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ABSTRACT. - It is shown that the Cauchy problem for the nonlinear
Schrodinger equation == has a local solution in the

class C~([0,r],~(R~)) if the initial value belongs to Hs,2(Rn), where
1  s  n/2, and 0  7  n2s ifl~2,5-2(7 if

2~4,and~-37 if s &#x3E; 4. If moreover cr 2: ~ and
is sufficiently small this solution is global.

RESUME. - 11 est demontre que le probleme de Cauchy pour 1’equation
de Schrodinger non lineaire Au = possède une solution
locale dans l’espace C~([0,r],jFf~~(R")) si la valeur initiale appartient a
Hs,2(Rn) sous condition que 1  s  n/2 et 0  cr  si 1  s  2,
~ - 2  7  n2s n2s si s &#x3E; 4. Si en plus
()" 2: ~ et } est suffisamment petite la solution est globale.

1. INTRODUCTION

Consider the Cauchy problem for semilinear Schrodinger equations in
Rn :
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260 H. PECHER

where

The corresponding integral equation reads as follows

where

Large data global results can be found in J. Ginibre-G. Velo [4]. As a
general reference see also the monograph by W. Strauss [12].
We are interested in solutions to (5) in the class where

either I = [0,T] (local problem) or I = [0,+oo) small’

(small data global problem). It is well known that in the case s &#x3E; n/2 and
smooth f such solutions exist locally regardless of the value of a. In this
paper we concentrate on the range 0  s  n/2.

This case was already treated in detail by Th. Cazenave and F.B. Weissler
in [2] which is the first main reference here.

Concerning the local problem two restrictions on the power a were
made by them

. an upper bound a  which is a consequence of embedding
conditions for Sobolev spaces and

. a lower bound which ensures enough smoothness of the nonlinearity f
at the origin. The precise assumption they had to impose is as follows: if
9 ~ N then a &#x3E; [s] , whereas if s E N then a &#x3E; s - 1.

. In the special case s = 2 only a &#x3E; 0 was assumed.

. These lower bounds are unnecessary if a is an even integer so that f
is smooth.

Concerning the global small data problem they assumed in addition
* ~ = n-2s 4 °
The second main reference is the paper [3] by J. Ginibre, T. Ozawa

and G. Velo who mainly consider the asymptotic behaviour of solutions of
nonlinear Schrodinger equations but also give the following improvement
concerning the problem of local 77~-solutions:

. If s  2 the range s - 1  a  is allowed.

Concerning the global small data problem assume in addition a &#x3E; ~.
Annales de l ’lnstitut Henri Poistcare - Physique théorique



261SOLUTIONS OF SEMILINEAR SCHRODINGER EQUATIONS IN HS

However it is clear that these bounds in the range s &#x3E; 1 conflict with

each other in many cases, namely excluding high dimensions for a given s.

The aim of the present paper now is to improve the lower bounds on a.

The main results in section 3 show the local solvability in the space
under the following assumptions (because the range

0  s  1 is completely solved by [2], [3] we consider only s such that
1  s  n/2 ):

. If 1  s  2 we need no lower bound on a, i. e. 0  a  

Moreover we have in all these cases the global solvability if in addition
is sufficiently small and a &#x3E; ~ .

Thus the lower bound is less restrictive. Especially we are able to

cover arbitrary dimensions n if s  2. The limit case cr = n 42s is not

considered here (in contrast to [2], [3]) and would require probably special
considerations.

The special (global large data) result for s = 2 which goes back to

Kato [5] is the starting point for my paper now. However, we do not use
any conservation law at all. Because our method will be to use Banach’s

fixed point theorem for (5) directly our aim is to minimize the number of
derivatives lying on f(u) in order to weaken the lower bound on a . For
this we use in principle the fact that the differential equation ( 1 ) allows to
replace spatial derivatives by half the number of derivatives with respect
to t and a certain nonlinear term. This idea is used for the inhomogeneous
linear Schrodinger equation first (in section 2) by performing certain partial
integrations in the inhomogeneous term. Because these calculations have to
be carried out also for fractional values of s we are forced to use certain

interpolation spaces with respect to x and t as well. For technical reasons
we have to use a real interpolation method especially because a result
on interpolation of intersection of spaces (cf. Lemma 2.2 below) could
only be proven by this method. This means that we have to use Besov
spaces-which are the real interpolation spaces of pairs of Sobolev spaces-
instead of Sobolev spaces of fractional order in many places making things
technically more complicated. On the other hand just these Besov spaces
are more convenient to study the mapping properties of the nonlinear term.
However I remark that due to well-known embeddings between Besov and
Sobolev spaces in the final statement of the theorems it is possible to avoid
these Besov spaces completely.
The basic fact which is used all the time as also in [2] are the by

now standard estimates of type Lq (o, T; for the inhomogeneous

Vol. 67, n° 3-1997.



262 H. PECHER

linear Schrodinger equation (see also [14]). Technically we first apply the
contraction mapping principle in spaces of fractional time and space
derivatives (at least in the most critical range 1  s  2) such as

B2~2’~(0, ~’; Lp(Rn~~ (see (31) in Theorem 3.1)
endowed with a non-natural metric d avoiding the use of too many
derivatives again. A posteriori we then show that the solution belongs
to C~([0,T],R~(R~)) (Theorem 3.2).

Corresponding results for semilinear wave equations which of course
do not allow to replace space derivatives by a smaller number of time
derivatives (as here) were given e.g. in [7] and [9].

The interpolation technique used in this paper could possibly be applied
to other types of equations as well where spatial and time derivatives of
different order appear.

The author was informed by the referee of a preprint by T. Kato [6]
where related problems are discussed. Kato considers in [6] the Cauchy
problem (1), (2), (4) but f(u) not necessarily being homogeneous. New
uniqueness results in various solution spaces of the type L? (0 , T; 
are given, especially it follows from his results ([6], Corollary 2.3) that in
all my cases (1  s  rn/2) the solution is unique in C~([0,T],~(R~)).
Moreover the local existence results of Cazenave-Weissler [2] are

generalized to different spaces and more general nonlinearities. If however

power nonlinearities like (3) are considered Kato also has to impose upper
and lower bounds very similar to the conditions in [2] mentioned above to
ensure the existence of a solution in C~([0,r],~~(R")) which excludes
e.g. for s slightly bigger than 1 any dimension n &#x3E; 7 unless 03C3 is an even

integer (in contrast to my assumptions). Global existence in this space
for small data is also proven in [6] provided the same upper and lower
bounds for 03C3 as for the local results hold (and not only in the critical case
u = as in [2]) and provided u &#x3E; 4/n. This last condition coincides
with my assumption, but again the other lower bound on o- causes the

same problem (especially for n &#x3E; 7) mentioned in the local case already.
Because I only need weaker lower bounds many more cases are included.

In this paper denotes the Sobolev spaces and the Besov

spaces (of fractional order k, too). As reference we use the monographs of
H. Triebel [ 13 ] and J. Bergh-J. Lofstrom [ 1 ], where also different equivalent
norms especially in the Besov spaces are introduced which are used as well
as embedding theorems between Besov and Sobolev spaces.

I thank my colleague Michael Reeken for valuable discussions.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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2. LINEAR ESTIMATES

In this section we consider the inhomogeneous linear Schrodinger
equation

The solution is given by

where

The results in the following proposition are well-known.

DEFINITION 2.1 (cf. [2]). - A pair called admissible if 2  p 
2n 2 ._ n~l _ 1)n-2’ ’y ’" ’’’~2 ~~ °

PROPOSITION 2.1. - Let ~~y, p) be admissible. If n &#x3E; 3, s &#x3E; 0 the following
estimates hold:

Here L~ can be replaced by C° and by 

Proof - [2], Thm. 2.1 and 2.2.

PROPOSITION 2.2. - If s &#x3E; 0, the following estimates hold for admissible
pairs ~-y, P~, (q, ~~, I :== [0, T] and c independent of T:

Vol. 67, n° 3-1997.
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Here again L°° can be replaced by C° and the Besov spaces by the
corresponding Sobolev spaces.

Proof. - (12) [2], Thm. 2.2 (ii).
( 13) By partial integration we get

so that (12) and (10) give the desired estimate.
(14) Again integrating by parts gives

Then we use (12) for g replaced by (10) and the fact that
A : - is an isomorphism ([2], Lemma 2.6).

(15) We use (17) twice, first multiplied by A and secondly for 

An application of (10) and (12) for gives the estimate for Gg.
By differentiation one has

Using the estimate just proven we have the bound for d dtGg.
Annales de l’Institut Henri Poincaré - Physique théorique
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Differentiation of (19) gives

Again using the estimate of d dtGg just proven the bound for dt2 Gg follows
which completes the proof.

PROPOSITION 2.3. - Let s &#x3E; 0, (1, p) be an admissible pair, ~ :_ [0, T].
Then

Here c is independent of T, and the Besov spaces can be replaced by the

corresponding Sobolev spaces.

Proof. - (22) If (~y, p) _ (oo, 2) it is clear that (13) and (14) directly
give the result.

(21) If (~y, p) ~ (oo, 2) then (13) and (14) show the claimed estimate
if we show

This is a consequence of the trace theorem. More precisely we use [13],
Thm. 1.8.2 with 

With the notation

with g’ E = a}

it holds TJ - (Ao, Al ) p,p, where

Vol. 67, n° 3-1997.
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Thus

by [ 1 ], Thm. 6.4.5. This gives (23) with I replaced by R+ . But then it also
holds for I, because the restriction operator from (R+, B2’P~ (Rn ) )
onto I~I ~~’~ (I, B2 ~p~ (R~ ~ ) is a retraction with a corresponding coretraction
(extension). We refer to [13] here.

In the same way one can show

PROPOSITION 2.4. - The estimate (15) is true without the term

the special case (1, p) _ (q, r).
Next we want to give some interpolation results.

LEMMA 2.1. -Z~l~00,l~p00,08l,l~00.
Then

The same identity holds for R replaced by I.

Proof. - It is well known that A == 1t is the infinitesimal generator
of the translation group + t) in with

D(A) = H1’’’(R, LP(Rn)). From [ 1 ], Thm. 6.7.3 and p. 160 we get
= B°~’~(R, LP(Rn)) which is our claim.

That the identity also holds for I is a consequence of the fact that

the restriction operator from .B°~~’ (R, LP (Rn ).) onto B°~’~ (I, LP(Rn))
and from LP(Rn)) onto .Hs~~’ (~, Lp (Rn ) ) is a retraction with

a corresponding coretraction (extension), cf. [ 13], Thm. 4.3.2.

As a direct consequence we get

PROPOSITION 2.5. - Let (~ p) be an admissible pair, 0  s  2. We have

Proof - Use Lemma 2.1 and ( 11 ) and ( 11 ) with s = 0.
The next result concerns intersection of spaces.

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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Proof - We apply [10], Satz 1.1 and Korollar 1.1. With his notation

we define Ao :== (R, LP’ ~R’~)~, = I~1~~’’ (R, LP’ ~Rn)~, Ai .-
Ai ~= A~ n A1.

where m(~r) :== 1~~1)1/2.
Here 

A 

and p-l denote the Fourier transform with respect to time and
its inverse, 0  t  00. Following [10] we have to show

and

Here K denotes the K-functional in real interpolation theory ([1],
Chapter 3.1 ). In order to prove (30), let a = ao(t) + al(t) be an arbitrary
decomposition with a«(t,) E Ao, E We have by Lemma 2.3 below

thus

Moreover by Lemma 2.3 again

thus

Now (30) follows from (32) and (33), and (31) follows from Lemma 2.3.

Vol. 67, n° 3-1997.
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where c is independent of t.

Proof - a) If 1  p, q  oo we use [ 11 ], Cor. 10. We need

which is easily checked.

b) If p = 2, q = oo we use [ 1 ], Lemma 6.15, and we need

An elementary calculation  J and

11~r;(t, .)1I~2(R)  ct if t  1 if t &#x3E; 1, which completes
the proof.
The interpolation results just obtained are now used to get

PROPOSITION 2.6. - If an admissible pair, (~,p) # (oo,2),
001,6&#x3E;0 arbitrarily small, the following estimate holds with c

independent of ~.’

where

Proof - From (12) and (21 ) we have the following continuous mappings:

Thus Lemma 2.1 and Lemma 2.2 give

Annales de l’Institut Henri Poincaré - Physique théorique
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Now we have by [13], Thm. 1.18.4 and Thm. 2.3.2 and [ 1 ], Thm. 3.4.1

and Thm. 6.2.4:

Moreover using [ 1 ], Thm. 3.4.1 and [13], Thm. 1.18.4 we have

By [ 1 ], Thm. 3.4.1 (c) and Thm. 5.2.1 we conclude

Similarly

From (37), (38), (39), (40), (41) we get the claimed estimate for

Similarly from ( 12) and Prop. 2.3

One has (L’~(I, H1~~(~~ = $2 +E’~~I ~ so

that as before the claimed estimate for follows.

PROPOSITION 2.7. - If (~y, p) ~ (oa, 2) is an admissible pair, 0  O  1,
we have with c independent of ~:

where E &#x3E; 0 is arbitrarily small, and .-L - 1 ~,o , .-L == 1 p~o + ~

Vol. 67. n 3- 1997.
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Proof - The proof is similar as in Prop. 2.6. We interpolate between
the estimates (12) and (22):

As before we use Lemma 2.2 and

The first identity follows from [13], Thm. 1.5.3 and [8], p. 47. Similarly

The claimed estimate now follows as in the preceding Proposition. The
continuity of Gg can be easily seen by choosing a dense subset P of
smooth functions, e.g. Now obviously G : P ~

C~([0, T], and the claimed estimate holds for g E P, so that a

limiting process shows Gg E 

3. THE NONLINEAR PROBLEM

We consider the integral equation (A = -A):

where

and

First of all we construct local solutions of (43) for s  2 by using the

interpolation results of the previous section.

Annales de l’Institut Henri Poincaré - Physique théorique
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Moreover assume

1. Let ~~y, p) denote the special admissible pair

Then the integral equation (43) with (44), (45), (46) has a unique local
solution u E Y.

Here

where I :== [0, T] and ~’ _ .

2. If the admissible pair ~~y, p) is chosen as

and if moreover

7 &#x3E; 4 /n sufficiently small

then the integral equation (43) with (44), (45), (46) has a unique global
solution u E Y with Y, X defined by (49), (50) and I :_ ~Q, ~-oo~.

Proof. - We show that the mapping

is a contraction in a suitable ball in X endowed with the metric

Part 1. - In order to show that S maps X into itself we use Prop. 2.6
with as in (48), g = f(u) , and 0=~-6, and want to show

with ~ &#x3E; 0.

Vol. 67, n° 3-1997.
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Using one of the equivalent norms in Besov spaces ([ 13], Thm. 4.4.2(2))
we have with 7~ := {~ : t, t + T E 7} :

Holder’s inequality gives

so that the second term in (56) is estimated by Holder’s

inequality with exponents 201420147 and 2t with respect to T by

This can be estimated as required by (55) if the following conditions
are satisfied:

and

(57) is equivalent to cr  (which was assumed) under the choice (48)

of ~. (58) holds by [ 1 ], Thm. 6.5.1 provided == 1 - £ which is easily
seen to be equivalent to our choice (48) of p. 

Returning to (56) we remark that the estimate 
is straightforward now: 

Thus (55) is proved.

Annales de l’lnstitut Henri Poucare - Physique théorique
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The next estimate we need in order to use Prop. 2.6 (using its notation

also) is of the type ( 1 ):

where 0~1,A&#x3E;0,~&#x3E;0 small.
If (59) is fulfilled we use Lemma 4.1 below and C (p &#x3E; 2)

( [ 1 ], Thm. 6.4.4) and arrive at

Proposition 2.6 and (55), (60) lead to

Now we prove (59). We need the embeddings

These are true provided we have (62) and (63):

The last condition in (63) is equivalent to

where the equality follows from elementary calculations using the definition
(48) of p and po according to Prop. 2.6. The last expression lies between
0 and 1 if 0  n 42S , so that q can be chosen such that (64) holds
with almost equality, thus (63) is fulfilled.

Again an elementary calculation shows that (62) is equivalent to

(’) Here we ignore terms of order E in the parameters which is possible because the conditions
to be fulfilled are given by strict inequalities.

Vol. 67,n° 3-1997.
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Thus (62) and (63) are compatible if the right hand side of (64) is smaller
then the r.h.s. of (65). A lengthy calculation shows that this is the case iff
a  which is exactly our assumption on a so that (59) is proved.
Next we estimate the linear term in (53) by Prop. 2.5 and (10):

From (53), (61) and (66) we conclude

Our next aim is the desired Lipschitz property of S with respect to the
metric d defined in (54).

( 12) and Holder’s inequality first with respect to space variables and
exponents p - 1 and P-2 and then w.r. to time and exponents 1 - 1 and
03B3-1 03B3-2 gives

The last estimate holds with ~3 &#x3E; 0 provided we have

and

(69) is fulfilled by the definition (48) of ’Y iff o-  4~~+~) - 2 which is
equivalent to our assumption (J"  n 42s (70) holds by Sobolev’s embedding
theorem and the embedding C ([ 1 ], Thm. 6.4.4) if

~-~ ~ ~ ~ ~ which is exactly our choice of p in (48).
From (68) we have

Standard arguments using (67), (71) and Banach’s fixed point theorem
complete the proof.

Annales de l’Institut Henri Poincaré - Physique théorique
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Part 2. - The proof is similar as in l. but we need (55) with ~ = 0. This
requires equality in (57) which is fulfilled with our choice (51) of (f, p).

(5 8) holds by [ 1 ], Thm. 6.5.1 Provided 1. &#x3E; 03C1-03C1’ 03C1’03C103C3 ~ 1 03C1 - s n which is easily
seen to be equivalent to /  a  n 42s . Thus (55) with = 0 holds.

Next we need (59) with A = 0. This would lead directly to (61) with
= A = 0. In order to check (59) we need (62) and (63) and moreover

(because 7 = [0, is unbounded now) ~ &#x3E; ~,o (~+1~ . The latter however
can easily be checked for any a &#x3E; 0. The last condition in (63) is now

equivalent to

The last expression lies between 0 and 1 if ~  a  ,so that r~ can

be chosen s.th. (63) is fulfilled. An elementary calculation also shows that
(62) is equivalent to

Thus (62) and (63) are compatible if the r.h.s. of (72) is smaller than the
r.h.s. of (73) which can be shown in our case a  20142014 Because (66)
holds here, too we arrive at (67) with x = A = 0.

Concerning the Lipschitz property of S we get (68) with /3 = 0
because (69) holds with equality and (70) requires ~- &#x3E; ~P &#x3E; p - n which
by elementary calculations can be seen to be fulfilled if ~  ~  
Thus (71) follows with (3 = 0.
The proof can be completed from (69) and (71 ) with x = A = ,~ = 0

by standard arguments.
Now we are able to show a posteriori the desired regularity of the

solution.

THEOREM 3.2. - The solution u of Theorem 3.1 belongs to

C~~I ~ .

Proof
1. Concerning part 1. of Thm. 3.1 we use Prop. 2.7 with 8 = 2 - E and

as defined by (48) and have to which

has already been done in the previous theorem and (2) 

(~) We here again ignore terms of order E in the parameters as before.

Vol. 67, n° 3-1997.
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where  = ~ , ~ - 1-s~2 + -48 . We want to show an estimate analogeous
to (59) and need the embeddings

These are true if the following two conditions are satisfied:

Using the definition (48) an elementary calculation shows that the second
inequality in (75) is equivalent to

The last expression lies between 0 and 1 can be chosen s.th. almost

equality holds here. (74) is equivalent to

Thus (76), (77) are compatible if the r.h.s. of (76) is smaller than the r.h.s.
of (77) which can be shown to be the case iff a  which is just
our assumption on cr. 

’~ 

Combining the analogue of (59) just proven with Lemma 4.1 below
completes the proof.

2. Concerning the global part of Thm. 3.1 we conclude as above but with
~~y, p) defined by (51 ). The analogues of (76) and (77) are

These conditions are easily shown to be compatible if a  n 42s ~ Moreover
we need in (74) ~ &#x3E; ~,~ +1~ which is true and in (75) ~- &#x3E; which

is fulfilled if a &#x3E; ~. The proof is completed as before.
Anfiales de l’Institut Henri Poincaré - Physique théorique
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4. HIGHER REGULARITY

If 2  s  4 we use Prop. 2.3 and if s &#x3E; 4 Prop. 2.4 without further

interpolation. The case of non-integer s is the more complicated one because
we have to use Besov spaces instead of Sobolev spaces.

THEOREM 4.1. - Let ~~N,2~4. Assume

1. Define ~~y, p) as the special admissible pair

where E &#x3E; 0 is sufficiently small (i.e. (48) slightly changed).

Then the integral equation (43) with (44), (45), (46) has a unique local
solution u E Y.

and a- &#x3E; n &#x3E; is sufficiently small the integral equation
(43) has a unique global solution u E Y with Y, X defined by (82), (83)
and I = [0, 

Proof Part 1. - We proceed as in Theorem 3.1. According to Prop. 2.3
we have to estimate

and

Vol. 67, n° 3-1997.
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In order to treat (85) the most difficult term is We use

We have to treat the integral term by using the chain rule. Among the many
terms which appear and can be treated in a similar manner the following one
shows where the lower bound on 03C3 comes in and also why the pair (1, p)
has to be changed slightly (which also excludes the limit case cr = ~ ):

by Hölder’s inequality with 1 p + 03A3[s]-2j=0 1 pj = 1, |03B1j| = I ( j = 1,...,M-2).
Here we assumed ~ - 2  7  [8] - 1, the case ~ &#x3E; [8] - 1 being easier
because ([8]-1) being lipschitz in that case.

Returning to (87) we have the following bound from (88) of the

corresponding integral term:

(Remark that 0  ~J~~  1 if s - 2  cr  [8] - 1 ! )
The integral here is bounded by , 

. In order to

get the desired bound for (89) by the following
embeddings are needed:

Annales de l’Institut Henri Poincaré - Physique théorique
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and

These are fulfilled if the following conditions hold ([13], Thm. 2.8.1 and
Remark 1 ) :

with strict inequality

These conditions can be satisfied with suitably chosen if

An elementary calculation shows that on the r.h.s. equality holds with (~, p)
defined by (48) and strict inequality with our choice (81). Because all the
terms in (87) can be treated similarly (or easier) and lead to an equality
equivalent to (92) we arrive at

Thus Holder’s inequality with respect to t shows

With our choice (81) of ,one has (03C3 +  03B3 if cr  (80),
so that we have 8 &#x3E; 0, s.th.

A similar estimate holds for

Vol. 67, n° 3-1997.



280 H. PECHER

It remains to consider (86). This is somehow easier because we have one
derivative less compared to (85). We have

Because 1([8]-2) is lipschitz in our case a &#x3E; s - 2 all the terms appearing
here after application of the chain rule can be treated essentially in the
same manner.

A typical term with

is:

Here

Thus the corresponding term in (96) can be estimated by

provided we have

The embedding theorem ( [ 13], Thm. 2.8.1 ) gives the sufficient conditions:

Annales de l’Institut Henri Poirzcare - Physique théorique



281SOLUTIONS OF SEMILINEAR SCHRODINGER EQUATIONS IN HS

These can be satisfied with suitably chosen p, pj if

Using (97) an elementary calculation shows that this is equivalent to

Because all the other terms in (96) can be estimated similarly and also lead
to (102), we have if (102) is satisfied (with 03BA &#x3E; 0):

provided we have
($ small) which requires

In (103) we moreover interpolated by Lemma 4.1 below. Using the

definition (81 ) of ~~, p) an elementary calculation again shows that ( 103),
( 104) are compatible with a suitably chosen 00lif~ which

is our fundamental assumption (80) on a.
The estimates for (85) and (86) just given imply by Prop. 2.3:

The rest of the proof is exactly as in Theorem 3.1.

Part 2. - The global part is similar. One easily shows that (92) holds
with our choice of (ry, p)  n ~2s . We get (95) with 8 = 0,
because (a + = ry. Also (103) holds with ~ = 0 if (104) is satisfied.
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The conditions ( 102) and ( 104) are again compatible if 03C3  n 42s . We
arrive at ( 105) with 8 == ~ = 0. The proof is completed exactly as in
Theorem 3.1.

In the next step we show a posteriori the desired regularity of u.

THEOREM 4.2. - The solution ~ 4.1 belongs to C~(7, n

~(7,~-~(R~)).

Proof. Part 1. - Concerning the local solution by (22) it is sufficient to
show the following estimate: .

with a &#x3E; 0 and (q, p) as in (81).
The first term was already treated in the preceding proof.
Concerning the second term we use the well-known identity

~-2,2 ~ $2-2,2 and estimate similarly as before (replacing p by 2 in
(96)):

In analogy to (99) and (100) we need here

which is fulfilled if
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The l.h.s. can be shown to be fulfilled and the r.h.s. leads to the following
analogue of (102): 

’

If (109) is satisfied, we get (cf (103)):

provided
requires

which

In ( 110) we also used Lemma 4.1 below.

Again it is elementary to check that ( 109) and ( 111 ) can be satisfied with
This completes the proof.

Part 2. - Concerning the global part we need (106) with A = 0. The
embedding (108) requires as before 2 03C1(03C3 + 1 ) &#x3E; 1 which is fulfilled if

r 2 ~ and (109). The conditions (109) and ( 111 ) are again compatible if
(J"  ,~ 42s ~ which completes the proof.
The following interpolation type lemma was used several times above.

LEMMA 4.1. - lf s1,s2 &#x3E; 0, 0  k ~ 2, 0  e  1, p, q &#x3E; 1 the

following estimate holds (for E &#x3E; 0 small):
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Proof - Using B°s1 +~l-~&#x3E;~2’p = B22’P~O?2 and one of the

equivalent definitions of Besov norms ([13], Thm. 4.4.2 (2)) we have

The embedding C Bl2~o ° ’~~ ([13], Thm. 2.3.2 and [1], Thm. 6.2.4)
completes the proof.

Similarly using B°s~+~1-o)s2,P - ~s2~P)0,2 ([1], Thm. 6.2.4) we
get the estimate with B22’P) replaced by 
THEOREM 4.3. - Let~ s ~ N, s &#x3E; 4. Assume

1. Define (q, p) as in (81) and

Then the integral equation (43) with (44), (45), (46) has a unique local
solution u E Y.

2. If (q, p) is defined by (~ 1 ), (J" 2 ~ and sufficiently small
the integral equation (43) has a unique global solution u E Y with Y, X
defined by ( 114), ( 115 ) and I = [0 , +(0).
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3. If 03C3 is an even integer l. and 2. hold without the lower bounds on 03C3

(remark that ~ 2:: ~ is automatically fulfilled).

Proof. - We proceed as in Theorem 3.1. According to (15) and Prop.
2.4 we have to estimate

Since all the terms can be treated in essentially the same manner we
concentrate on typical ones in each of the cases. Concerning (116) we
consider the term

One here has to estimate e.g.

where

If we have the most critical range s - 3  [s] - 2 the function
no longer lipschitzcontinuous but only holdercontinuous unless

a is an even integer in which case we therefore need no lower bound on cr.
Holder’s inequality with exponents P, Pj ( j = 1,.., [s] - 2) gives in this case

Thus ( 121 ) is estimated by (similarly as before we remark 0  2014~r~~ )  1

if s - 3  [s] - 2):
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In order to get the desired bound by c) )u)] £7,) ~R n ~ ~ ( ~t ( ~ ~ 2 S - ~, , p we need
the embeddings 

~ ~;" "-6~"’(R~) 
-

and

These are fulfilled if ([13], Thm. 2.8.1 ):

These conditions are satisfied with suitably chosen P, Pj if

An elementary calculation again shows that this is true with our choice (81 )
or (51) of (~ p) and our assumption cr  n4 2 or ~  n4.2 respectively.
Similar estimates can be given for all the other terms in (116) so that we
conclude with 8 &#x3E; 0 in part 1. and 8 = 0 in part 2. of the theorem:

because with our choice of’Y and a we have  ’Y and 1,

respectively.
Next we estimate (117). Typically we have to treat

where
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This leads e.g. to (with Holder exponents 1, ..., a + 1)):

(remark that this term disappears if cr is an even integer and a &#x3E; a)

provided the following embeddings hold

and

These are fulfilled if ( [ 13], Thm. 2.8.1):

A simple calculation shows that this requires

If ( 132) is satisfied we conclude from ( 129) with 4+4=1:
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This holds with x = 0 and rB; &#x3E; 0 small as well. Here we used Lemma 4.1
and the embeddings B~’’~(7) C (8 = 0 or 8 &#x3E; 0 small) and
~~(7) C which hold provided 2014 &#x3E; 1 - 28 and  &#x3E; 1 - e
These are satisfied with suitable p, q if 

Now (132) and (134) are compatible with 2+r(~- ~)
which can easily be seen to be satisfied with our choice (81) or (51) of
(’Y ~ P ) and a  4 .
Thus ( 117) is also estimated by with x = 0 and 03BA &#x3E; 0

small as well.

The term ( 118) was already treated in (103).
Finally in order to estimate ( 119) we use Hs-2,2 = B2 - 2 ~ 2 . A typical

term in the most critical case s - 3  a  [s] - 2 is:

Here - + ~~s~ 12 1 = 1 and the following embedding is used:

which is fulfilled if
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An easy calculation shows that with suitably chosen P, Pj these conditions
hold if a  n 42s ~ .

The rest of the proof is exactly as before.

THEOREM 4.4. - The solution u of Theorem 4.3 belongs to

0~(7, ~‘1(~, r~s 2&#x3E;2~R,~’)) n 02(1, ~s 4~2~R,n~~-

Proof. - According to ( 15) and Prop. 2.4 we have to estimate

and

by (8 &#x3E; 0 in the local case and 8 = 0 in the global case)
with q, p, X as in Theorem 4.3, and

( 139) and (140) are already treated in Theorem 4.3.

Concerning ( 137) we use Hs-2,2 = B2-2,2 and typically estimate (in the
most critical case s - 3  a  [s] - 2) with laj = 1 ( j = 1,..., [s] - 2)
and Holder exponents 

if the following embedding holds
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This is true if

One easily checks that these inequalities hold with suitable if

Moreover we need

which holds with p defined by (81 ) and also if p is given by (51 ) if a &#x3E; ~.
If (143) is satisfied we conclude from (141)

by use of Lemma 4.1 provided we have B~ ’~(7) c which is

true if we have

With both of our choices of (q, p) and a (143) and (145) are compatible
again.
The term (138) is treated like (117) with (~y, p) replaced by (oo, 2). Like

there we get under the condition

the estimate
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S

Here we used Lemma 4.1 and the embeddings B~ ’~(7) c and

~"’~(7) C which hold if .

An elementary calculation again shows the compatibility of (146) and (148)
with both of our choices of (q, p) if a  n 42s ~ Thus the desired estimate
of (148) follows. This completes the proof.

It remains to consider the case of integer s. The proofs are somehow

simpler because essentially we can use Sobolev instead of Besov spaces.

THEOREM 4.5. - Let s E N, s &#x3E; 2. Assume

1. If

Then the integral equation (43) with (44), (45), (46) has a unique local
solution u E Y, I = [0, T].

2. If

o- 2:: ~ sufficiently small the integral equation (43) has a

unique global solution u E Y, where Y; X are defined by (151) and ( 152),
T == (0, -1--00 ) .

3. If a is an even integer l. and 2. hold without the lower bounds on a.

Proof. - We proceed as in Theorem 4.1 and according to Prop. 2.3 we
have to estimate

and
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Concerning (154) a typical term with 0  a  s - 2, 2:;=1 laj I = a,
2:;=0 = s - 2 is estimated with Holder exponents = 0, ...,a)
as follows:

(remark that this term disappears if a  a is an even integer) where the
embeddings c n and

c were used which hold provided

These conditions are satisfied with suitable p, pj if

which is easily seen to be fulfilled under the definition ( 150) (with equality
on the r.h.s.) and also with p defined by (51 ) if ~  cr  n 42s ~

Concerning (155) typically we have to estimate with a, aj as before:

The needed embedding

holds if
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which is easily seen to be satisfied if

Under this assumption we conclude by Lemma 4.1 (with K &#x3E; 0 and also

with K = 0):

provided we have ~=~(7) C L~+~+’(7), i.e.

As before (see (103) and (104)) (156), (157) are compatible under our
assumptions. The rest of the proof is the same as in Theorem 4.1.

THEOREM 4.6. - The solution of Theorem 4.5 belongs to C° ~~, 
C~(7,~-~(R~).
Proof - Similarly as in the case of fractional s we have to estimate only

The typical &#x3E;
with 0  a  s - 2, 2:;=1 = s - 2 is estimated with Holder exponents

 

if Hs-28,p(Rn) c which as in

Theorem 4.2 leads to condition (109).
The rest of the proof proceeds exactly as there (replacing Besov by

Sobolev spaces).
As before in the case of fractional s we can improve the lower bound

on a if s &#x3E; 4.

THEOREM 4.7. - Let s E N, s &#x3E; 4, and assume

instead of ( 149).
Then the conclusion of Theorem 4.5 is valid with

Proof. - Similarly as in Theorem 4.3 we have to estimate (116)-
( 119) with Sobolev instead of Besov spaces. A typical term for (116) is
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Holder’s inequality with exponents = 1, ... , a + 2) gives the estimate

if the embeddings c and

C hold. The embedding conditions
can be shown to be fulfilled again under our assumptions on p. This gives
the desired bound on (116) as there (cf (127)).
The analogue of ( 117) with the typical term

where 0  a  s - 4, 2:;=1 I = a is estimated by

if the embeddings C n 

and c LPoP(Rn) hold. 
The conditions to be fulfilled here are again given by ( 132) and (134) so

that similarly as in the proof of Theorem 4.3 we get an estimate of ( 117)
by with K &#x3E; 0 and 03BA = 0 as well.

Concerning ( 118) the typical 
with 0  a  s - 2, a can be estimated by

 &#x3E; 
under the

condition c n which

again leads to (102) so that (103) with 03BA &#x3E; 0 and 03BA = 0 as well, i. e. the
estimate for ( 118), follows as there.

Finally (I 19) and its typical &#x3E;
with a  s - 2, C = a can be estimated by

which can be shown to be fulfilled
if a  ~2s’ The rest of the proof proceeds as before.
THEOREM 4.8. - The solution of Theorem 4.7 belongs to

Proof. - Similarly as in Theorem 4.4 it remains to estimate ( 137)
and ( 138). In ( 137) a typical term i u ... ~~) £2 ~Rn ) &#x3E;
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with 0  a  s - 2, I = a which is estimated by
C &#x3E; 

if the

embedding C holds which

requires 1 &#x3E; 1 - s-40398 n and 1 &#x3E; 1 - thus 03C3+1 03C1 ~ 1 2 ~

(03C3+1)(1 03C1 - s-40398 n) +a n which leads to ( 143 ) and ( 144) so that as in the proof
of Theorem 4.4 the follows.

Finally (138) has a typical term with 0  ~  ~ 2014 4, ’E;=1 = a:

This estimate holds C 

and C which holds if

thus

which leads to (144), (146) and (147). This completes the proof.
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