o (t,z)h(H)e Hq)

= lim e Hh(H)e *Hoy = h(H)y,
where we used the fact that h(H,)p.(t, ) — ¢.(t, z)h(H) = O(t~2*). Thus
the proof of (1.12) is completed. [J

Proof of (1.11). — By Theorem 1.2, we know that (1.5) equals (1.6),

and (1.7) equals (1.8). From this fact, we have for g3 € Coo(Xe 1),

9s(PIL(H)) = s = lim e gs(pe, 1 )e™™ = Qe 693(pe, 1) g

and thus we see that o(P} (H)) = X., and WTS) = MT} +
(P.,L(H))?/2). Therefore, (1.11) follows from this fact, (1.12) and
Xa’J_ = Xg@XQ_J_. O

4. LONG-RANGE CASE

In this section, we prove an analogue of Theorem 1.3 under the
assumption that V satisfies (V.1) and (V.2) with 0 < p < 1/2. The
result which we want to show is the following theorem.

THEOREM 4.1. — Suppose that V satisfies (V.1) and (V.2) with 0 < p <
1/2. Then

J(H7 H:L7PI(H)) = U {()‘7)\C,J_7€a.,i.) | A
aCe

1
=)‘C,J- + )\a’ /\C,.L = '2'(€a,L)2 + 7,
)‘a E R? ﬁa,_l. e Xa,_L, T e ga}, (4.1)

where H. ) = H@Id+1dQ® T, and T, | = (p.1)*/2.
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REMARQUE 4.2. — Under the assumption of Theorem 4.1, we do not know
whether the asymptotic energies T”Jr and T} exist or not. But, the results
of [A2] roughly say that along the time evolution and as ¢ — oo,

—Et| <
lpy — Et| < C, 5

E
T —pyt + —tz' < Cx (1),

E
lpc - Et' S Ca Te— pct + 5t2 S CX(t)v

where x(t) = t172° if 0 < p < 1/2, and x(t) = logt if p = 1/2. Hence,
if we see that

5y - pit+ 22| = O(x (1), —0(x(t)  (A)

2

F
Te — Pt + —2—152

hold, we have that along the time evolution and as ¢ — oo,

1 E
Ty = 5(p = Bt)® - <E,wu —pt+ 5t2> = O(x(#)),

T, = %(pc - Bt)* - <Eac — pet + §t2> = 0(x(1)),

and this seems to imply that the asymptotic energies 7;" and T} do not
exist. We think that this may be caused by the slowly decreasing of the first
derivatives of the intercluster potential I.(z). But we do not know whether
(A) hold or not, that is, the estimates of [A2] are optimal or not.

To prove Theorem 4.1, we need some propositions and lemmas.

PROPOSITION 4.3. — Suppose thata C ¢, © C Za 1 = Xo, 1 \UsgapceXo, 1
is a compact set of Z, 1, and J € C§°(Z,, 1) satisfying that J = 1 on ©.
Put Wo(t,z4) = We(t,zo) + J(Ta, 1 [t) (T4, 1 ). Then for t > 1

10707, Wa (t, 2)| < Cpnpp(t)~ (mH1PtminGe! 20), (4.2)

Now define the time-dependent Hamiltonian H, y, (t) as H, y (t) =
H, + W,(t,z,) and denote by U, w,(t) the propagator generated by
H, . (t). Then there exist the asymptotic velocity PY(H, y.) and the
strong limits

Ofe = 5= Jim U, ()¢~ Eo(P} (H)), (4.3)
s— lim &MU, o (t)Eo(P(H, ), (4.4)
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where Eo(P) is the spectral projection of a vector in X of commuting
self-adjoint operators P onto a Borel subset © of X. The limit (4.4) equals
(Ufg)*. Moreover the following relations hold.

Qo Pl (H)Ee(P!(H))()" = Pf(H, w,)Ee(Pl (H,,)), (4.5)

a

Vo HEo(PI(H)(Qfo)* = Hiy, Bo(PF(H, ), (46)
VloH Eo(PHH))( Q1) = HY | o Bo(Pf(H, ),  (47)

where H, | = H*® Id+1d® T, |, and T, | = (pa,1)*/2.

Proof. — The proof of this proposition is essentially similar to that of
Proposition 4.7 of [D2].

In §3, we proved the existence of the strong limit (3.20), which implies
the existence of the asymptotic velocity P (H. w.). Combining this with
Theorem 3.3, we have

Eo(P{(H)) = Q.Eo (P} (Hew.)), (4.8)

by the definition of the asymptotic velocities. Since we easily see that (4.2)
holds, we can prove the existence of the asymptotic velocity PI(Ha,Wa)
in the way similar to that of proving the existence of P (H,w,). Now we
shall show the existence of the strong limits

s — lim U, . (' Ue(t) Bo (P} (Hew,)), (4.9)
s = lim U.(6)"U, , (1) Bo (P} (H, ), (4.10)

which implies that by noting that by virtue of (4.8),
Qe =5 — lim U, . (t)" ™" Qe Bo (P (He,w. )%
=s — lim U, . ()" Ue(t) Fo (P (Hew, )%,

there exist the strong limits (4.3) and (4.4). We prove the existence of (4.9)
only. The existence of (4.10) may be proved similarly.

Put Wy o(t, za) = Wo(t, 2o + Et?/2) 4+ J(2a,1 /t)I5(2q,1) and define
the time- dependent Hamiltonian H,, .y, (¢) as Hy oy, . ) =
Hppo + WM,a(t). We denote by Uy, , 4, . (t) the propagator generated
by Hys oW (t). By the argument similar to [JY], we see that

Uy, () = T6)Upy 0 37, (T (1) (4.11)

Annales de Ulnstitut Henri Poincaré - Physique théorique



N-BODY STARK HAMILTONIANS 271

Here we used the fact that 7'(¢)~(z /t)T(¢t) = =1 /t. Then by (3.18) and
(4.11), we can rewrite (4.9) as

s = lim T()Uys 0 30, . () Vst o) T () Eo(PT (Hew.))
=s = lim T(1)Uy, 50, (8) Unt.e(O) Bo (P (Harewn, )T
(4.12)

Here we used the fact that

Eo(Pf(Hew.)) = T(1)Eo(P{ (Ha,ew,..)T(1) ™
= Eo(P} (Hyew..))s

which follows from the fact that 7'(t)~(z./t)T(t) = z,/t and the
definition of the asymptotic velocities P} (H.w.) and Pl (Husew,,.)-
Hence we have only to prove the existence of the strong limit

s = Nm Uproiir,, () Unt,e(t)Eo (P (Hute, W) (4.13)

Since the time-dependent Hamiltonians which we have to consider now do
not have the Stark effect, this may be shown by the argument quite similar
to that of the proof of Proposition 4.7 of [D2]. Therefore (4.9) exists.

The other statements except (4.6) and (4.7) follow from the intertwining
relation

Qo = s — lim Be(P[(H, w, U, w, ) e, (4.14)

which is seen by definition.

We shall show that (4.6) and (4.7) hold. To prove (4.6), we first prove
the existence of the asymptotic energy H:WC. We have only to prove the
existence of h(H:WC) for any h € Cj°(R). For h € C§°(R), we can
rewrite h(Hy, ) as

W(H ) = 5 — lim Un(6)" h(H(6))UL(t), (4.15)

by using the fact that h(H.) — h(H.(t)) = O(t~?¢). The existence
of (4.15) follows from the fact that for h € C§°(R), the Heisenberg
derivative Dy, »h(H.(t)) is O(t~(1*2P)). Similarly, we may prove the
existence of the asymptotic energy H:'W , since the Heisenberg derivative

Di, , wh(H,y, (1)) is O(t=(+minl20)) for h € O3°(R).

a

Vol. 68, n® 3-1998.



272 T. ADACHI

Next we prove the relation
h(H) = Q.h(H]y ). (4.16)

for h € Coo(R). We have only to prove (4.16) for h € Cg° (R). We should
note that for h € C§°(R),

W(H(1)po(t,7) = @e(t, )R(H) = O(t™), (4.17)

by virtue of the almost analytic extension method (see the proof of
Theorem 4.5 of [AT2]). We have for any h € Cg°(R) and ¥ = hi(H)9 €
L2(X) with some h; € C°(R),

h(H)y = lim e h(H)e e
= lim e p(H) . (t, x)e " Hp
= lim ¢ c(t, 2)h(He(D))e ™9
=, { im U(8)" et 2 W(HAD)UD) 21
=0 { Jim U(t) MH()Ve(t) }00 = Qeh(Hl YOV
by virtue of Propositions 3.1 and 3.2. Since the set {¢ e L*(X) | P =

hi(H )y forsome hy € CP(R)} is dense in L*(X), we see that (4.16)
holds. Hence, by virtue of (4.16), we have only to prove the relation

00 H , Bo(PF(How )@ o) = HY g Bo(PE(H,w,))
(4.18)
In virtue of (4.14), we may write QfgQ and Q5(Qfg)" as

OfoQe = s — lim Fo(Pf(H, w,))Waw, ) Uet), (4.19)
Q)" = 5 = lim Ue(t)' Uy, (DB (PL(H,w,))- (420)

Take J € C(Z,,1) such that JJj = Jand J =1 on ©. Any vector in
Ran Eo(P7 (H, w,)) can be approximated by vectors ¢ € S (X) such that

. * T ma,
b= lim U, g, (07T (52 ) Ui, (06

Hence we have only to consider (4.18) for such ¢. Here we need the
following lemma.
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LemMMA 4.4. — Let ¢ € S(X). Then as t — oo,

LU, 5, (B8]l = O(1), (4.21)
lz U, w, (D¢l = O(). (4.22)

Proof. — First we are concerned with p, ; and z, . Since the Heisenberg
derivative Dy (1)Pa,1 is O(t~(+min(e’,20))) " (4,21) with replacing py
by Da,1 18 obtamed by integration. Since the Heisenberg derivative
DHG‘Wu(t).'I/'ayJ_ is p,, 1, we have (4.22) with replacing x; by z, 1, by
integrating (4.21) in ¢.

Next we consider the statements of the lemma associated with p* and z®.
We note that p®f(H?) is bounded for f € F~'/2, and g(H*)¢ € L*(X)
for g € F1/2 and ¢ € S(X). Thus we first prove

lg(H*)Uq v, (1)l = O(1) (4.23)

for g € F'/2, which implies (4.21) with replacing p, by p® holds. Since the
Heisenberg derivative D H, . (1) g(H®*) is 0, we have (4.23) by integration.
Moreover, since the Heisenberg derivative DHa,Wa tT® is p®, we have
(4.22) with replacing =z, by z°. O

Continuation of the proof of Proposition 4.3. — For h € C§°(R),
we shall compute h(H:W )Ee(Pf(Ha,Wa))‘f’ with above ¢. We put

Wat,z) = Weolt,z) + J(za 1 [O)I(x) = Welt,z) + J(aL /t)I(z0),
which satisfies

1007 W a(t,0)] < Crnp{t)~CmHFEmin(e'20) (424)

for ¢ > 1. By noting that z* € X, and using Lemma 4.4 and the facts that
J(@ a1 JO{I(T) = J (20,1 /t)IS(x)} = 0 and that W o (t,z) — Wa(t, 24) =
x® fol V g ﬁ/a(t,:ca + 6z2%)d6, we have

{R(H, 5, ()T (222 ) = T2 V(M 5, (0) I, , (006 = O(™Y),
(4.25)

{R(H, w, ()T (222 ) = J (224 R(H(1) }U, 35, (8)p = O~ minChe'20)
(4.26)
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by virtue of the almost analytic extension method. (4.25) implies that
h(H+ ) commutes with E@(P+(Ha 7, ). Hence, by using (4.19), (4.20)
and (4 26) we have

B(H ) Eo(PY (H, 17,))9
= Jim Bo (Pt (H,g5,))U, . (8 b(H, g, (0)T (22U, . ()¢

= Jim Bo(PF(Hy )y, (0T (255 ) h(H.(6)U, 5, ()6
—Qieﬂ h(Hfy, )0 (Q06)* 6,

where we used the fact that J = 1 on ©. This implies that (4.18) holds.
As for proving (4.7), we show the existence of the asymptotic energies
HF and H' . only, since the proof of (4.7) can be quite similar to

that of (4.6). We prove the existence of H, only. That of H* oy, can
be shown similarly. We write

hH} ) =s- Jim e Hh(H, e "t
:Qc{s ~ Jim Uc(t)*h(Hc,l)Uc(t)}Qj,
=QT(1){s ~ Jim Une,e(t)*h(He,1Unr,o(t) (1)1

for h € C(R). By noting that H. |, = Hy; ., and applying Theorem 2.2,
we see that the asymptotic energy H C+ . exists. The proof of Proposition
4.3 is completed. [

Now we shall introduce the propagators which can approximate the
propagators U, W (t), a C ¢, asymptotically. In the following, we follows
the argument in [AT2].

We first note that the propagators U, y, (%), a C ¢, can be decomposed as
Uy, (t) =7 00, 5 (1) on (X))@ L*(X,),  (4.27)

where [A]aﬁ,a (t) is the propagator generated by the time-dependent
Hamiltonian

ﬁa,Wa (t) = T, + W,(t,z,) on L*(X,). We should note that £ € X, for
a C c. Then we shall introduce the propagators by which the propagators
Ua,Wa (t) can be approximated asymptotically.

We construct an approximate solution to the Hamilton-Jacobi equation
1 ~
tS(t7 €a) + <E7 VEGS(ta 6{1)) = 5 ’falz + Wa(t7 véa S(t7 ga)) (428)
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associated with ﬁa v, (t). Without loss of generality, we assume that
1/ min(p’,2p) is not an integer. Set L = [1/min(p’,2p)], so that
(L + 1) min(p’,2p) > 1. We first define Ko(t,&,) by

Kolt. &) = et~ P e + 20

Then K satisfies
1
8tK0 + <E,V§aK0> = 5'&(1'2-

We further define K;(¢,£,), 1 < j < L, for t > 1 inductively as the
solution to

atKj + (E’ VﬁaKj) = Fj—l(taga)v Kj(laga) = 07

where

Fi(t,&) =W, <ZV5aKm(t§a> (nga t&a)

Lemma 4.5.
agaKj(t7£(l) = O(tl_jm"“(/",?p)), 1<j <L,

uniformly in &,.

Proof. — The proof is quite similar to that of Lemma 6.1 in [AT2]. The
lemma is easily verified by induction. The solution K; is given by

ot

Kt 6) :/ Fia(s,(s — )E + £,) ds

1

In particular, we have

Ki(t, &) = /: w, (s, (S; - st)E + sfa) ds

and hence K obeys the estimates in the statement of the lemma by (4.2).
Assume that K,,, 1 < m < j — 1, satisfies the estimates in the lemma.
Then it follows that 82 Fj_1(t,&,) = O(¢t~3min(",20)) This proves that K
also satisfies the desired estimates and the proof is completed. [J
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The approximate solution S(¢, &, ) to the equation (4.28) is now defined by

L
S(th&) =) Ki(t.&), t>1. (4.29)

=0
Then we have for ¢t > 1,
1 -
6tS+ (E,V&S) - 5'6@'2 - Wa(t7 VEaS) = _FL(t’ga)7
and hence it follows from Lemma 4.5 that

1 ~ Lo
0% {05+ (B, V6.5) = JI6ul = Walt, V2.8) } = 0wt 20)

(4.30)
uniformly in &,. We also consider the time-dependent Hamiltonian

Ho(t) =T, + Wo(t,pa), Walt, &) = Wa(t, (Ve, S)(t, &),
and denote by U,(t) the propagator generated by H,(t). We put

Y(t,€a) = (Ve,8)(t, & + Et) and W,(t,&) = W,(t,Y(t,&,)). Then
U,(t) is explicitly represented by

Ua(t) = emi=DTa g Jy Walape)ds. (4.31)

LeEMMA 4.6. — Let the notations be as above and v € S(X,). Then as
t — oo,

(za = (Ve, 8)(t,p) U, 0, (B9 = O(L), (4.32)
ll(za = (Ve S)(tpa))Ua(t)9]] = O(1). (4.33)

Proof. — Let ®(t) = z, — (Ve,S)(t,pa). We calculate the Heisenberg
derivative Dy, ®(¢). We write H, y, (t) = Ha(t) + Wa(t,2za) —
W.(t,ps). It follows from (4.30) that

Dy, ®(t) = ®'(t) + i[Ha(t), 2(2)]
= (Ve Fr)(t,pa) = O(t~FHD min(e'20)),

Noting that —(L + 1) min(p’,2p) < —1, (4.33) is proved by this estimate.
We also have

i[Wa(t 2a)=Wa(t, pa), (1)) = O(¢™ Hmn 200 (1) 4.0 (¢~ (Hminte' 200
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by a simple calculus of pseudodifferential operators. Hence the Heisenberg
derivative Dy () ®(t) takes the form

Dﬂa’wa (t)q)(t)
- O(t—(1+mi“(""2p)))<I>(t) + O(t—(1+min(p',2p))) + O(t—(L+1) mi"(PI:QP)).
This yields

t

160, . 001 < {1+ [ temt ()0, 5, ()l
1

and hence (4.32) follows immediately from the Gronwall inequality. [
By Lemma 4.6, we have the following proposition.
PROPOSITION 4.7. — There exist the strong limits
s — lim U,y (0 Ua(t), s— Jim U, (6)*T, 7, (1)
Proof. — By a simple calculus of pseudodifferential operators, we have

Wa(t»xa) - Wa(tvpa) =0(t_(l+min(p,’2p)))(xa - (VE.,,S)(tvpa))
+ O(t—(1+min(p’,2p))).

Combining this fact with Lemma 4.6, we have the propositibn. O

_Now we define the time-dependent Hamiltonian by I;Ta(t) =T, +
Wa(t,pa,1), and denote by U,(t) the propagator generated by H,(t).
Since T, commutes with W, (¢,p,, 1), U,(t) is explicitly represented by

Ua(t) = e DT f; Waloipe ) s (4.34)

We shall replace U,(t) by U, (t). We need the following proposition.
PROPOSITION 4.8. — There exist the strong limits
s = lim Uy (t)"Ua(t), s- Jlim U, (£)*U,(t).
Proof. — By virtue of (4.31) and (4.34), we have only to prove that as

t — oo, flt{Wa(s,fa) — Wa(s,&a,1)} ds converges locally uniformly in
&a. We write

1
Wa(sa&z) - Wa(sa ga,l) = /0 (azWa)(S’T£|I + fa,J_)<f||,w> dr.

We note that 0,{Y (,&.)} = (8, V¢, S)(t, &, + Et) + |E|(8,Ve, S)(t, €0 +
Et) = |E|(0.Ve, S)(t, &+ Et) +&, +O(t=min(".20)) a5 ¢ — 00 uniformly
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in &,, by the definition of Y (¢,&,) (see also the proof of Lemma 4.5). Then
we see that as s — 00,

BS{VNT/G(S?TQI + ga,_L)}
z(asWa)(SLY(Sﬂfn +&a,1))
+ <(v$a Wa)(s,Y(S,Tfu + ga,J-))’as{Y(sngll + ga,J.)})

=|E|{(Va, Wa) (8, Y (8, 7€) + €a,1)), (0:Ve, S)(5, 78 + £a, L + Es))
+ O(S—(1+min(p’,2ﬂ)))

holds locally uniformly in £, and uniformly in 0 < 7 < 1. Here we
used the fact that (V, Wo)(5,Y (8, 7€) + €a,1)) = O(s~Hmine"20))) and
(8, W) (s,Y (s, 7€) + &4,1)) = O(s~(+min(e",20))) hold locally uniformly
in &, and uniformly in 0 < 7 < 1. Hence we see that

((92 V—Va)(sa TfH + éa,_L)<£l|’ w)

:«vma Wa)(sa Y(37 T£|| + ga,i-))? (azvﬁa S)(S, T&H + fa,J_ + ES))(&H’ w)

=S, (Wi 5,7 + 0,00} + O 01t 200

holds locally uniformly in £, and uniformly in 0 < 7 < 1. This implies
the proposition. [J

Combining the above two propositions, we have the following
proposition.

PROPOSITION 4.9. — There exist the strong limits
s = lim U, (0 0u(), = Jim Ua(9)"T, 50, ().
Here we define the time-dependent Hamiltonian H,(t) by
Ho(t) = Hy + Wo(t,par) = H* ® Id + Id ® H,(t)

on L*X) = L?(X*) ® L*(X,), and denote by U,(t) the propagator
generated by H,(t). Then, by noting (4.27), the following proposition is
an immediate consequence of Proposition 4.9.

ProPOSITION 4.10. — There exist the strong limits

0, =s - lim U, ., () Ua(t), (4.35)
QO =s— Jim Ua(t)*U, w, (1) (4.36)
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By virtue of Proposition 4.10, we have the existence of the asymptotic
velocity P} (H, yw,) and asymptotic energies HYy and HY | . which
satisfy

Pf(H,w,) =P (H,w,) %, (4.37)
. _O*gt 0

H,w, =QH!; Q. (4.38)

Ha,J_,Wa == Q:'H::J}\,Wa Qa. (4.39)

Thus we shall consider the relation between P} (H,w,) H:Wa and
H: Ly, Here we shall introduce the “conditional” asymptotic energy
+ .
T||,Wa as follows:

PROPOSITION 4.11. — Let the notations be as above. Let h € Coo(R). Then

there exists the strong limit
s — lim Ua()*W(T))Ua(2)- (4.40)

Moreover, there exists a unique self-adjoint operator T||+W such that (4.40)
equals h(ﬂtwa). PY(H,w,) H:,Wa’ H: 1w, and TItWa are mutually

commutative, and satisfy

+ o — gt
Hig =H! 5 +Tw, (4.41)
L1
H |y, =H+ 5 (P (How,)) (4.42)

Proof. — As for the existence of (4.40), it is sufficient to prove that
for h € C$°(R). Since Dy, h(Tj)) = 0, we see that (4.40) exists for
h € CP(R). In fact, we have

Ty, =T (4.43)

The mutual commutativity of P} (H, w.), HI; . H and T||+W is

trivial by their definitions. Now we introduce the asymptotic energy T:v’v
as follows: For h € Co(R), o

MT ) = s — lim Ua(t)"h(T0)Ta(t)- (4.44)
There exists T:Wa since Dz, (1yh(T,) = 0 for h € C§°(R), and we see that

by their definitions, T:v‘v,, commutes with P (H, w.), H:Wa, H: L.
and T , and that
I, Wa
+ _ ,+ a
Hiy =Hg'+T); =H"+ T s (4.45)
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where we used the fact that
U,(t) = e CVE @ U, (¢). (4.46)

In the other way, by using (4.11) and the fact that T'(1)(z /¢)T(1)~! =
x /t, we have

Pr(Ha,Wa) = T(l)PI (Ha,M,VVM‘a)T(l)—l = PJ—_‘—(Ha,M,VVM,a)’ (447)

Combining this with Theorem 2.2 (2) and using the fact that
T()pa, 1 T(1)™! = pe,1, we obtain

P:L(Ha,v'va) = D:—,J_(Ha,Wa)’ (4-48)

where D} | (H, y;,) is defined by
9Dy (H, ) = s = lim U, i, (£)"9(Pa, 1)U, , (2)
for g € Co(X,,1). Moreover, we see that the asymptotic observable
D;L,L(Ha,Wa) exists since Dy ()9(pa, 1) = 0 for g € C§°(X,,1). By their
definitions, D; L (H,,) satisfies
D:—,J_(H‘lywa) = Q:DJL(H%WG)QW

Combining this with (4.37) and (4.48), we have

P;:J_(Ha,Wa) = D(;':J_(Ha,ﬁ’a)‘ (449)

Then by noting that T, = T} + (ps,1)?/2 and that H*, Tj and (p,,1)*/2
are mutually commutative, we obtain

1
Ty, = Titw, + 5 (DL (Haw,))®
1
=Tity, + 5 (P L (How,))’, (4.50)
., 1
H |, =H*+ 5 (Pl (How,)s (4.51)

by virtue of (4.49). Combining (4.45) with (4.50) and (4.51), we have (4.41)
and (4.42). O

By virtue of Proposition 4.10, we may rewrite Proposition 4.11 in terms
of the asymptotic observables for the propagator U, y, (t) as follows:
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PROPOSITION 4.12. — Let the notations be as above. Let h € Coo(R). Then
there exists the strong limit

s — tlim U, w, (&) h(T))U, w, (). (4.52)
Moreover, there exists a unique self-adjoint operator T”+W such that (4.52)
equals h(:qlfwa). PH(H,w,) Hl H:LWQ and T”fm are mutually

commutative, and satisfy

+ _ + 4+
Ha,Wa - Ha,L,Wa + T||,vi/a7 (4.53)
S|
HY | 5 = HO 4+ S (P (Hyw,)) (4.54)

Here we need the known results for N-body systems without the Stark
effect, which were obtained by Derezifiski [D2] (see Lemmas 4.10 and
4.12 of [D2)]).

LEMMA 4.13. — Let the notations be as in §2. For any a € A,
X, x RN o(PY(Huraw), Hyjhw) C Xa X Ea,
o(PT(Hyraw), Hypw) D Xa X (0pp(Hip) \ Ta)-

Completion of the proof of Theorem 4.1. — We shall use Proposition 4.3 to
reduce the statements for H to those for the time-dependent Hamiltonians
H, . (t). We should note that

U Za,_L — XJ_. (455)
aCc

By virtue of (4.11), we have

HuY = H,

MWy

where we used the fact T(t)"*H*T(¢t) = H* = Hj;, a C c. By using
this, (4.43), (4.47), Proposition 4.12 and Lemma 4.13, and noting that
o(Ty) = R, we obtain

o(H,HS  ,PF(H)) c |

aCce

1
X {()‘7 >\c,_La ga,l) | A= /\C,L + Aa) )‘C,J_ = 5(5{1,J.)2 + T,
/\(l € R7 ga,J_ € Xa,L7 TE ga}’ (4.56)
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o(H,H} P} (H)) > |

aCce

1
X {(/\7 /\C,J.vfa,J.) I A= /\c,J. + /\ay /\c,_L = §(§a,J_)2 + 7,

X € R, Eut € Zat,T € 0pp(HY) \7,,}. (4.57)

But the closure of the right-hand side of (4.57) is the right-hand side
of (4.56). This implies the theorem. [
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