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ABSTRACT. - Noether’s Theorem in classical Lagrangian mechanics, for
Lagrangians quadratic in the velocities, is generalized to a class of 1R3 - valued
diffusion processes with diffusion matrix proportional to the identity. When
the proportionality constant reduces to zero, both hypothesis and conclusions
of our Theorem reduce to the classical ones. It is shown that this result

can be interpreted along the line of Feynman’s path integral approach to
nonrelativistic quantum mechanics. The analytical continuation in time of
the conclusion of this Euclidean Theorem provides a new Theorem on
symmetries in regular quantum mechanics.

RESUME. - Le Theoreme de Noether de la mecanique lagrangienne
classique, dans le cas des lagrangiens quadratiques par rapport aux vitesses,
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298 M. THIEULLEN AND J. C. ZAMBRINI

est etendu a une classe de processus de diffusion a valeurs dans 0~3,
dont la matrice de diffusion est proportionnelle a 1’ identite. Lorsque la
constante de proportionnalite se reduit a zero, nous retrouvons le theoreme
usuel. Nous montrons que ce resultat s’ interprete en terme d’ integrale de
Feynman dans le cadre de la mecanique quantique non relativiste. Par
prolongement analytique par rapport a la variable temporelle, ce resultat
fournit un nouveau Theoreme concernant les symetries de la mecanique
quantique usuelle.

0. INTRODUCTION

We prove a Theorem of Noether for a class of 1R3 - valued diffusion
processes, regarded as rigorous counterparts of the diffusions used formally
by Feynman for non - relativistic quantum particles in potentials. When
Planck’s constant n == 0 the hypothesis and conclusion of our Theorem
reduce to those of Noether’s Theorem in classical Lagrangian mechanics, for
the restricted class of Lagrangians considered by Feynman. The underlying
probabilistic framework is due, in essence, to E. Schrodinger [26 a)]. It
deals with the heat equation and not directly the Schrodinger’s one so it
is only an Euclidean analogy. However, it is a completely time symmetric
approach, in contrast to the familiar Euclidean one, due to M. Kac [6-4].
The role of the first integrals of the classical equations of motion is played
here by martingales with respect to the two sigma algebras involved in
Schrodinger’s approach (one for the past, one for the future information
about the physical system). A purely probabilistic treatment of Noether’s
Theorem can be found in [25].
The organization of the present paper, focused on the relations with

Feynman’s path integral theory is the following: The first Chapter reviews
the Theorem of E. Noether in classical Lagrangian mechanics, as well as
the basic (formal) results of Feynman’ s calculus for functionals of quantum
trajectories. No analogue of the classical Theorem of Noether has been
obtained by Feynman, even heuristically.

Chapter 2 is an expository account of Schrodinger’s Euclidean Quantum
Mechanics needed for our purpose. The probabilistic concepts of action
functional and associated critical diffusions, equation of motion and random
variables counterpart of quantum observables are described. Some of the
tools needed afterwards are also collected there. It is shown in what

Annales de l ’lnstitut Henri Poincaré - Physique théorique



299PROBABILITY AND QUANTUM SYMMETRIES I

sense our probabilistic framework can be regarded as a mathematically
rigorous version of Feynman’s path integral approach and, in particular,
why quantum constants of motion correspond to martingales.

Chapter 3 is devoted to Noether’s Theorem. The value of a typical
action functional of classical Lagrangian mechanics depends, in general,
on the choice of the parameter along the trajectory. There is a classical

procedure for transforming such action into a parameter invariant one (i. e.

geometrically meaningful): this is to go over a parametric representation of
trajectory or, equivalently, to extend by one the dimension of the domain
of the action functional. Parameter invariance imposes some restrictions on
the lagrangians and transformations. We shall see that the same is true in
our probabilistic framework.

A natural generalization of the definition of invariance of the action under
a Lie group of transformations is provided and, from this, it is shown that

along each diffusion critical for the stochastic action, a certain function of
space - time is a martingale. In this sense, the Lie algebra of the constants of
motion for the classical dynamical system becomes, quantically, a collection
of martingales of the underlying critical diffusions.

It is also shown that necessary conditions for the classical Noether’s
Theorem survive in a regularized way (using the probability measures of
the underlying diffusions).
The conclusion of the Theorem is also proved, independentely, by a

pure Lie group argument, together with a formula relating the quantum
Hamiltonian of the system and the infinitesimal generator of the critical
diffusions.

Chapter 4 provides the physical motivation of our work. It is shown

that, after the proper analytical continuation in the time parameter, the
probabilistic conclusion of the Noether Theorem turns into the existence of
a family of quantum observables N(t) which are constants of motion in
the usual (L2) sense. Even in the simplest cases, new quantum symmetries
emerge from our approach, justifying a posteriori our Euclidean detour.
The final chapter is a discussion of the Euclidean results and provides

a physical interpretation of some of the tools introduced. Our Theorem of
Noether can be generalized in many ways and some of them are mentioned
in the conclusion.

Finally, let us stress that, although we shall use some of the kinematical
tools introduced by E. Nelson in his "Stochastic Mechanics" [18],
Schrodinger’s Euclidean framework has a completely different dynamical
structure. In particular, it is not true, there, that classical constants .of motion

Vol. 67, n° 3-1997.
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correspond to martingales. No rigorous Theorem of Noether has been found
in this context. For recent developments in real time, cf. [33 - 34]. Other
investigations of symmetries for stochastic dynamical systems include [37].

1. FEYNMAN PATH INTEGRALS

AND THE MISSING THEOREM OF NOETHER

Let Q be the configuration manifold of a classical dynamical system.
The paths are C maps ~ : : ~ 2014~ 9 (~) and the regular Lagrangian is

where TQ is the tangent bundle of Q. For simplicity, here, we will consider

exclusively the configuration manifold Q == 1R3 of a single classical particle
in space but our method will be considerably more general.

If our (unit mass) classical particle is subjected only to a force field of
the form F = -W, for V the scalar potential, the simplest Lagrangian
is of the form

for 1.1 the Euclidean norm. Let us introduce the action functional S, defined
on a domain Ds C i1], Q) and associated with the Lagrangian L,

Hamilton’ s least action principle [1] says that among all regular trajectories
between two fixed configurations q (to) = qo, q (tl) = Q1, at the extremities
of I = [to, t 1], the physical motion q is critical point of the action 6B i. e.

its variational (Gateaux) derivative in any smooth direction 8Q cancels:
b,~ [q] (bq) = 0. Equivalently q = q (t) solves the Euler - Lagrange
equations in Q

Bundles of solutions of this equation result in the same way from a

variational principle involving the action ( 1.2) to which is added an (initial)

Annales de l’lnstitut Henri Poincaré - Physique théorique



301PROBABILITY AND QUANTUM SYMMETRIES I

boundary condition So(qo). This is what is needed for Hamilton-Jacobi

theory [ 1 ] .
Noether’s Theorem is the second most important Theorem of classical

Lagrangian mechanics. For the sake of future notations, let us describe it,
in its simplest formulation [2]:

Let

a given one-parameter (a E IR) local group of transformations of the (q, t)
plane. It is assumed that the functions Q and T are of class C2 in all their
variables and such that

Therefore, around rx = 0,

where (T (q, t), X (q, t)) is called tangent vector field of the family 
(and T, X infinitesimal generators of the transformation ( 1.4)). Let t - q (t)
be an arbitrary C2 trajectory in Q. Then one shows that, if a is small

enough, the image under U~y of the graph of q () is the graph of a one
- parameter family of trajectories in the (Q, T) - space transformation.
So the action (1.2) becomes S [Q () ; To, 71] under the transformation. Let
~ : additional generator (the "divergence"). The action
( 1.2) is said to be divergence-invariant if, for any 0152 small enough,

for any C2 trajectory q () in Ds and time interval I = [to, t1], and where
the trajectories and interval of integration in the r.h.s. action of (1.7) result
from the abovementioned one parameter family (cf [2]).

Noether’ s Theorem says that, when ( 1.7) holds, the smooth function

is constant on any critical point ?(-) of the action (1.2). The first factor
of (1.8) defines the momentum observable p = ~4 and the second one
Vol. 67, n° 3-1997.



302 M. THIEULLEN AND J. C. ZAMBRINI

the energy -H = L - associated with the starting Lagrangian L. As
shown by E. Cartan [8], ( 1.8) can be regarded, when ~ = 0, as the central
geometrical object of classical Hamiltonian mechanics.
The simplest illustrations are quite familiar:
a) If the Lagrangian L is independent on the i-component of the

configuration vector q, then the action ( 1.2) is invariant under the translation

where ei is an unit vector along the axis z. Consequently, the invariance
(1.7) holds for X = e2, ~’ _ ~ = 0 and, from (1.8), the z - component
of the momentum p is conserved.

b) If L does not depend on the time t, the action ( 1.2) is invariant under

and ( 1.8) shows that the energy observable is conserved.

c) For q in Q = U~3, if L is invariant under a spatial counterclockwise
(cos 03B1 -sin03B1 0

rotation about the ~-axis, L?. of the form = { sin a cos ~ 0 ,B 0 0 1
the action ( 1. 2) is invariant under (q, t) 2014~ (~3(0;)~).

-q2
Then the relation ( 1.8) for X = ql , T = 0 and 03A6 = 0 shows that

+ q1p2) is constant. This is the conservation of the component I3
of the total angular momentum.

Regular Quantum Mechanics is an Hamiltonian framework and, therefore,
has little to tell us about Noether’s Theorem. The only systematic lagrangian
approach to Quantum Mechanics is Feynman’s one [3]. It is mathematically
inconsistent (cf [4] ) but, along the years, he provided us with a set of very
powerful heuristic tools.

According to Feynman ([3], p. 172), every quantum mechanical law, for
the system characterized classically by the action ( 1.2), follows from the
formal integration by parts formula

where, in order to distinguish them from the classical trajectories, we denote
now by t -7 úJ (t) E Q the quantum ones in, say, the path space

Annales de l’Institut Henri Poincaré - Physique théorique
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F is, according to Feynman, an "arbitrary" functional on whose

"expectation" (.)s is computed with respect to the "complex weight"

where n is Plank’s constant, used as a probability measure on oy. In his
formula ( 1.11 ), Feynman denotes by the formal directional
derivative of the functional G in the direction 8(;).

Here is a minimal summary of the formal consequences of ( 1.11 ),
corresponding to the choice of a few functionals F and directions 8(;)

(cf. [3], chapter 7 for details):
For the simplest lagrangian ( 1.1 ), the following "probabilistic" version

of the Euler - Lagrange equation (1.3) holds:

The left hand side of Eq. ( 1.13) is a time discretized version of the second
derivative along quantum paths. Feynman does not take the continuum
limit At n 0 in order to avoid divergences. Indeed, for another choice of
functional of the paths in Eq. (1.11), he shows that ([3], (7-45))

where I, m = 1, 2 , 3 are the components in 1R3.

Feynman interprets this relation as the space-time version of the basic
commutation relations between the position Q and momentum quantum
observables P in L2 ~1~3 ), Pm] = i1ï8zm.

Notice that, if the continuum limit could be taken under the "expectations"
(.)5 of ( 1.14), two distinct time derivatives should coexist at the same time
t, otherwise the Heisenberg principle would be violated. After a formal
manipulation of ( 1.14), Feynman observes that the quantum paths t -3 cv (t)
are Brownian - like, expect for the imaginary factor i (r. h. of Eq. ( 1.14))
in the diffusion coefficient.

Feynman’s heuristic diffusion theory also provides us with a formal
algorithm to associate "random variable" (with respect to the "measure"
underlying (.)s) to regular quantum observable 0 in L2(Q). For the need
Vol. 67, n° 3-1997.
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of Noether Theorem, let us mention his (time discretized) momentum and

energy "random variables" for the Lagrangian ( 1.1 ):

becomes

Although the non classical in the energy random variable

(1.16) is reminiscent of the typical effects of Ito’s stochastic calculus [5],
we cannot interpret Feynman’s original strategy along this line since its

probabilistic content is, in fact, empty. The quotation marks above were,
therefore, needed.

As it is well known since M. Kac, some probabilistic counterparts
of Feynman’s quantization procedure makes sense if the Schrodinger
equation underlying the integration by parts formula is, first, replaced by the
associated heat equation ("Euclidean" approach [6]). We shall recall in the
next paragraph the relevant way to do this for our purpose, so that ( 1.11 )
becomes rigorous, as well as its consequences (1.13) and ( 1.14). Before

this, let us stress that, although the whole point of Feynman’s approach is
to be a quantization of classical Lagrangian mechanics, no "probabilistic"
version of the fundamental Theorem of Noether is provided there. As a
matter of fact, the same holds true for the elementary classical concept
of first integral (or constant of motion). Of course, when the classical

dynamical system is conservative, the expectation of Feynman’s energy
random variable (1.16), for exemple, is constant in time, but one could

expect a stronger characterization of first integrals holding true almost

everywhere with respect to an underlying probability measure. We shall see
that such characterization is precisely the one involved in our Noether’s
Theorem.

2. SCHRODINGER’S EUCLIDEAN QUANTUM
MECHANICS AND FEYNMAN’S PATH INTEGRALS

Let (0, T, P) be a Probability space, that is a triple where the sample
space 0 is a set of all elementary events, T is the sigma algebra of

the observable random events and P is a measure on (H, T) such that

Annales de l’lnstitut Henri Poincaré - Physique théorique
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P (n) = 1. A Q- valued diffusion process on (H, T, P), equipped with a
non decreasing family of sigma -algebras Pt C T, t &#x3E; 0, can be regarded
as solution of an Ito’s stochastic differential equation (S. D. E.) [5],

where a is a given nonsingular real square matrix and B a given real vector
field, both of the same dimension as Q. Moreover, Wt is a standard Q-
valued Wiener process. By definition, a solution is Pt- measurable and
for t &#x3E; 0, almost surely,

where the first integral in the right hand side is an Ito (forward) stochastic
integral, well defined under proper restrictions on a [5]. Since the sample
paths of W are of unbounded variation on any interval, so are those of z.

In order to make sense of an action functional like ( 1.2) along the paths
of diffusions like (2.2), one introduces the infinitesimal generator of zt,
denoted by D, and defined for smooth f on Q x I,by

where E[... I Pt] _-- Et is a conditional expectation, given the "history"
Pt, until the time t.

Eq. (2.2) implies that D is, formally, the operator

where B7 and A denote respectively the gradient and Laplacian in Q. The
comparison with Feynman ( 1.14) shows that it is sufficient to take, as

symmetric and nonnegatively defined diffusion matrix,

where t! is the identity matrix in Q = R~ and aT is the transpose of the
matrix a. However, it is known since Cameron’s work [7] that, in contrast
with ( 1.14), the diffusion matrix must be real if we want to deal with well
defined probability measures on paths space of continuous functions.
The forward generator (2.4), with diffusion matrix (2.5), is the appropriate

regularization of the formal time derivative along the sample paths used by
Vol. 67, n° 3-1997.
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Feynman: when 1i = 0 it reduces to the ordinary derivative. For example,
the definition (2.3) for f (x, t) = x shows that the drift vector field B is

the regularization of the a. s. divergent velocity 2014~ i. e.Y (1f 

Given this interpretation of (2.4) (advocated by Nelson [ 10] ), what about
the Lagrangian L needed for an action functional like (1.2) ?
A priori, without further specification on the diffusions solving (2.1 )

(with a = no canonical way to associate a Lagrangian L to

diffusions is known. However, it has been shown that for a special class
of diffusions, whose existence was suggested by E. Schrodinger and S.
Bernstein [26], such a relation is intrinsic [9] (in the sense that a whole

family of such diffusions with common dynamical properties is associated
with the same Lagrangian L). Let us consider the quantum Hamiltonian
observable H associated with the classical system described by (1.2), and

simple Lagrangian ( 1.1 ). H is a self-adjoint extension of

on L~(0).
The potential V is a real - valued measurable function over Q x I, belongs

to the Kato class as a function of the space, and may also depend smoothly
on the time parameter. In the time independent case, it is known that the

integral kernel of e~p (20142014R) is jointly continuous in all its variables and
strictly positive [9 b]. 
Then it has been shown that there is a large class of Q - valued

("Bernstein") diffusion solving simultaneously two stochastic differential

equations, in the weak sense (meaning that the probability space, the

filtrations and the Brownian motions are not given a priori [5]) namely,
for t e 1,

where the first equation is defined with respect to a nondecreasing filtration
as (2.1 ), but (2.8) (2) refers, instead, to a non decreasing filtration

5It, interpreted as the future information on our dynamical system. Wt
and W*t denote, respectively, Pt and 5It Q- valued Wiener processes. The

Annales de l’Institut Henri Poiricare - Physique théorique
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notation d*, borrowed from Nelson [10], denotes the infinitesimal backward
differential d* f (t) = f (t) - f (t - dt) and D* the associated generator,

like in (2.3) but with respect to the filtration 0t. As an operator defined
on C~ it can be written

Notice the minus sign in front of the Laplacian, due to the use of backward
Ito’s calculus. The Bernstein diffusion associated with the Hamiltonian (2.7)
are uniquely determined by the forward and backward drifts vector fields:

when rJ and rJ* are, respectively, regular positive solutions of heat equations
in with H as in (2.7),

namely the Euclidean versions of the Schrodinger equation underlying
Feynman’s approach, and of its complex conjugate, with appropriate
positive boundary conditions. We will always assume, afterwards, that
our regularity conditions on (2.10) are sufficient to guarantee existence and
uniqueness of weak solutions of (2.8)( 1 ) and (2). We shall impose the finite
kinetic energy conditions

for [to, t1] C I, and that the drift (2.10)(1) and (2.10)(2) are Lipschitz
continuous.

Those restrictions are much too strong (for example, they are not fulfilled
by the free, i. e. V = 0, "B ernstein bridge" on I = [to , starting from
the distribution 8x at time to and ending in 8z at time tl) but they will
be sufficient for our needs here.

Vol. 67, n° 3-1997.



308 M. THIEULLEN AND J. C. ZAMBRINI

The need of the two equations (2.11 ) for the construction of the underlying
measures, instead of one as usually, is specific to Schrodinger Euclidean
Quantum Mechanics ([9 b], [11]). The time interval I of existence of zt
depends on the boundary conditions of (2.11 ). Each result with respect to
the filtration Pt has a counterpart with respect to 0t which is formally, its
time reversal. The time reversibility of the whole construction is, actually,
built in the use of (2.11 ).

If denotes the Wiener measure with parameter n (cf. (2.8)) and
initial distribution the law of zo, then the measure of z, is absolutely
continuous with respect to /~, with Radon - Nikodym density

The proof uses Feynman - Kac formula, the theorem of Girsanov and the

special form (2.10) of the drifts. With p [z], one shows the existence of
weak solutions of (2.8)(1), and the time reversed version of the functional

p [z] provides weak solutions of (2.8)(2).
Using the resulting measures f-.l z, one shows the existence of a rigorous

version of Feynman’s integration by parts formula ( 1.11 ), via Malliavin’s
stochastic calculus of variations [28], [38], and valid for a wide class of
functionals in associated Sobolev spaces. We shall only mention here those
few consequences needed for the Noether Theorem (cf [ 12] for details).

The relevant action functional (assumed to be finite) of any smooth
Bernstein diffusion z is, henceforth, the conditional expectation

for the lagrangian

~t, T] c I, and ’r/T a smooth positive function in 

The change of sign of V, with respect to Feynman’s action (1.1) is

familiar when Schrödinger’s equation is replaced by the heat equation.
Although our approach uses, therefore, the same data as the conventional
Euclidean one (cf. [ 13], for example) we are going to see that its dynamical
content is quite distinct.
The action (2.13) is associated with the nonlinear (uniformly parabolic)

Hamilton-Jacobi-Bellman (HJB) equation:

with final condition ln y E 1R3.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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If V and are continuous and bounded, an unique regular solution
(i. e. E x R~)) exists [35]. Existence and uniqueness of continuous
solutions is also known if V and AT are limits of bounded continuous
functions.

THEOREM 2.1. cf. [14 b]. - If a regular solution A of (HJB) is known,
then V(t, y) e I x 1R3,

for any z in a class of (~3-valued diffusions on (0, T, P), with y,
zs adapted to Ps, t  s ~ T and admitting a Ps adapted drift D zs
defined by (2.3) and such that E ~ D  oo, V It is also

assumed that Dynkin formula holds for a set large enough in the domain
of the generator of z~ .

The inequality reduces to an equality only on the Markovian diffusion
with drift (2.10) (1), where ri solves the first heat equation of (2.11 ) with
final condition T) = 

For other probabilistic characterizations of such diffusions (Föllmer,
Wakolbinger, Cattiaux-Léonard) cf. [25}. When V is differentiable, one
shows directly (cf [ 12J) that the critical points of (2.13) solve almost surely

when

For more about this cf [27]. Eq. (2.15) can be regarded as a rigorous
probabilistic version of Feynman’s Euler Lagrange equation (1.13) for the
Lagrangian ( 1.1 ).

Since Bernstein measures, in contrast with Feynman’s ones, do exist, the
continuum limit is well defined in Eq. (2.15).

In general, the minimum of the action (2.13) in the abovementioned
class of admissible diffusions of the Theorem is not regular enough to be a
classical solution of HJB equation. But it is always a "viscosity solution".
This concept of weak solution is appropriate to the problem of singular
perturbation describing now the relation between the classical (~ = 0)
and non classical case 0). cf [14a]. In particular, it provides, under
weak restrictions, not only existence but also uniqueness of the solution

Voi. 67, n° 3-1997.
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of HJB equation with final boundary conditions. As mentioned before, this
generally will not be needed for our present study of symmetries.
As when n = 0, one proves easily that the gradient of HJB, in a

generalized sense if needed, coincides with the equation of motion (2.15).
The probabilistic version of Feynman’s algorithm to associate random

variables to quantum observable is as follows. Let 0 be one of the densely
defined, normal operators acting on the one-parameter family of Hilbert

spaces which are the Euclidean counterparts of L2(Q) (cf. [9.b]), and ??

an element of the cone of positive vectors in those Hilbert spaces. As a
function of t, this Euclidean quantum state solves (2.11 )( 1 ) in the strong
L2-sense. By construction, the probability density of a Bernstein diffusion
at time is

("Euclidean Born interpretation" cf. [9]). The forward random variable
associated with the observable 0 in the Euclidean state ?? E Do at time

t ~ I is defined by

if the r.h.s. is Bt-integrable. For example, the momentum and energy
random variables are [9b], respectively,

Given the definition (2.3), we observe that, up to the change of sign of
Euclidean origin, those random variables coincide with Feynman’s formal
ones in ( 1.15-16). In particular, the ~-dependent term in the energy can

really be regarded, now, as a consequence of Ito’s forward calculus. As
before, we have taken advantage of the existence of the continuum lim .

The reasoning leading to (2.17) is familiar in problems of foundations of

quantum mechanics [15].
The same quantum observable can, as well, be associated with a random

variable with respect to the decreasing filtration 5It, involving positive
solutions of the adjoint heat equation (2.11)(2). For example, the backward
momentum and energy are

Annales de l’Institut Henri Poincaré - Physique théorique
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Notice the change of sign in the non classical term of (2.21), with respect
to the forward energy (2.19).

Let us stress that the coexistence of two filtrations in this construction

is fundamental: the probabilistic version of some basic results of Feynman
requires this. For example the rigorous version of Eq. (1.14) becomes

We shall also need a probabilistic counterpart of first integrals of the
classical dynamical system. Let f be a Co function of space - time and
7/ a positive solution of the heat equation (2.11) (1), used in the forward
stochastic differential equation (2.8) (1) for zt.

Assuming that (/7?) E DH, Eqs. (2.4) and (2.11) imply that

where H is the quantum Hamiltonian involved in (2.11). This formula is
relevant for the forward filtration Pt. Its time reversed version is [16] ]

On the other hand, in regular Quantum Mechanics, and under proper
restrictions on dense domains of the observables 0 and H in L2(G~), 0 (T)
is called a constant of motion if it satisfies [17]

where [O, H] denotes the commutator OH - HO.
It was proved in [9 b] that the following Euclidean version of (2.24) makes

sense as well, on dense domains, in Schrodinger’s Euclidean framework,

for 0 (t) the Euclidean counterpart of the quantum observable 9 (T). Let
O (t) be an Euclidean constant of motion observable, in (2.25) sense. Using
Vol. 67, n° 3-1997.
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the definitions (2.17) and (2.22), it follows that the random variable o

associated with the Euclidean observable 0 satisfies, a. s.

when the left hand side is well defined. This is equivalent to say that

o (zt, t) is a Pt- martingale. Therefore the probabilistic counterpart of
quantum constant of motion is a martingale, one of the cornerstones of
stochastic analysis. Clearly, the analogous statement with respect to the
backward filtration 5It is that the associated backward random variable

o* t) satisfies, when the left hand side exists (cf. [11, 16]):

When L is as in (2.14), for example, the following conservation of energy
holds

AV

with respect to Pt and its analogue for c* holds with respect to fit.
We shall use constantly the following classical result, with the convention

Dynkin formula

Let f : 1R3 x I - R in the domain DD of the infinitesimal generator D

of (2.4). Suppose that f, ~ and D f are continuous on R3 x I and such that
t)1 ] and D f t)1 dt are finite for s  t in I. Then

Proof. - cf [29]. The result holds more generally. D

We have now the tools needed to formulate our extention of the classical

Theorem of Noether. For a different approach, see [25].
A review of Schrodinger’s Euclidean Quantum Mechanics and of its

relations with Feynman’s path integral theory can be found in [31 ] .

3. THE THEOREM OF NOETHER

Let the Hamiltonian H be fixed as in (2.7) and L the corresponding
Lagrangian (2.14) (from now on we omit the line on L since only Euclidean
formulation, unless explicitly mentioned, will be used).
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Let us consider the action functional (2.13) on I = [to, t 1 ~ . There, (q)
denotes the positive final condition for (2.11 ) ( 1 ) on I needed to evaluate
the action on a critical diffusion with drift (2.10) ( 1 ).

Like in classical mechanics, for a given equation of motion (2.15) the
Lagrangian L is far from being unique:
LEMMA 3.0. - Let L be the Lagrangian (2. 14) whose critical points solve

Eq. (2.15) a.e. on I. Let L’ be of the form

where f : 1R3 x I - R is sueh that Dynkin formula holds but, otherwise,
arbitrary. Then L’ leads to the same equation of motion (2.15~ a. e. on I.

Proof - For L (z, Dz, s) = D f (z, s), regarded as a Lagrangian of
his own, the Euler-Lagrange equation D = 0 reduces to an

identity a. s. 
c~z

Lemma 3.0 is a probabilistic counterpart of a classical gauge
transformation cf [19 b; 32].

In particular, choosing f appropriately in the lemma, the boundary
condition of the stochastic action functional (2.13) at time ti disappears.
Therefore, without loss of generality, we shall restrict ourselves to

functionals of the form

We call natural domain Ds the set of diffusions z solving (2.8) (1) and
such that ,S ~z (~)~  00.

From the geometrical point of view, only line integrals independent of
the parametrization of the classical trajectories are relevant. Let us define
the analogue property for the functional (3.1 ):

DEFINITION 3.1. - The action S is parameter invariant on I iff

V z E Ds, V [to, t1] C I, where QT is the time changed diffusion QT =
where T = f (t) is any C~ orientation preserving transformation

(i.e. T &#x3E; 0). DQT denotes the drift of this time changed diffusion.
Our basic action functional with Lagrangian (2.14) is not parameter

invariant, even when the potential V = 0. Consider, for example,
Vol. 67, n° 3-1997.
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the Bernstein diffusion critical point of (3.1 ) for a zero potential, and
characterized by the solution of the free heat equation (2.11 )( 1 ),

where (-,’) denotes the Euclidean scalar product in [R3 and Va is a constant
vector. The diffusion associated via (2.10)(1) has the constant drift

Dzt = Yo. If this diffusion solves (2.8)(1) with the Lebesgue measure as
distribution at time 0, theoretical physicists look at (3.3) as a plane wave
solution of the Euclidean Schrodinger equation (2.11)(1) with V = 0, and

probabilists as the (forward) "exponential martingale" for the Brownian
motion. The computation of the action functional for L (q, q) == ~ liJB2 is

immediate:

Consider the simplest time change T = e s for c any positive constant.

Then DQr = D~g 2014 = -~ and the r.h.s. of (3.2) becomesC~T C

In the classical case, there is a standard procedure to turn into a parameter
invariant action the basic one initially given, say

This is to go over a smooth parametric representation

and to regard the action as defined in the extended configuration space

The new integrand is, therefore,
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In particular, it is positive-homogeneous of de ree 1 in the velocities 2014
dT 

g 
dt

-.. The value of S [Q, r] depends, now, only on the curve Q (t), T (t)
and not on the particular parametric representation, by homogeneity of £.
Therefore, the new functional is parameter invariant. The same method will
apply to make the stochastic action (3 .1 ) parameter invariant.

Before doing this, let us notice the following relation with the
above mentioned classical invariance under a one parameter group of
transformations (cf ( 1.6)-( 1.7)), when the divergence ~ = 0:

LEMMA 3.2. - If S [q] is parameter invariant on I, it is invariant under
the one - parameter group of transformations Q = q, T = t + aT (t), VT
such that T (t) is orientation preserving.
A strong physical argument will be given later for justifying, in our

probabilistic generalization, the form of time transformation given in Lemma
3.2 ( to compare with (1.6)). This choice can also be proved to be necessary
if we require invariance (cf. [25]).
We can now formulate the probabilistic counterpart of the invariance

condition (1.7):

DEFINITION 3.3. - The basic stochastic action functional (3.1 ) is divergence
invariant under the Lie group of transformations (1.6), for T = T (t) such
that T is orientation preserving and divergence ~ such that Dynkin’s
formula holds if, for ex small enough,

V[to, c I (or its image Ti] under time change).
If t - zt is smooth, D reduces to the ordinary time derivative, the

expectations disappear and this definition reduces to the invariance condition
(1.7) used in the classical Noether Theorem.
A priori, however, it is not clear if our probabilistic generalization of

the invariance condition can ever be satisfied. Among the difficulties to
overcome, the first one is to construct explicitly a one-parameter family
of diffusions such that the right hand side of the definition (3.3) can be
compared with the starting (l.h.s.) action.
We are going to provide sufficient conditions for making sense of the

invariance definition (3.3).
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From (1.6), the determining equation of the process QT in the right hand
side action is now, for sufficiently small a,

Equivalently, carrying all the a-dependence in the right hand side, one
defines a one parameter family of processes indexed by t by

Since Zt == Z (t) is an R~ valued diffusion solving (2.8) (1) with drift (2.10)
(1), let us assume that X (q, T) is continuous on 1R3 x 7, with values in
1R3 and continous partial derivatives.

Then, it follows from Ito’s Theorem [5] that X (zt, t) is a three

dimensional diffusion solving a known stochastic differential equation
(with respect to the filtration Pt).

Eq. (3.7) defines a family of processes such that = z (t).
Another useful interpretation of our space - time transformation is that

the probabilistic counterpart of the graph argument used in the classical
Noether Theorem is the following:

PROPOSITION 3.4. - For a small enough, the transformation

for T : .~ --~ I~ of C1 class with ~’ &#x3E; 0 and X : 1R3 X I - 1R3 as before,
carries a given (1~3-valued Bernstein diffusion

with drift B (z, t) == log ~ (z, t), into a one parameter family of
diffusions Q (T), indexed by T in [7 (to), T solving weakly

where W is a P R3-valued Wiener process, | the 3 x 3 identity matrix and

X~ the matrix (~Y ~ ~ = 1,2, 3 of derivatives of components.
Proof. - Consider the change of configuration alone. By Itô’s Theorem

== Qt solves the Pt stochastic differential equation
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where is the 3 x 3 identity matrix. Now consider the deterministic change
of time t - T = t + aT (t) in this equation (cf [5]). If 

and = 1 + 0, then Q (T) solves

where W (T) is aPT Wiener process. Introducing the first order term of
the 0152 expansions of 1+~~., and the conclusion follows.

Remark. - Regarded as a one parameter family of drifts of diffusions,
the drift of Q (T) in Prop. 3.4, behaves as expected under our space -
time transformation. Indeed, by differentiability of stochastic differential
equations with respect to a parameter,

is the (forward) probabilistic generalization of the classical relation between
infinitesimal variations with and without time change, often denoted by

in classical books on calculus of variations .[8-19]. In Eq. (3.9), 8 q
symbolizes a spatial variation like X, and 8t a temporal one like T in
Prop. 3.4. According to Eq. (3.9), under such a space - time transformation,
the ordinary time derivative £ along the trajectory and a variation 6 do
not commute anymore, as they do when 8t = 0. We shall come back in
Prop. 3.9 on the role of 8 q.
From the measure theory viewpoint, however,the family of diffusions

of Prop. 3.4 is not directly appropriate to mimic, starting from Definition
3.3, the argument leading to the classical Noether Theorem: measures

corresponding to processes with different diffusion coefficients are not

absolutely continuous with respect to each others (not comparable). Since
each forward Bernstein diffusion is built from a positive solution ~ of
Eq. (2.11 ) ( 1 ), let us restrict ourselves to space-time transformations leaving
this equation invariant. More precisely, consider the transformations
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where, in addition to those of Prop. 3.4, we allow a transformation of

the solution ~ defining the diffusion zt, involving a smooth real-valued
infinitesimal generator ~ on R3 x I. The transformation (3.10), with

coefficients yet unspecified, are associated with the vector field (infinitesimal
generator) 

n n z ’"

(where Einstein’s summation convention has been used, for i = 1, 2, 3)
defined on the space of independent variables q, t and dependent variable

q of Eq. (2.11 ) ( 1 ).
The problem is now to find X, T and 03A6 such that, for any positive

regular solution 7? of

then fi (Q, T) solves as well

where denotes the Laplacian in the new configuration variable. This
amounts to say that (3.12) is invariant under the twice extended local

Lie group of transformations (3.10) and that we are looking for the

symmetry group of this equation (cf [20], for example). One shows that
a necessary and sufficient condition for such invariance is the validity of

some elementary partial differential equations for the coefficients Xi, T and
~ of £, called the determining (or defining) equations of the group:

LEMMA 3.5. - The determining equations of the above symmetry group of
the heat equation ~3.12~, defined by the infinitesimal generator ,C are

Starting from the definitions (3.10), the proof consists in computing how
the derivatives transform. The first (respectively second) extension refer
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to how the first (respectively second) partial derivatives are transformed
under (3.10). For details of the computation in the one-dimensional free
case V = 0, cf [20].
The determining equations 1 ) to 4) are linear. For a given,regular potential

V they are always solvable in closed form. Indeed, as well known in Lie
theory, they form an overdetermined system of equations. In the case of
the heat equation (3.12) and for many physical potentials V of interest
(free case, harmonic oscillator, Coulomb potential, etc...) their solutions
are available in tables of Lie groups. When they are not, it is a simple,
sometimes tedious, exercise to compute them. A few examples will be
given later.

PROPOSITION 3.6. - When the generators X, T and 03A6 of the trans-

formation (3.10) satisfy the determining equations of the symmetry group
of Eq. (3.12), the one-parameter family of diffusions of Prop. (3.4) solves
weakly

In particular, their respective probability measures are all absolutely
continuous with respect to each other. Moreover, the invariance

condition (3.3) for the basic stochastic action functional is satisfied.

Proof. - Equation ( 1 ) of the lemma implies that the a-coefficient of
the martingale part is zero. On the other hand, using Eqs. 1 ) and 2),
DX - J5T = 

This proves the first assertion. Regarding the second one, the

transformations (3.10) follow from the expansion around the identity a = 0
of the relation between the (positive) regular solutions of the heat Eqs. (3.12)
and (3.13):

Therefore

Since fi solves (3.13), it follows from Th. 2.1 (via Fleming’s "logarithmic
transformation" [14 b]) that the first term of the
l.h.s. of (*) can be interpreted, for t == to, as
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with L the regular Lagrangian (2.14) associated with (3.13). In the
conditions of Dynkin formula (2.29), the second term of the l.h.s. of (*)
is aEto It:1 t)dt. In both cases, we have ignored (without lack of
generality, by the lemma 3.0) the conditional expectations corresponding
to boundary conditions.

Since 7] solves as well (3.12), the same Th. 2.1 enables us to reinterpret
the r.h.s. of (*), with the same proviso, as

By the determining equation of the process Q, i. e. Q (t + aT) =
zt + this reduces to

so that (*) means precisely that the invariance condition .(3.3) is satisfied.
This proves the second assertion.

Remark. - Here we have required the parameter invariance of the

stochastic action functional (3.1 ) (see [25] for another approach). If we

allow time-transformations T = t + a T (t, q) for T : I x 1R3 ---7 R of
Cl class, then the symmetry group of Eq. (3.12) involves an additional
determining equation, namely

It follows that T = ~’ (t) only, as anticipated in (3.10) is, in fact, a

key necessary condition of our method. We shall come back later on the
physical interpretation of this.
Now we are in the conditions to formulate our

Theorem of Noether

Suppose that the action functional ~3.1 ) is divergence invariant under the
Lie group of transformations (3 .10), namely, for any ~to , +1] c I ,
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where the generators X, T and 03A6 satisfy the determining equations of the
symmetry group of the heat equation, as in Lemma 3.5, and then the one
parameter family of diffusions Qr is the one of Prop. 3.6. Then, along each
Bernstein diffusion zt, t E I, critical point of the action (3.1), the process
(using the summation convention)

when it belongs to DD, is a Pt martingale, for B and ~ the drift vector field
and energy random variable (2. 18-2. 19).
We shall need the following consequence of Prop. 3.6 and Lemma 3.5:

LEMMA 3.7. - Let z be a critical point of the left hand side action
in Eq. ~3.16) and therefore a solution of the regularized Euler-Lagrange
equation ~2.15),

Let Qr be the diffusion associated with the Lie group transformation of
Prop. 3.4, for a small enough. Then, if the determining equations of Lemma
3.5 hold, the diffusion Qr solve a. s.

In other words, the form of the regularized Euler-Lagrange equations is

preserved in the new space-time coordinates (Q, T) .

Proof. - The proof of Prop. 3.4 used the fact that

dT- .

and, as well, 2014 
== 1 + 0152 T. Consequently, to the first order in 0152, we have

found that DQ (7) == B + 0152 T). In the same way, since T (~)
is of bounded variation,
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Also

By Ito’s calculus, one can compute the factor of a in the r.h.s. of the
first relation. Using the determining equations of Lemma 3.5, including the
gradient of the relation 3), and the fact that DDZt == ~Y t) a.s., one

shows that this factor of a is identically zero. D

Remark. - One verifies that Q (T) solving (3.15) can be interpreted, at the
first order in a, as a Bernstein diffusion associated with the heat equation
(3.13), i. e. (cf (2.10) (1)):

for ~ a certain 1R3-valued Wiener process.

Proof of the Theorem of Noether. - Consider the action in the

r.h.s. of (3.16), for any Q (T) solving weakly (3.19). 
’

The first step is to transform this action into a parameter invariant one,
in analogy with the classical case (3.6):

where the a-dependence has been made explicit in the change of variables
defined by Prop. 3.4. The resulting action on the extended configuration
space is denoted by T0152]. Clearly, and = t. Also

t] coincides with the left hand side action of the invariance condition
(3.16). This condition can therefore be interpreted as

where, for t in [to, : I - R

The first equation of (3 .21 ) is just (3.19), read in the original time coordinate
of the basic action functional, the second is the one already used in Prop. 3.4.
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At the first order in 0152, Eqs. (3.21) are consistent with the conclusion
of Prop. 3.4. For example,

as found in Eq. (3.8).

Using twice Ito’ s integration by parts formula, once for D zt and X 
and another time for c ( zt , t ) and T (t ) , the computation of 8 J yields, finally,

But we know that the critical Bernstein diffusions C [to, il]
satisfy almost surely, by (2.15) and (2.28),

Therefore, the condition 6J = 0 means that V[to, tl~ C I,

i. e. that the random variable (3.17) is a Pt-martingale, t E I.

Remark. - Generally, the drift E (cf (2.10) (1)) of a Bernstein diffusion
depends explicitly on . Let us denote by B° its lim~0B (q t) when
it exists. When n = 0, D reduces to the ordinary derivative along a
solution of the first order ODE: q = BO (q, t). For B° a continuous and
uniformly Lipschitzian vector field, this equation has a unique solution for
a given initial condition. Analogously, the energy random variable E (Zt t)
reduces for  = 0 to ~(q, t) = -1 2|q|2 + V ( q, t) i. e. the (Euclidean)
energy associated with the Lagrangian (2.14). As suggested by Feynman,
the classical limit of observables is simpler, here, than in regular quantum
mechanics.

When fi = 0, Eq. (3.23) defines an ordinary constant of motion along
the smooth path t - q (t) and our conclusion coincides with the one of the
classical Noether’s Theorem 1.7 for the Lagrangian (2.14).
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When h &#x3E; 0, the stochastic differential equation (2.8) (1) is a singular
perturbation of this classical dynamical system, in Feynman’s sense. It is
well known that the path t - zt converge in probability toward q (t).

In the classical framework, one shows easily that the invariance
condition (1.7), valid V[ to, t 1], is equivalent to a condition involving only
the Lagrangian and not the action functional. The computation of BBa fa=o
provides us with the

PROPOSITION 3.9. - A necessary condition for the validity of the classical
invariance condition ( 1.7) is that the Lagrangian L of the action ( 1.2)
satisfies

where the summation convention is used, ~ = 1, 2, 3.

According to Lie group theory, the 3 first terms on the I. h. s. of

Eq. (3.24) constitute the first prolongation of the infinitesimal generator
T (t) ~ ~ Xi(q, t) agi associated with the transformations (1.6) when
T = T (t) (cf [20]). The factor of # corresponds to the symbolic
expression (3.9). 
The following regularization of (3.24) holds for the critical Bernstein

diffusion zt :

PROPOSITION 3.10. - If L ( q, q, t) denotes our basic Lagrangian (2.14)
a necessary condition for the invariance condition (3. 16) is that along the
paths of the diffusion zt, t E I, of the Theorem,

almost surely.

Proof - Let us rewrite the determining equations of Lemma 3.5 as

almost sure identities:

where tr (Xqq) denotes the trace of the 3 x 3 matrix whose elements are
3 vectors and Xq was defined in Prop. 3.4. By the determining equations
2) and 1 ) of Lemma 3.5,
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Therefore

~Y~
Using also 4): _8 . 

== 0, i- j, (3.25) reduces to
9~

which coincides with 3) of Lemma 3.5. The necessity of (3.25) for the
invariance condition (3.16), V[to, is verified as in the classical case.

cf [25].
The dynamical caracterization of the critical diffusion zt, i. e. the Euler

Lagrange equation (2.15) and conservation of energy (2.28), together with
the determining equations as above are, actually, sufficient to obtain directly
the conclusion of the Theorem of Noether:

PROPOSITION 3.11. - critical point of the action func-
tional (3.1 ). Then the determining equations of Lemma 3.5 imply that,
almost surely,

Proof. - By definition of a critical diffusion (2.15),
holds, almost surely, as well as, by (2.28),

DE t) == ~V ~t(zt, t). Itô’s formula for the l.h.s. of (3.29) and the fact that
t - T (f) is of bounded variation imply that the left hand side of (3.29) is

After substitution of (3.26)-(3.28), of the Euler-Lagrange equation and of
the conservation of energy, the resulting expression is zero, almost surely.
We are going to consider some illustrations of our theorem of Noether.

First, the probabilistic counterparts of the classical cases (1.9) and (1.10):
a) If the Lagrangian (2.14) of the action functional (3.1 ) is independent

on the i-component qi of the vector q, then (3 .1 ) is invariant under the
transformation

where ei denotes the unit vector along the axis i. This means that the
invariance condition (3. i6) holds for the generator X = ei and ~’ _ ~ = 0.
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Then (3.17) says that the z-component of the drift vector field (probabilistic
counterpart of the momentum for the Lagrangian (2.14)) is a martingale.

b) If the Lagrangian (2.14) (i. e. the potential V) is independent on the
time t, then (3 .1 ) is invariant under

corresponding to X = 0 and T = 1 in the invariance condition (3.16).
Then (3.17) says that the energy random variable is a martingale. This we
know already by Eq. (2.28) for V = V (zt).

c) Consider the free case, i. e. the Lagrangian (2.14) when V = 0.

By construction of our Noether’s Theorem, the generators X, T and 03A6
associated with the invariance condition (3.16) are the ones defining the
symmetry group of heat equation (3.12). In the free case, the symmetry
group is 13 dimensional. (In 3) + 4 dimensional, where d
is the dimension of the configuration space of the system.) The generators
X, T and 03A6 are found in tables of Lie groups (cf [20], for example). For
Eq. (3.12), their computation dates back to Lie himself.

When d = 1, here is a list of these ~ (1 + 3) + 4 == 6 generators:

The Lie algebra of the infinitesimal symmetries of the one-dimensional
free heat equation (3.12) is spanned by the 6 vector fields (3.11 ) associated
with those generators. The symmetries (2) and (3) are, respectively,
particular instances of b) and a) above.

d) For the one dimensional harmonic oscillator V (q) = 2 q2 , the

symmetry group is also six-dimensional and, actually, locally isomorphic
to the one of the case c). The generators are the following:
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For some purposes, other basis may be more natural for this Lie algebra.
It is clear that the Lie group component of our Theorem of Noether is

crucial. As a matter of fact, we are going to show that a pure Lie group
proof of its conclusion is available.

Let us consider the following differential operator associated with the
transformation (3.10):

A solution ~ of the heat equation is said to satisfy the invariance surface
condition if (q, t) = 0. When this is not the case, Lie group theory
shows that the invariance of Eq. (3.12) under (3.10) implies that the

exponential map

defines a one parameter family of solutions of the same heat equation [20].
One shows easily that, in these conditions, for any real constants 

j = O~ 1, ... n
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In particular, if ~ is a solution of (3.12), is also a solution so that,
introducing the heat operator for Eq. (3.12):

if = 0 then N N ~ = O.

Now define a real-valued function n on 1R3 x I by

Equivalently, from the definition (2.17), n (q, t) is the (forward) random
variable associated with the differential operator N. Suppose that (N 
D H, where DH is the domain of the Hamiltonian H.

By Eqs. (2.22)-(3.33), along a critical diffusion zt, 

is zero, almost surely, since N q is solution of the heat equation (3.12)
when ~ is. This is equivalent to say that n (zt, t) is a Pt-martingale. In
other words, using the definitions (3.30) and (3.33), as well as (2.10) (1)
and (2.19),

is a Pt martingale, as found in (3.17). We have proved the

PROPOSITION 3.12. - The real valued function n on 1R3 x I defined by
~n (q, t) == ~N r~) (q, t), where N is the differential operator (3.30)
and r~ is a positive solution of Eq. (3.12) in which does not satisfy the
invariance surface condition (N ri) = 0, is a Pt -martingale when evaluated
along the corresponding Bernstein diffusion zt indexed by t E I.
The proof of the last proposition involves implicitly, besides the starting

Bernstein diffusion zt associated with the solution ri of Eq. (3.12) another
one, zt, associated with the new solution (N q). What is the probabilistic
relationship between these diffusions? The answer is the

PROPOSITION 3.13. - The diffusion if, is a Doob’s h-transform of
the original one. In particular, when the drift vector field of zt is given by
Eq. (2. 10) (1), the drift of it (starting from the same point as is

where n (q, t) was defined in Prop. 3.12 and assumed to be strictly positive.
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Proof - Let P the probability measure of zt on the measurable space
(n, and for which the transition function is P (s, x, t, A) =

x, t, y) dy, where x, y E R3 and A is a Borelian of
R3. According to Prop. 3.12, the function n solves, a.s, Dn (zt, t) = 0
i. e. n (Zt, t) is a Pt-martingale. Then a measure P exists, is absolutely
continuous with respect to P, and with Radon-Nikodym density

Under P the process has the transition density with respect to dy

and therefore, by definition of the drift vector field

This is the definition of Doob’s h-transform [21].
As shown by the Euclidean Born interpretation (2.16), a fundamental

property of Bernstein diffusions is their time symmetry, if appropriate
boundary conditions for (2.11) (1) and (2.11) (2) are chosen.
The Noether’s Theorem proved above, as well as all the results of this

chapter, involve exclusively the heat equation (2.11) (1), i. e. the non-

decreasing filtration Pt. In order to restore the time symmetry needed for
quantum physics, one shows that these results admit a counterpart with
respect to the nonincreasing filtration ilit, i. e. in terms of the associated

positive solution of (2.11 ) (2). Starting from an action functional which
is formally a time reversal of (3.1 ) (if the scalar potential V is time

independent) namely

where a conditional expectation giving the future has been used, as well as
the associated (backward) derivative (2.9), one may introduce an invariance
up to a divergence term as in the Definition 3.3. The effect of any space-time
transformation, denoted now by
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where X * : ~ 3 x I -~ 0~ 3 and T* : are as regular as X and T, on
the stochastic differential equation (2.8) (2) with respect to the filtration 0t ,
is analyzed as in Prop. 3.4. After addition of a smooth scalar generator ~ * :

the study of the invariance of (3.35) becomes the study of the symmetry
group of the heat equation (2.11) (2). The determining equations of this
group are slightly different of the ones of Lemma 3.5:

Comparing (3.38) with the lemma 3.5, it is clear that we may always
choose X = X* and T = T*. But 03A6 will differ, in general, from 4l* .

Then, the invariance of the action functional (3.35) under the above Lie
group of transformations imply that the process

(where the summation convention is used, i = 1, 2, 3) is an J~-(2.20) and
c* the backward energy (2.21) of the diffusion 
One shows as in Lemma 3.7 that the form of the backward version of

the Euler-Lagrange equation (2.15), namely, here,

is preserved by the change of variables (3.36).
The necessary condition for the invariance of the action is as (3.25), for

the * generators and the backward derivative D*. The right hand side of
(3.25) is replaced. 

In analogy with (3.30) the differential operator
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is associated with the transformations (3.36-3.37) so that one defines a real
valued random variable n* by

For 7]* any positive solution of the heat equation (2.11 ) (2) such that the
r.h.s. of (3.42) is nonzero. Using Eq. (2.23), as well as the definitions

(2.20) and (2.21), one verifies that t) coincides with (minus) the
Ft-martingale (3.39).

Finally we can illustrate, once again, the central role of time symmetry
in our construction by considering the analogue of Proposition 3.13.
As noticed there, n (Zt, t) is a Pt-martingale used to define a new law
P under which the process is a diffusion it with drift (3.34).
The analogue is true if the Bernstein diffusion is regarded as defined
on (H, Ft) and solving (2.8) (2). Then n* (zt, t), for n* defined by (3.42),
is an Ft-martingale used to define a measure P* under which the process
has the backward drift

when ended at the same point as for (2.8) (2).
Each of those 2 descriptions uses only one filtration and then choose

definitely a direction of time. Now, suppose that (~V r~) and (N* r~* ) are

two positive solutions of the heat equations (2.11 ) ( 1 ) and (2) if 7y and y~
are. From them, a Bernstein process zt can be constructed, as in Chapt. 2.
According to Eq. (2.16), its probability law at time t has density

where the density (2.16) of the starting diffusion (2.16) has been
introduced. So (nn*) (q, t) is the Radon-Nykodim density of the
distribution of zt with respect to the distribution of zt.
The relation (3.44) is time symmetric. As for any Bernstein diffusion

associated with Eqs. (2.11 ) ( 1 ) and (2.11 ) (2),

is time independent (and assumed to be normalizable to 1 ) since the
Hamiltonian H is self-adjoint in L2(1R3)). The r.h.s. of Eq. (3.44) can also
be read, after integration, as
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Indeed, using the Theorem 11.12 of [ 18] and the fact that n (respectively
n* ) is a Pt (respectively Ft) martingale, assumed to be in D~ and 2~
respectively,

This is another illustration of the time symmetry of this probabilistic
framework.

4. ANALYTICAL CON1’INUATION IN

TIME AND QUANTUM SYMMETRIES

Schrodinger’s Euclidean quantum mechanics uses some unfamiliar tools
of stochastic analysis. Its probability structure is, however, as close as

possible to the one of regular quantum mechanics.
After analytical continuation in time, the Euclidean Born interpretation

(2.16) reduces to the usual probabilistic interpretation of the wave function

~ solving the Schrodinger equation for the same Hamiltonian (2.7). But
the construction of the Bernstein diffusions summarized in paragraph 2

collapses; the associated probability measures require to be built from

positive solutions of the heat equation and not the Schrodinger one. In

particular, the positivity of the integral kernel of the heat equation is crucial
to this construction (cf [9 b)]) while the corresponding quantum kernel
is not even real.

Still, our diffusion was built in such a way that its role is played, in
real time, by Heisenberg’s position observable QH(t) (cf Eq. (2.17)). It

follows, in particular, that the structure of the quantum symmetries is quite
similar to the Euclidean ones described above.

The determining equations of the "real time" symmetry group are very
similar (except for a few factors i) to the ones of lemma 3.5, namely:

LEMMA 3.5. - In real time.
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Their solutions are essentially the same, evaluated on (it) instead of t.
Reading backward Eq. (2.17) and the relation (2.22) between probability
theory and analysis in L2 space, one sees that the real time version of the
conclusion (3.17) of our Theorem of Noether is that the collection of time
dependent observables (before symmetrization)

are quantum constants of the motion, for P and H, respectively, the
momentum and Hamiltonian observables of the system, and X, T, P the
solutions of the real time determining equations.
Of course, the rigorous proof involves the familiar tools of quantum

theory in Hilbert space, with the determination of the dense domains of
operators etc. This is the content of [36], together with various applications
in quantum physics. However, the verification that the observables (4.1)
are constants of motion is easily done, using the Heisenberg equations
of motion of the system, the real time determining equations and formal
calculations with commutators.

As an illustration (cf. [36] for more) let us mention the real time version
of the one dimensional free case. The table of generators becomes

After substitution in (4.1), we observe that the first conservation laws of
the free quantum particle are familiar: energy, momentum, pure Galilean
transformations. But the two last ones are unfamiliar, time dependent,
constants of motion of the free quantum particle.
The possible -dependence of the 03A6 factor, in (4.1), is interesting. It

means that ~ does not, in general, coincide with its classical counterpart.
In fact, denoting by p this classical (real) coefficient, one shows that
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4l = 2014~ 2014 ~ ~~.2 . This relation is a necessary condition for the symmetry
of the operator N(t) defined formally by (4.1) (cf. [36]).
More generally, all the familiar quantum conservation laws will always be

included in the family of constant observables (4.1 ) associated with a given
Hamiltonian (2.7), but new ones will appear as well. This is due to the fact
that our Euclidean Noether Theorem (3.16)-(3.17) includes a divergence
term rarely considered even at the classical limit It = 0 and also to the,
generally, time dependent nature of the constant observables (4.1 ). It does

not seem that time dependent constants of motion in quantum mechanics
have been thoroughly investigated.

5. DISCUSSION AND PROSPECTS

As observed in Lemma 3.7, the form of the regularized Euler-Lagrange
equations is preserved under the space-time transformations (3.10). In

the classical case It = 0, this property characterizes a canonical

transformation [ 1-19b] . This means that all the transformations such

that the invariance condition (3.16) holds correspond to probabilistic
canonical transformations. In particular, those transformations preserve as
well Feynman’s commutation relations (1.14),

It will be interesting to study systematically such transformations,

especially in the perspective of (Euclidean) quantum field theory.
Let us call R the system with space-time coordinates (qi, t), i = 1, 2, 3

and R the one with coordinates (Qi, T). If we allow, in the basic action
functional 5~(-)], time transformations of the form T = t + q ) ,
then two simultaneous events with respect to the system of reference R will

not be, in general, simultaneous anymore with respect to R. However, if
we limit ourselves (motivated by the parameter invariance of the action, cf.
Lemma 3.2) to transformations of the form T = T (t), the simultaneity
will be preserved. Consequently, our class of time transformations was just
a basic requirement for our non relativistic framework.

The family of Lagrangians L for which our Noether Theorem is valid
seems much more restricted than in classical mechanics. It is, however,
not limited to the elementary case (2.14) of a classical particle in a

scalar potential V. For example, it holds as well for the Lagrangians
(or action) considered in [ 12], i. e. for the (Euclidean) classical particle in
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an electro-magnetic field. Such limitations have nothing to do with our
Noether Theorem itself, but are due to the structure of Schrodinger’s
Euclidean Quantum Mechanics. It seems that this strategy works for

classical Lagrangians quadratic in the velocities. This limitation is already
present in Feynman’s path integral approach [3]; the coincidence is not

accidental.

However, and in striking contrast with Feynman’s approach, our

Euclidean strategy is not limited to (Markovian) diffusion processes.

Specialists of stochastic control theory know, for example, how to deal
with Jump Markov processes [14b)]. The role of the Hamilton-Jacobi
Bellman equation is played by another nonlinear partial differential equation
("Dynamic programming equation") and the analogue of our starting action
functional (2.13) is known. Since Schrodinger’s strategy (cf (2.11) and
(2.16)) is, essentially, independent on the form of the quantum Hamiltonian
H (cf [22]), most of what we did here for diffusions will hold for other
Markov processes. The case of jump processes is especially attractive since
Feynman complained often that his path integrals do not permit a simple
incorporation of spin degrees of freedom (cf Conclusion of [3]).

There are other directions of generalization of the present Theorem of
Noether.

From the strictly probabilistic point of view, our strategy may present
some interest since it forces us to introduce there some geometrical
structures of classical mechanics, which are not at all familiar in this

context, but may have a more general range of validity than for Euclidean
Quantum Mechanics.

For example, the martingale constructed in Eq. (3.17) can be regarded
as the value of the stochastic Poincare-Cartan differential form (involving
the Stratonovich product o [5])

on the tangent vector field (X, T) of the family of transformations

t) = (Q, T) defined, when 0152 ---+ 0, as in Prop. 3.4. A stochastic

geometry of the phase space can be constructed, for each filtration, from
in analogy with the classical case [ 1 ] .

Let us mention another exciting direction of investigation regarding the
Hamilton-Jacobi-Bellman equation.
At the classical limit n == 0, it is well known that one of the most powerful

method of integration of the classical equations of motion is the one of
Jacobi, involving a "complete integral" of the Hamilton-Jacobi equation.
Vol. 67, n° 3-1997.
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This is a solution of this equation depending on n parameters (where n is
the dimension of the configuration space of the system, here n = 3). The
n parameters are constants of motion of the equation of motion. If such
a complete integral of Hamilton-Jacobi equation is known, the Theorem
of Jacobi says that the classical equations of motion are integrable "by
quadrature" (cf [1]). Our Theorem of Noether suggests that a probabilistic
concept of complete integrability for the Hamilton-Jacobi-Bellman equation
is accessible, and that the knowledge of n martingales could enable us to
solve explicitly this equation.

’ 

From the geometrical point of view, the method advocated here gives
access to various interesting problems in the probabilistic approaches to
Quantum Physics. The above mentioned study of canonical transformations
is just one of them; Djehiche and Kolsrud [23] consider those

transformations as harmonic morphisms. Also, as mentioned in Chapt. 1, in
the case of diffusions, very weak regularity conditions are required for the
critical processes, using the method of viscosity solutions for the Hamilton
Jacobi-Bellman equation [ 14] . The regularity imposed here can, therefore, be
weakened without modification of our strategy. This is true even in infinite
dimensions and therefore should be relevant for Euclidean Quantum Field

Theory [24] since it has been shown recently that Schrodinger’s strategy
still holds in this case [30].

Regarding the consequence of our Noether Theorem in regular quantum
mechanics, the new family of constant observables (4.1) is often more

natural than the Hamiltonian itself for the investigation of a quantum
system. This is true, for example, when the potential V depends on time,
i.e. when the system is not conservative. Various physical applications along
this lines will be considered in [36].
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