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ABSTRACT. - We study the asymptotic behavior in time of solutions to
the Cauchy problem for the derivative nonlinear Schrodinger equation

where a E R. We prove that if + is sufficiently small,
then the solution of (DNLS) satisfies the time decay estimate

where == s~; == +  

m, s E R. The above L° time decay estimate is very important for the proof
of existence of the modified scattering states to (DNLS). In order to derive
the desired estimate we introduce a certain phase function. @ Elsevier, Paris
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RESUME. - Nous étudions le comportement asymptotique temporel des
solutions du probleme de Cauchy pour 1’ equation de Schrodinger non
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lineaire derivee

où a E R. Nous démontrons que est suffisamment

petit, alors la solution (DNLS) obéit a l’estimée temporelle

ou Hm,s = 11(1 + !~!’)~(i -  oo},
m, s E R. La borne L° ci-dessus sur la décroissance temporelle est

très importante pour la preuve d’ existence d’ états collisionels modifies de
(DNLS). Pour montrer la validité de cette borne, nous introduisons une
fonction de phase appropriée. @ Elsevier, Paris

1. INTRODUCTION

In this paper we study the asymptotic behavior in time of solutions to
the Cauchy problem for the derivative nonlinear Schrodinger equation

where the coefficient a E R. This equation was derived in [18], [19]
to study the propagation of circular polarized Alfvén waves in plasma.
The (DNLS) has an infinite family of conservation laws and can be solved
exactly by the inverse scattering transform method [16]. The local existence
of solutions to (DNLS) was proved in [23], [24] under the condition that
uo E (s &#x3E; 3/2) and the global existence of solutions to (DNLS) was
also proved in [23], [24] for the initial data Uo E ~2 ~ ° such that the norm

is sufficiently small. These results were improved in [6], [7]. More

precisely, the global existence of solutions to (DNLS) was shown in [6] if
the initial data uo E are sufficiently small in the norm ~0~2 and
in [7] the smallness condition on ~u0 ~L2 was given explicitly in the form

I and also the smoothing effect of solutions was studied.
The final state problem for (DNLS) was studied in [9] and the existence of
modified wave operators and the non existence of the scattering states in
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161ASYMPTOTICS IN TIME FOR DNLS EQUATION

L2 were shown. For the cubic nonlinear Schrodinger equation, the modified
wave operators were constructed and the non existence of scattering states
in L2 were proved in paper [22] (see [4], [5] for the higher dimensional
case). However the result in [9] does not say the asymptotics in large time
of solutions to the Cauchy problem (DNLS). As far as we know there are
no results concerning the time decay estimate of solutions to (DNLS). Our
purpose in this paper is to prove L° decay of solutions of (DNLS) with the
same decay rate as that of solutions to the linear Schrodinger equation and
to give the large time asymptotic formula for the solutions which shows
the existence of the modified scattering states. Our proof of the results is
based on the choice of the function space which was done in the recent

paper [20], [21], the gauge transformation method used in [6], [7], [17]
and the systematic use of the operator J == ~ + The operator J was
used previously to study (1) the scattering theory to nonlinear Schrodinger
equations with power nonlinearities ([3], [11], [25]), (2) the time decay of
solutions ([2], [10]) and (3) smoothing properties of solutions ([12], [13]) to
some nonlinear Schrodinger equations. The main results in [3], [ 1 1 ] , [25] are
obtained through the following a priori estimate of solutions ~Ju~L2 ~ C.
This estimate along with the Sobolev type inequality (Lemma 2.2) in the
one dimensional case yields the required L° time decay of solutions for
the nonlinear Schrodinger equations with higher order power nonlinearity.
However it seems to be difficult to get the same estimate  C in

the case of cubic nonlinearity. To derive the desired a priori estimates of
solutions in our function space taking L° time decay estimates of solutions
into acount we have to introduce a certain phase function since the previous
methods ([3], [11], [25]) based solely on the a priori estimates of the value
(x + without specifying any phase function does not work for
(DNLS). The nonexistence of the usual L~ scattering states shows that

our result is sharp. Some phase functions were used in [4], [22] to prove
the existence of the modified wave operators to the nonlinear Schrodinger
equations with the critical power nonlinearity. Their results were shown
through an integral equation corresponding to the original Cauchy problem
and therefore the derivative loss in the equation can not be canceled via
integration by parts. The method presented here is general enough, since
it is also applicable to a wide class of nonlinear Schrodinger equations
with nonlinearities containing derivatives of unknown function and for
the generalized and modified Benjamin-Ono equations (see [14]), where
derivatives are treated via integration by parts. We finally note that the
cubic nonlinear Schrodinger equation of the form
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was considered in [15] and the existence of scattering states in L~ were
shown by making use of a priori estimate of Ju for the solutions of this
equation. However it is clear that their method does not work for (DNLS)
because the non existence of scattering states in L~ was shown in [9].

Let us explain the difference of our approach from the previous methods.
The precise time decay estimate  C(1+t,)-1~2 of solutions u of
(DNLS) will be obtained in Section 3 from the asymptotics of solutions u of
(DNLS) for large time (Lemma 2.5). The main term of this asymptotics is
determined by the Fourier transform of U(-t)u(t) (where U(t) is the free
evolution group associated with the linear Schrodinger equation) and we
also need a certain phase function to obtain the desired estimates concerning
the main term (see Lemma 3.2). The remainder term of the asymptotics
is estimated by the norm (see Lemma 2.5 ) so that the estimate

~ C(1 + tYY (with some small positive ’)’) is sufficient for the

precise L° time decay estimates. Thus in our approach we can allow a
little growth in time of the norm That is the main different point
from the previous methods.

Before stating our results, we give

Notation and function spaces. - Let or  be the Fourier transform
of f defined by

The inverse Fourier transform ;:-1 is given by

Let U(t) be the free Schrodinger evolution group defined by

We introduce some function spaces. E ~’ ; ~ tI  

where == if 1 ~ p  00 and 

x E R~ if p = oo. For simplicity we == 
Weighted Sobolev space defined by I~~ -s = ~~ E S’; ==

I I C 1-~- ~ ~ ~ ~ 1- ~~ ~ ~ .~ I I ~ ~ E R,1  p  r-.~~ ’ s ,
" . 11m,s = We let ( f , g~ _ ~’ f . gdx. Different positive constants
will be denoted by the same letter C.
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163ASYMPTOTICS IN TIME FOR DNLS EQUATION

In what follows we use the following commutation relation and identities
freely.

where

Our main results are

THEOREM 1.1. - We assume that and ==

E’  E, where E is suffcciently small. Then there exists a unique global
solution u of (DNLS) such that

THEOREM 1.2. - Let u be the solution of (DNLS) obtained in Theorem l. l.
Then for any small initial data ~co E n there exist unique functions
W, 03A6 E L~ such that

where Of  1/4. Furthermore we have the asymptotic formula for
large time t

uniformly with respect to x E R.

The following corollary shows the existence of the modified scattering
states.

Vol. 68, n° 2-1998.



164 N. HAYASHI AND P. I. NAUMKIN

COROLLARY 1.3. - Let u be the solution of(DNLS) obtained in Theorem l. ~.
Then for any small initial data ~c° E n there exist a unique
function W E L°° such that

where

Remark 1.1. - The inequalities ( 1.1 ) and ( 1.2) show that W and 03A6 can
be obtained from the initial function tto approximately.

Remark 1.2. - Our method can be applied to the following more general
nonlinear Schrodinger equation.

where 03B3, 03BB E R and p &#x3E; 3 if a = 0, p &#x3E; 4 0. The reason why we
need the condition that p &#x3E; 4 when a # 0 comes from the fact that our
method requires some regularity of solutions to obtain time decay estimates
of solutions. On the other hand, if a = 0, by using the method of this
paper we can obtain the asymptotic formula and the time decay estimate
in the n space.
We organize our paper as follows. In Section 2 we give some preliminary

results. Sobolev type inequalities are stated in Lemmas 2.1-2.2 and Lemma
2.3 is used to treat the nonlinear terms. In Lemma 2.4 some estimates

of functions are shown which are needed when the gauge transformation

technique is used. Lemma 2.5 says that the time decay of functions can be
represented by using the free evolution group of the Schrodinger operator. In
Section 3 we first give the local existence theorem (Theorem 3.1 ) without
proof and we prove the main results of this paper by showing a priori
estimates of local solutions to (DNLS) in Lemma 3.1 and Lemma 3.2.

2. PRELIMINARIES

LEMMA 2.1 (The Sobolev inequality).

Annales de l’lnstitut Henri Poincaré - Physique théorique
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provided that the right hand side is finite.

For Lemma 2.1, see, e.g., A. Friedman [1].

LEMMA 2.2. - Let 1  q, r  oo. Let j, m E N U ~0} satisfy 0  j  rn.

Let p and ex satisfy = j + + (1 - a  1 if
1/r E N U {0~, 1 otherwise. Then

provided that the right hand side is finite.

Proof. - By applying Lemma 2.1 with 03C8 = S(-t)f, we obtain

where we have used the identity (C). We again apply (C) to the above
inequality to get the desired result.

LEMMA 2.3. - We have

provided the right hand sides are finite.

Proof. - We only prove the last inequality in the lemma since the first
one is proved in the same way. From the identity

we obtain

By applying Holder’s inequality and Lemma 2.2 to the above inequality
we get

Vol. 68, nO 2-1998.
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where

A direct calculation shows that

Hence Holder’s inequality gives the desired result.

LEMMA 2.4. - We have

provided that the right hand sides are finite, where

Proof - We only prove the first two inequalities since the other estimates
are shown in the same way. A direct calculation shows

Annales de l’Institut Henri Poincaré - Physique théorique
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By the Holder’s inequality we have

and

We substitute (2.2) into (2.3) and (2.4) to get

and

We use (2.6) and (2.7) in the right hand side of (2.5) to obtain

The desired estimates follow from (2.2), (2.6), (2.7), (2.8) and the identities

Vol. 68, n° 2-1998.
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LEMMA 2.5. - We let u(t, x) be a smooth function. Then we have

where

Proof. - We have the identity

The identity (2.9) can be written in the following way for n = 0,1

where

We let 0152 satisfy 0  0152  1/2. Then we have the estimate

Hence we have by the Schwarz inequality

since 0152  1/2. From (2.10) and (2.11) the lemma follows, since
= 

Proofs of Theorems. - We define the function space XT as follows

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where E is a sufficiently small constant depending only +

To clarify the idea of the proof of the Theorem we only show a priori
estimates of local solutions to (DNLS). For that purpose we assume that
the following local existence theorem holds.

THEOREM 3.1. - We assume that + == E~  £ and £ is

sufficiently small. Then there exists a finite time interval [-T, T] with T &#x3E; 1

and a unique solution u of (DNLS) such that

For the proof of Theorem 3.1, see [6]-[8].
In order to obtain the a priori estimates of solutions u to (DNLS) in

XT we translate the original equation into another system of equations. In
the same way as in the derivation of [6, (2.3)] we find that u(l) and U(2)
defined by Lemma 2.4 satisfy

where

LEMMA 3.1. - Let u be the local solutions to (DNLS) stated in Theorem
3.1. Then we have for any t E [-T, T]

where the positive constant C does not depend on T &#x3E; 1.

Proof. - In what follows we only consider the positive time since the
negative case can be treated similarly. By (C) we have by (3.1)

The integral equations associated with (3.2) can be written as

Vol. 68, n° 2-1998.
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The operator U(t) is a unitary operator in L~. Therefore we easily obtain
by (3.3) and Lemma 2.3

Since

and

we have from (3.4)

where we have used the condition that the initial data is sufficiently small
and Theorem 3.1. We again use Theorem 3.1 to get

Applying the Gronwall inequality to (3.6), we obtain

This implies

In the same way as in the proof of (3.7) we have

The lemma follows by applying (3.8), the condition that the initial data is
sufficiently small and Theorem 3.1 to Lemma 2.4.
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LEMMA 3.2. - Let u be the local solutions to (DNLS) stated in Theorem
3.1. Then we have for any t ~ [-T, T~ .

where the positive constant C does not depend on T &#x3E; 1.

Proof - By Sobolev’s inequality (Lemma 2.1) and Lemma 3.1 we have

We assume that t &#x3E; 1. From Lemma 2.5 and Theorem 3.1 it follows that

We now consider the last term of the right hand side of (3.10). Multiplying
both sides of (DNLS) by U(-t), we find that

We put v(t) = U(-t)u(t). Then we have

On the other hand we have

A simple calculation gives

Vol. 68, n ° 2-1998.
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Hence

Now we make the change of variables ~2 = ~ " ~ Ç3 == X - z, then we
have ~2 + ~3 - ~ - ~ - ~ - ~ and ~2 -~2 -~3 ~ (~2 + ~3 - ~ - 2yz.
Therefore we obtain

where

Substituting (3.12) into (3.11 ) and taking the Fourier transform, we obtain

In order to eliminate the second term of the left hand side of the equation
(3.13) we make the change of dependent variable

Annales de l’Institut Henri Poincaré - Physique théorique
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Then we have by (3.13)

where

Integrating (3.15) with respect to t from 1 to t, we have for n = 0,1

By a simple calculation

where we take j3 satisfying 0  j3  1/4. Since

we have by (3.17), Holder’s inequality and the identity J

Vol. 68, n° 2-1998.
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Integration by parts and Lemma 3.1 give

Hence (3.18) and (3.19) imply

We apply (3.20) to (3.16) to obtain

if we take /3 satisfying j3 &#x3E; Ce, where we have used the fact that

~13(t,p)~ ] = 1. We now apply Lemma 3.1 to the above inequality to get

From (3.10) and (3.21) it follows that

We have the lemma by (3.9) and (3.22).
We are now in a position to prove our main results in this paper.

Proof of Theorem 1.1. - We have by Lemma 3.1 and Lemma 3.2

We take E’ satisfying  E. Then a standard continuation argument
yields the result.

Proof of Theorem. 1.2. - By (3. 16) and (3.20) we have

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Hence there exists a unique function W E L°° such that

We let t - oo in (3.23). Then we have

from which with (3.14) the first estimate (1.1) in Theorem 1.2 follows.
We let 

.

Then by (3.16)

In the same way as in the proof of (3.23) we get

This implies that there exists a unique function $ E L°° such that

We let t - oo in (3.25). Then we have

We easily find that the following identity holds

Vol. 68, n° 2-1998.



176 N. HAYASHI AND P. I. NAUMKIN

Applying (3.24) and (3.26) to (3.27), we obtain the estimate ( 1.2). By ( 1.1 )
and (1.2) we have

The asymptotic formula ( 1.3) follows from (3.28), (2.11 ) and the identity

where

This completes the proof of Theorem 1.2.

Proof of Corollary 1 .3. - The desired estimate follows from (3.28) and
the fact that This completes the proof of Corollary 1.3.
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