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ABSTRACT. - Standard generalized vectors for an 0~-algebra ~ lead to a
Tomita-Takesaki theory of modular automorphisms on 91, and this is a key
step in constructing KMS states on S)1 (which would represent equilibrium
states if 91 is the observable algebra of some physical system). In this
paper, we extend to partial O*-algebras the notion of standard generalized
vector and we show that they indeed satisfy the KMS condition. We also
discuss several less restrictive classes of generalized vectors for a partial
O*-algebra which all give rise to standard generalized vectors for
a partial GW*-algebra canonically associated to either on the same
domain or on a smaller dense domain. Finally we discuss the extension of
standard generalized vectors from a von Neumann algebra 2t to a suitable
partial GW*-algebra containing Qt. Thus here also partial GW*-algebras
play a distinguished role among all partial O*-algebras.
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224 J.-P. ANTOINE, A. INOUE AND H. OGI

RESUME. - Les vecteurs generalises standard pour une O*-algèbre 91
menent a une theorie des automorphismes modulaires sur 0l, au sens

de Tomita-Takesaki, et ceci est une etape cruciale dans la construction
d’états KMS sur 0l (qui representent les etats d’équilibre si 0l est

1’ algebre des observables d’un systeme physique). Dans le present travail,
on etend aux 0*-algebres partielles la notion de vecteurs generalises
standard et on montre qu’ils verifient effectivement la condition KMS.
On discute egalement differentes classes moins restrictives de vecteurs

generalises pour une O*-algèbre partielle qui toutes donnent lieu
a des vecteurs generalises standard pour une GW*-algèbre partielle
canoniquement associee a tantot sur le meme domaine, tantot sur un
domaine dense plus petit. Enfin, etant donne une algebre de von Neumann

on discute le probleme de 1’ extension des vecteurs generalises standard
pour 2t a une GW*-algèbre partielle convenable contenant Qt. Il appert
donc qu’ici aussi les GW*-algebres partielles jouent un role privilegie
parmi toutes les O*-algèbres partielles.

1. INTRODUCTION

The first concern of quantum statistical mechanics is to identify the

equilibrium states of a given physical system. In the traditional algebraic
formulation [ 1 ], the system is characterized by the algebra 3t of its

observables, usually taken as an algebra of bounded operators. The latter
in turn may be obtained by applying the well-known GNS construction
defined by a state on some abstract *-algebra. Then the standard treatment
of the basic problem consists in applying to St the Tomita-Takesaki theory
of modular automorphisms, which yields states on 2t that satisfy the KMS
condition. The latter is a characteristic of equilibrium, indeed it is generally
admitted ([1], [2]) that KMS states may be interpreted as equilibrium states
in the Gibbs formulation, at least if the system is described as a C*- or

W*-dynamical system.
In quantum field theory too, the Tomita-Takesaki theory plays an

important role. In particular, the modular group of the von Neumann

algebra associated to a wedge domain has in certain cases a nice geometric
interpretation, in terms of Lorentz transformations or dilations. This line
of thought has undergone substantial developments in the last years, as

described in the recent review of Borchers [3].

Annales de l ’lnstitut Henri Poincaré - Physique théorique



225STANDARD GENERALIZED VECTORS

However, there are systems for which the standard approach fails. On one
hand, it is often more natural in physical applications to consider unbounded
operators, e.g. generators of symmetry groups, such as position, momentum,
energy, angular momentum, etc. In that case it is usually assumed that all
the relevant operators have a common dense invariant domain. The standard

example is that of the canonical variables, represented in the Hilbert space
~2 (~31 by the unbounded operators Q and #. The natural dense domain
for these operators is Schwartz space S ( f~3 ) . They both leave it invariant
and thus generate on this domain an algebra of unbounded operators or
O*-algebra [4]. Similarly, (smeared) quantum boson fields are unbounded
operators, with a natural invariant domain, either the Garding domain or
the domain obtained by applying polynomials in the fields to the vacuum
vector [5].

On the other hand, there are systems, such as spin systems with long range
interactions (e.g. the BCS-Bogoliubov model of superconductivity [6]), for
which nonlocal observables are important and the thermodynamic limit does
not exist in any C*-norm topology. However, it does exist in a suitable

O*-algebra ([7, 8]). For these reasons, it seems reasonable to represent the
observables of the system (either local or in the thermodynamical limit) by
the elements of an O *-algebra 3K.

However, it is sometimes inconvenient or unnatural, or even impossible,
to demand a common invariant domain for all relevant operators in a given
problem. To give a trivial example: in the simple case described above,
S is invariant under Q and P, but it is of course not invariant under any
of their spectral projections. Another instance is a Wightman field theory,
where the Garding domain is not always invariant under the elements of
(local) field algebras [9]. Still another one is the existence of systems (e.g. a
particle on an interval) which require nonself-adjoint observables [10]. All
this suggests that one should go one step further and drop the invariance
property of the common domain. The result is that the observable algebra
is replaced by a partial *-algebra of operators on some dense domain or,
more concisely, a partial O*-algebra. This object, originally introduced by
W. Karwowski and one of us [1 1], has been studied systematically in a
series of papers (see [ 12] and the review [ 13]), to which we refer for further
details and references to the original papers.
Now let us come back to our question: how does one construct KMS

states on an O*-algebra or a partial O*-algebra? In the O* case, it was first
shown by one of us [14]-[16] that a suitable Tomita-Takesaki theory may
be derived for an O*-algebra 9K if, among other conditions, 9J1 possesses
a strongly cyclic vector. In that case, one obtains states on 9K (in the usual
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226 J.-P. ANTOINE, A. INOUE AND H. OGI

sense) that satisfy the KMS condition. However, the existence of the cyclic
vector is a rather restrictive condition, that should be avoided.

A possible solution is to consider generalized vectors ([17], [I8}). If VJ1
is an O*-algebra on the dense invariant domain D, a generalized vector for
9Jt is a linear map A from some left ideal D(A) of 9R into D, satisfying
the relation

Now generalized vectors are closely related to weights and quasi-weights
on O*-algebras, which extend the notion of states (roughly speaking, a
(quasi)-weight on a *-algebra 2t is a linear functional that takes finite

values only on certain positive elements of Indeed, it was shown in

[ 19] that, under suitable restrictions, a generalized vector for an O*-algebra
9Ji defines a quasi-weight on which satisfies the KMS condition. For

a system whose observable algebra is assumed to be an O*-algebra, these
KMS quasi-weights may be interpreted as representing equilibrium states.
The next step is to extend the whole scheme to a partial O*-algebra,

and this is the aim of the present paper, which may be seen as a sequel
to [ 19] . As a matter of fact, the definition and main properties of generalized
vectors are almost the same as in the 0* case, provided due care is taken
of the possible nonexistence of the product XA in ( 1.1 ). Here too, arbitrary
generalized vectors are too general for obtaining a Tomita-Takesaki theory,
only the subclass of standard generalized vectors will do, as shown in [ 17]
in the O~‘ case. However, their definition is rather restrictive and can be
weakened to essentially standard and quasi-standard, and even further to
modular generalized vectors, while still reaching the original aim, in a

restricted sense at least (the definitions will be given in Sections 4 and 5).
A new feature of the present results is the particular role of the

partial GW*-algebras, that is, partial O*-algebras that constitute a natural
generalization of von Neumann algebras to the partial O*-algebra setting.
Indeed, a partial GW*-algebra is basically a partial O*-algebra that coincides
with its bicommutant (technically, its weak unbounded bicommutant 
see Section 2 for the definitions). Equivalently, a partial GW*-algebra
contains a (strong*) dense subset of bounded operators, which constitute a
von Neumann algebra . Now, if DR is a fully closed partial 0~-algebra on
D and its weak bounded commutant 9K ~ leaves the domain D invariant,
then the bicommutant M "w03C3 is a partial GW*-algebra containing 9K and it
coincides with the strong* closure of the von Neumann algebra (M’w)’.
The relevance of this in the present context is that, in this case, a generalized
vector A for 9K, satisfying a mild density condition, may be extended to
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227STANDARD GENERALIZED VECTORS

a standard generalized vector A for 9J1 W~.. A similar result holds if we
require only A to be modular, but in this case A is a standard generalized
vector for a partial GW*-algebra that lives on a smaller dense domain.
All this points again to the natural role of partial GW*-algebras among all
partial O*-algebras, especially for applications.
The paper is organized as follows. In Section 2, we begin by recalling the

main definitions and properties of partial O*-algebras that will be needed.
More details may be found in [12] and [13]. In Section 3, we define a

generalized vector A on a partial O*-algebra 9~, and its commutant ae,
which is a generalized vector on the von Neumann algebra (9J1 ~/.
Sections 4 and 5 form the core of the paper. In Section 4 we consider

the extension of a generalized vector A to a generalized vector A on the
partial GW*-algebra ~ ~,~ . From this we infer the appropriate definition of
standard generalized vector , and show that a standard generalized vector
indeed satisfies the KMS condition. In Section 5, we discuss various weaker
variants, namely modular and quasi-modular generalized vectors. Section 6
is devoted to several special cases and examples, whereas in Section 7 we
come back to partial GW*-algebras, with the following result: Given a von
Neumann algebra and a standard generalized vector A~ on 9K~ we
show that one may construct a partial GW*-algebra with bounded part

and a standard generalized vector A on 9K that extends Ac.

2. NOTATIONS AND DEFINITIONS

For the sake of completeness, we recall first the main definitions and

properties of partial O*-algebras that will be needed in the sequel. Further
details and references to original work may be found in [ 12] and [ 13].
Let H be a complex Hilbert space and D a dense subspace of H.

We denote by ,C ~ ~ D, ?-~C ) the set of all (closable) linear operators X such
that = D, D. The set ,G~ (D, H) is a partial *-algebra
with respect to the following operations : the usual sum X1 + X2, the
scalar multiplication AX, the involution X - xt = and the

(weak) partial multiplication X1[]X2 = defined whenever X2 is
a weak right multiplier of Xi (equivalently, X 1 is a weak left multiplier
of X 2 ), that is, iff C D ( X 1 ~ * ) and C D(X2*) (we write
X2 E or Xl E L~’~X2~). When we regard 7/) as a partial
*-algebra with those operations, we denote it by /~(T~7~).
Vol. 67, n° 3-1997.



228 J.-P. ANTOINE, A. INOUE AND H. OGI

A partial O*-algebra on D is a *-subalgebra 9K of ~(~, H), that is, aK
is a subspace of ~(D, H) , containing the identity and such that xt e 9K
whenever X e flR and X1[]X2 ~ M for any 9Jl such that

X2 E Thus £/~(D, H) itself is the largest partial O*-algebra on
the domain P.

For a partial O*-algebra M, its (internal) universal right multipliers are
the elements of the set:

Similarly we define R(X) = n 9Ji and L(X) = n M. The

space will play a role in the definition of generalized vectors, to
be discussed in Section 3.

A t-invariant subset SJ2 of /:t(P, ~-f) is called fully closed if D = i3(SJ1) ==
If N is not fully closed, its full closure is the smallest fully

closed set containing it, namely 9t = {~(X) = X ,13(91); X E 
Let 9J1 be a partial O*-algebra. If it is not fully closed, it may always

be embeddded into its full closure 9K = i,(~), which is a fully closed
partial O*-algebra on the domain isomorphic to Thus one may
always restrict the analysis to fully closed partial O*-algebras without loss
of generality, and this we shall do in the sequel.
On the space /~’ (P, 7~) we will consider the strong * topology which

is generated by the family of seminorms : D.

The space L~(D,H) is complete for [8*’ For N C we denote

by [91]8* the t,s.-closure of and similarly by its closure in some

topology T.

Given a f-invariant subset 91 of .ct (D, ~-l), we define, as usual, its weak
unbounded commutant:

and its weak bounded commutant:

Annales de l’Institut Henri Poincaré - Physique théorique



229STANDARD GENERALIZED VECTORS

The restriction to D is the bounded part of N’03C3. Both 0l) and N ’w
are weakly closed, ’-invariant subspaces, but not necessarily algebras.
As for bicommutant, we consider the weak unbounded one, namely

sJ’~ W~. _ (S)1 (J~. Its bounded part is (the restriction to D of) (0l ~)’,
where 81 denotes the usual bounded commutant of a subset B c ,~3(?-~C~ . We
note the relation (S)1 "w03C3)"w03C3 = N’w03C9 and remark that S)1 "w03C3 is fully closed
whenever is, because of the obvious inclusions D C i3(S)1~a) c D(S)1).
The crucial fact is that, for any t-invariant subset 91 of £f (D, H), 91:" is
a von Neumann algebra if, and only if, 91 ~,.a = [(0l ) )’ 
A partial O*-algebra 3K on D is said to be a partial GW*-algebra if it is

fully closed and satisfies the two conditions = D and 9Jl§~ = 9Jl.
In that case, is a von Neumann algebra, the (closure of the) bounded
part of 9J1 is also a von Neumann algebra, namely (~ w)~ and

‘~,~’ (we usually say that 9Jl is a partial GW*-algebra over
The good properties of partial GW*-algebras stem precisely from the

fact that they contain a -dense subset of bounded operators.
The easiest way of constructing a partial GW*-algebra is to take a

bicommutant. Indeed, if is a fully closed t-invariant subset of H),
then is a partial GW*-algebra on D iff = D. On the other hand,
if 9K is a partial O*-algebra on D (not necessarily fully closed), such that

= D and m1~o- == 9J1, then fin is a partial GW*-algebra on 
Along the way we will use some standard tools from the theory of

bounded operator algebras, for instance the notion of (achieved) left Hilbert
algebra and the corresponding Tomita algebra. For all these, we refer to
standard texts, such as [20].

3. GENERALIZED VECTORS FOR PARTIAL O*-ALGEBRAS

If 9t is an O*-algebra on D, so that ?tP c D, then a map of N into D
is called a generalized vector for 0l if its domain D(A) is a left ideal
of 9~, A is a linear map from D(A) into D and = for
all X E 0l and A E D(A). This definition does not extend immediately
to a partial 0~-algebra, since the product X A is not necessarily defined
and, in addition, the partial multiplication is not associative, which creates
difficulties with the notion of left ideal.

Let ~t be a partial O*-algebra on D c H. Throughout the paper, we
will assume that 9J1 is fully closed (as stated in Section 2, this is not a real

Vol. 67, n° 3-1997.



230 J.-P. ANTOINE, A. INOUE AND H. OGI

restriction), and that c D. This implies that 9K~ is a von Neumann
algebra and that 9~ = ~(~J~t«.)~ a partial GW*-algebra.

DEFINITION 3.1. - A map A : 9J1 --o H is a generalized vector for the
partial O*-algebra 9J1 if there exists a subspace B(A) of 9J1 such that:

(i) the domain D(A) is the linear span of {YaX; X E B(A), Y E L(X)}
and the map A : D(A) 2014~ H is linear;

(ii) A(B(A)) C D;
(iii) = VX E I3(a);Y E L(X).
The subspace B(~) is called a core for A. By Zorn’s lemma, A possesses

a maximal core containing B(A), denoted by 

DEFINITION 3.2. - A generalized vector A for 9K is said to be strongly
cyclic (resp. cyclic) if it possesses a core such that:

(i) B(A) C R(9J!);
(ii) is dense in D(t~~ (resp. 
Let A be a strongly cyclic generalized vector for Since C

R(9Jl), it follows that

Moreover, since À( B ( À)) is dense in D~t,~~, the full closure of the partial
O*-algebra M |03BB(B(03BB)) coincides with JJ2.

Given a generalized vector A for 9K, we proceed to define its commutant,
noted A~. Suppose the following condition holds:

A((B(A) n B(~)t)z) is total in ~-l, for some core B(A) for A,

where we have defined

We put

so that = which justifies the name ’commutant’ . Then
we have the following

Annales de l’Institut Henri Poincaré - Physique théorique
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PROPOSITION 3.3. - ( I ) The vector ÇK is uniquely determined for every
K E D ( a‘ ), and .1e is a generalized vector for the von Neumann algebra

.

(2) 03BBc is independent of the choice of the core for 03BB satisfying
condition 

Proof. - ( 1 ) This follows immediately from condition ( ~S’1 ) .
(2) Let and B2 (~) be two cores for a, both satisfying condition

(81), ~B1 (~~ and ~8.~ (a) the corresponding commutants of A. Choose any
K E that is

~$~ ~a) (.I~) E D and I~~(X ) = X ~B~ (a~ (~), V X E B1 (~) .

Since

it follows that every element X of .82 (A) may be represented as

We have

where the first equality results from the fact that, for all ç E D,

Thu s we get

and therefore ~B1 (A) C (A). The reverse inclusion is proved in the same
way. This completes the proof. D

Vol. 67, n 3-1997.
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In this section, we give only two simple, yet important, examples of
generalized vectors for partial O*-algebras, namely those associated to

vectors in D and respectively. More sophisticated ones will be

discussed in Section 6.

Then A~ is a generalized vector for 9K and {X E 9Jt;
D}. Suppose that is dense in ?-l. Then

Suppose, in addition, B~ ~2~ ~ ~o is dense in Then

Àço is strongly cyclic.
(2) Let 03BE0 E Suppose that C ~ {K E E D} is

nondegenerate, that is, is dense in H. We put

Then A~ is a generalized vector for and ~e(~J is the largest core of
Ag~ . First, it is clear that B~(A~) is a subspace of 9R. Next, suppose that
I:k Yk[]Xk = 0, with Xk E Be(03BB03BEo), Yk E L(Xk). Since

for all X E E C and 03BE ~ D, it follows that

Therefore

Araraccles de l’Institut Henri Poincaré - Physique théorique



233STANDARD GENERALIZED VECTORS

for all ~ E D and K E C. Since CD is total in H, this implies
= 0, and thus Àço is indeed a generalized vector for M.

Take now an arbitrary X E 9J1 such that and E D.

Then,

Hence, introducing a in C which converges strongly to I, we

get, for all ç E D,

which implies that ~ E D(Xt*) and E D. Hence

X E B~(A~). This means that ~(~J is the largest core of 

If we assume now that n Be ~~~o ) ~ ~ 2 ~ is total in H, then

we have

Suppose finally that A~(B,(A~) n is dense in Then Àço
is strongly cyclic.

(3) Let M be a closed O*-algebra on D, such that M ’wD c D, and 03BB
a generalized vector for Suppose

Vol. 67. n° 3-1997.
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Then we put

and

As shown in Theorem 4.3 below, A is a generalized vector for the partial

GW*-algebra = [(9Jl~}’ ~D~~* , is the largest core for ~,

4. STANDARD GENERALIZED VECTORS

FOR PARTIAL O*-ALGEBRAS

Let again SM be a fully closed partial O*-algebra on D C H, such that
9R ~, ~ C D, and A a generalized vector for Suppose the following
conditions hold:

Then we define the commutant ~~~ of A" as follows:

The vector ~A is uniquely determined for each A E and a~~ is a

generalized vector for the von Neumann algebra w ~ ~ . Then we have
the following

LEMMA 4.1. - ( 1 ~ n D (~c~~’~ ~ is a left Hilbert algebra in ~-C,
whose left von Neumann algebra equals (9Jl ~)’.

(2) Consider the following involutions:

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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Then ~’a and are closable conjugate linear operators in H, whose
closures we denote again by .,S’a and and ,S‘a c 

Proof. - (1) It is sufficient to show that n ~(~~~)~‘)2) is

total in H. Choose an arbitrary element Let X = be the

polar decomposition of X and = the spectral resolution
of We put

Then E ~ ~ ~~; ~ ~ , E N, and

for all K E D(A~). Hence

~ince we have, for all D(A") n D(A~)~,

it follows from (82) that

Take an arbitrary element X E B(A) n jB(A)L Since

for all K E D(~), it follows that

Then, putting together (4.1), (4.2) and (4.3), we obtain

Vol. 67, n° 3-1997.
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Take now two arbitrary elements X,Y E such that
X E L(Y). By (4.4) we have

and

Since A((B(A) n B().)t)2) is total in it follows that n

D(~")*)2) is total in 7-l too.

(2) It is easily shown that 5B and are closable conjugate linear
operators in H. Now observe that

for all K1, K2 E D(03BBc) and X E n Since 03BBc((D(03BBc) n
D(~‘)*)~) is total in the Hilbert space it follows that

for all ?? E and X’ E n which implies that

Hence, and thus S’a c This completes the proof. D

Notice that in general. Let now Sx = and
== be the polar decompositions of S’a and respectively.

From the Tomita fundamental theorem [21 ], we derive the following
LEMMA 4.2. - ( 1 ) The strongly continuous one-parameter groups

{ )..CC} te R of the voh Neumann algebras and 
are defined by

and they satisfy the relations

Annales de l’Institut Henri Poijicare - Physique théorique
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and

and

(2) satisfies the KMS condition with respect to the modular

automorphism group that is, for any A, B E n 

there exists an element fA,B of A(0,1~ such that

for all t E R, where A(0, 1) is the set of all complex-valued functions,
bounded and continuous on 0  Im z  1 and analytic in the interior.
The next step is to determine how the modular automorphism group

of the von Neumann algebra (9~w/ acts on the partial
O*-algebra 3K. For that purpose we need the notion of full generalized
vector, that we proceed to define.

First we show that the generalized vector A extends to a generalized
vector A for the partial GW*-algebra 9J1 ~(T == ~(~ ~,~~ 

THEOREM 4.3. - Let A be a generalized vector for satisfying the
conditions and (~’2 ). We put

and

Vol. 67, n° 3-1997.
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Then a is a generalized vector for the partial GW*-algebra 9J1 " ==

~~~~,T~’ and it has the following properties: 
~~-~

(3) X is the largest among the generalized vectors ,c.c for ~~~, that satisfi
condition and ~ce == a~; 

.

It is clear that Be(A) is a subspace of 9K~ = ~~~ yj,~’ ~]’B
Let X be an arbitrary element of ~,(A) and {A~}, {~} two nets in

such that and A-(~) -~ ~ ~ D. B~3 t~ X; and
A~~ (83 ) -~ ~ ~ D. Then we have, for all D(A~) n D(A~)~,

Since a~((D(~~~ n D(~~~~~2~ is total in H, by (52), we have ç~B == (J,-,
so that A is a well-defined map from Be() into D. Suppose that
YoX = 0 (X E Be (.1 ) ; Y E L(X)). Then we get, for all K1, K2 E
D(A’’) nD(A")*,

where is a net in such that Aa ~-S-~ X and - 

By (~2) again, we have = 0. Similarly, the condition

(Xk E B,(A), Yk e L(Xk)) implies ~~ = 0.
Therefore A is a generalized vector for 9J1 ~~(7’ Furthermore, it follows
from (4.1) and (4.2) that B(A) C and A(X) = A(X), VX E B(A),
which implies that A C A.

Annales de l’Institut Henri Poincaré - Physique théorique



239STANDARD GENERALIZED VECTORS

Since A C A, it follows that A satisfies condition (81) and 03BBc C A". Take

arbitrary elements K E D(A~) and X E D(A). Then we have

where again is a net in D(A~) such that A~ ~X and ,BcC(A.) 
-

A(X). Hence K E D(a ) ~~(~). Thus A" = A~. Take now
an arbitrary generalized vector p for 9Jt ~.~ satisfying condition ( ~’I ) and

~~. By the definition of A, we have ti = A. Hence statement (3)

holds true. It remains to prove statement (4). We put

Then it is easily shown that v is a generalized vector for 9Jt ((.~ , with core

B(v), such that ~(A) C B(v) and A C v. Conversely, take an arbitrary
element X E B (v) . One can show, in the same way as for (4.1 ) and

(4.2), that there exists a sequence {Xn} in such that Xn  X
and - v(X), which means that X E and A(X) = v(X).
Therefore we have

Let now B(A) be an arbitrary core for A and Z E B(A). Then

where Xk E and Yk E L(Xk). For every K E D(~") we have

and so Z E B(v) == Be eX) by (4.5). Thus we conclude that B~(~) is indeed
the largest core for A. This completes the proof. D

We may remark that the extension from A to A is the analogue of a
closure operation for generalized vectors.

Vol. 67, n° 3-1997.
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If we now restrict the generalized vector A from 9~ ~ to 9K, we
get a new one, which is an extension of A, as results from the following
corollary of Theorem 4.3.

COROLLARY 4.4. - Let us put

Then ~ 19J1 is a generalized vector for 9J1 such that

(3) A |M is the largest among the generalized vectors i.c for M that
satisfy condition and = ~~;

(4) B,(A~) = {X E ~; ~ ~Z E D s.t. XA~(~) - for all
K E D(A~)}, and it is the largest core for ~1 ~9Jl. 0

Then, of course, requiring A to coincide with its extension A leads
to a useful class of generalized vectors, namely:

DEFINITION 4.5. - A generalized vector A for 9R satisfying the conditions
and (62) is said to be full if A = A 

When 03BB is full, we denote simply |M) by Be(03BB). If 9Jl itself is a
partial GW*-algebra, so that a~ - 9K~ = [(a~w)’ rD~’~ , 
but we still have A C A in general.
Now we are in a position to define the central concept of this paper,

namely standard generalized vectors, that will play the role of KMS states.

DEFINITION 4.6. - A generalized vector A for 9J1 is said to be standard
if the following conditions are satisfied:

The generalized vector ~ for 9J1 is said to be essentially standard (resp.
quasi-standard ) if the conditions (81)-(84) (resp. (81)-(83) are satisfied.

THEOREM 4.7. - Let 03BB be a standard generalized vector for 9)1. Then the
following statements hold:

( 1 ) Sx = and thus = and = 

Annales de l’Institut Henri Poincaré - Physique théorique



241STANDARD GENERALIZED VECTORS

(2) We put

Then is a one-parameter group of *-automorphisms of ~, such

that ~~ ( Be ~ ~ ) ) = Be ( ~ ) for every t E .
(3) a satisfies the KMS condition with respect to that is, for each

X, Y E Be ~~) n there exists an element of A(o,1) such that

and

Proof. - The proof is entirely analogous to that of [ 17, Theorem 5.5], that

we simply follow. Take two arbitrary elements X, Y E B~(A) n 

By (4.4) there exist two sequences {Xn} and in n 

such that

By Lemma 4.2 (2), there exists an element fn of .4(0,1) such that, for
all t ~ R,

By (~3) and (64), we may define a one-parameter of

*-automorphisms of 3K by the relation:

Since A is full, it follows from Corollary 4.4 (4) and Lemma 4.2 (1) that
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By (4.6) and (4.7), this implies that

Hence there exists an element fX,Y of 1) such that

and 
~

Next we show that SÀ = Let 7C be the closure in ~L of the set

{A(X); xt = X E B~(~) n Bf.(~)t~. Then it is easy to see that 7C is a

closed real subspace of H such that is dense in Hand K~iK = {0}.
Thus, by [22], SÀ equals the closed operator defined by

Furthermore, it follows from (4.7) and (4.8) that the one-parameter group
{6 ~cc of unitary operators satisfies the KMS condition with respect
to ~C in the sense of [22, Definition 3.4], and c 1C for all t E IR.

By [22, Theorem 3.8] and (4.9), this implies that == 6~ for all t E R.
Therefore, it follows that == which implies by (4.7) and (4.8) that
~ satisfies the KMS condition with respect to one-parameter group ~~t }tE~
of *-automorphisms of 9)(. This completes the proof. D

Combining all these results, we get in addition

THEOREM 4.8. - Let 03BB be a generalized vector for Then the following
statements hold true:

( 1 ) is essentially standard, then "X jVR is a standard generalized
vector for ~.

(2) If 03BB is quasi-standard, then 03BB is a standard generalized vector for the

partial GW*-algebra 9J1 W~ _ [(9J1 w~~~s .
~’roof. - The statement ( 1 ) follows from Corollary 4.4 .and Theorem 4.7,

while (2) results from Theorems 4.3 and 4.7. D

COROLLARY 4.9. - Let 9J1 be a partial GW*-algebra and a a generalized
vector for If 03BB is quasi-standard, a fortiori if it is essentially standard,
then ’X is a standard generalized vector for Wl.

This does not mean, however, that every quasi-standard generalized vector
is essentially standard, for conditions (53 ) and (54) are not equivalent, even
in the case of a partial GW*-algebra.
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5. MODULAR GENERALIZED VECTORS

The notion of standard generalized vector developed at length in Section 4
is powerful, but restrictive. In this section, we will weaken our requirements
on generalized vectors and introduce modular generalized vectors, as we
did in the O*-case in [19] (but the two definitions are different). The result,
here too, is that a modular generalized vector will give rise to a standard
generalized vector for a partial GW*-algebra, but the latter will act on a
dense domain smaller than the original one.

LEMMA 5.1. - Let A be a generalized vector for Suppose there exists
a core for 03BB such that

Then the following statements hold true.

( 1 ~ j(~ ~, ~’ ~~7a~ ~ is a partial GW*-algebra on Da over 
(2) }t~R implements a one-parameter group of *-auto-

morphisms of the partial GW*-algebra ~,)’ 
(3) We put

Then 03BBs is a generalized vector for [(M’w)’|D03BB]s*.
Proof - By Lemma 4.2 (1), we have C so that ~ ==

|D03BB]s* is a partial O*-algebra on such that M~M|D03BB and
for all t E .R. Hence we have

for every and 03BE E D(X), which implies that Dx =
Therefore, m is a partial GW*-algebra on Da 
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Then one can show as in the proof of Theorem 4.3 that Ag is a generalized
vector for S)1. D

It should be clear that the two sets {X X E B(~) and A (X ) E Da~
and {A E and E Da} are both contained in Da,
but we don’t know whether nB(Às)t)2) is total in H. Thus we
have to restrict the generalized vector A and introduce the following notion.

DEFINITION 5.2. - A generalized vector A for 9J1 is said to be modular
if the conditions (1’~Tl), (Mz), (M3) above and, in addition, the following
conditions (M4), are all satisfied:

The notion of modular generalized vector indeed answers our question,
as the next theorem shows, but at the price of restricting ourselves to a
smaller dense domain. 

-

THEOREM 5.3. - Let A be a modular generalized vector for Then ~s is
a standard generalized vector for the partial GW*-algebra [(9J1~)’ 
and 03BBccs = 

Proof. - It follows from the definition of Dx and the assumption (Ms)
that the generalized vector Às for ))’ satisfies the conditions

(,~3 ) and (~4) in Definition 4.6. Furthermore, it follows from the assumption
(Ms) and Theorem 4.3 that Ag = A~. Therefore Ag is full. This completes
the proof. D

Knowing that modular generalized vectors indeed will lead us to

generalized KMS states, it remains to find criteria for a given generalized
vector to be modular. We present two of them.

PROPOSITION 5.4. - Let A be a generalized vector for rot Suppose there
exists a core for 03BB such that

(i) A((B(A) n total in H and C 1).B;
(ii) fa~(r~1~2); .~2 E and 

total in H;

(iii) {A~); ~ E D(~~) n 17(a~)~‘ and ~~(K), a~(K’~) E is dense

in the Hilbert 

Then À is modular.

Proof. - Since A(B(A)) C Dx, it follows from (4.1 ) and (4.2) that

X f Da E B(as) and Às(X À(.¿Y) for all X E B(A). By (i)
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this implies that A.((B(A.) n B(A.)I)’) is total in H. Furthermore,

= {~ ~ D(A~): A~(~) e Dx) and = A~), for all~ ~ Hence, by (ii), we conclude that n D(A~)*)~)
is total in H. Furthermore, (iii) implies that Ag (D(Ag ) n D(A~)*) is dense
in the Hilbert space It follows that = and so A~ = A~.

Thus A is modular. ~-’

PROPOSITION 5.5. - Let A be a generalized vector for Suppose there

exists a core B(A) for A such that

,,/ i ’’’’ v / ",,,, ,

(iii) D contains the maximal Tomita algebra B of the achieved left
Hilbert algebra == n D(~~~)~~, that is, B = {ç E Qt.;

ç E 
Then À is modular.

Proof. - By (iii) we have thus condition (M3 ) in Definition 5.2 is

satisfied and B C ~~ (B (~s ) n B ( ~s ~ t ) . Hence condition (M4) in Definition
5.2 is also satisfied. We show that ~s~ --. ~~~. It is easily shown that

Take arbitrary elements K C D ( ~s ) and A E According
to [23, Lemma 1.3 ] , there exists a sequence {Bn} in D( 03BBcc) n D( 03BBcc) *

such that B C Da ; Bn A, 03BBcc (Bn)  03BBcc(A) and

B* n) ~~ ~e~ A* From this it follows that C B~~.~) n 

03BBs(Bn) = 03BBcc(Bn) for every n ~ N and

= lim K03BBcc(Bn) = lim K03BBs(Bn) = lim Bn03BBcs(K) = 
.n n n

which implies

In addition, we have

Take now any 03BE e B. Since 03BBccc is full, we may write 03BE = 03BBccc(K)
and ~.~ - for some ~ e D(A~) n D(A~)~. Since

~, ~ ~A C D, we see that ~ Since
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by (5.1). (5.2) and (5.3), it follows that n D ( ~s )’~ ) ~ ) is total
in H. Furthermore, since B is dense in the Hilbert space D(~’~~~ ), it follows
that A~ == and so Ag~ = ~‘~e. Thus A is modular. D

6. SPECIAL CASES AND EXAMPLES

In this section we examine some particular cases of standard or modular
generalized vectors for partial O*-algebras.

6.1. Generalized vectors associated to individual vectors

We consider, as usual, a fully closed partial O*-algebra 9J1 on D such
that c D. Let Àç be the generalized vector associated to ç E H, as
defined in Examples 3.4 (1), (2). When is it standard or modular?

9J1~vç is dense in H.

Then ~~ is modular.

Let ~~ denote the modular operator associated to the achieved left Hilbert
algebra ~ ~~; ~’~. If

then is quasi-standard. Finally, if

then ~~ is standard.

P~oof. - It is easily shown from (i) and (ii) that

and so A~(D(A~) n D(A~)~) is an achieved left Hilbert algebra in H,
which equals the left Hilbert algebra (~ ~; ~’~. Hence we have

where B is the maximal Tomita algebra for the achieved left Hilbert

algebra (9J1 ~ )’ ç. Proposition 5.5 then implies that ~~ is modular. The rest

is immediate. D
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Let now ( E Suppose

According to Example 3.4 (2), the generalized vector Àç is defined

as follows:

Suppose in addition that

Then we have

and so n D ~ ~~~ )’~ ~ equals the achieved left Hilbert algebra
(9Jt ~ )’ ç. For simplicity, we denote by S~ and 0~ the operators S~~ ~; ~~~
and ~ ~~ ~ ~ ~ ~, respectively. Then we have the following

PROPOSITION 6.2. - Let ~ E Suppose that the conditions ~i) and (it)
above are satisfied. If C D, for every t E R, then Àç is quasi-standard.
Furthermore, if = for every t E (~, then Àç is standard. D

Now we investigate the modularity of Suppose the conditions (i) and

(ii) in Proposition 6.2 hold. We define

Then ~~ (D) is a *-subalgebra of and C Da~ . Thus, if

is dense in 7~ then, by Lemma 5.1, the generalized vector ( ~~ ) s
for the partial GW*-algebra ~(~ ))’ 

s 
may be defined. We have

the following
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PROPOSITION 6.3. - Let ~ E Suppose that the conditions (i) and (ii)
in Proposition 6.2 hold, as well as the following conditions (iii) and (iv):

(iii) K2 E Co (D) ~ is total in H.

{X2X;*Ç-; [(9J1~)’ D s^ s.t. ç- and * E 
i 

. 

= 1,2} is . total in H. ~.~ ~ ~ a~ ~ ~ E ~ 2 ) and X.z ~ ~ 

Then ~~ is modular.

Proof. - By (iii) is dense in 7~ and thus, by Lemma 5.1, the

generalized vector (03BB03BE)s for the partial GW*-algebra [(M’w)’ |D03BB03BE]
8’

may be defined. It satisfies the following relations

Take indeed an arbitrary element X E B((A~). Then there exists a net
in (9Jl~)’ such that Aa ~X and Aa ~ -~ (A~),(X). Thus we get,

for all ~ E 

Hence E and = Conversely, let X

be an arbitrary element of ( ~ ~T )’ 
x 

such that ~ ~ D(Xt*) and
E From the spectral resolution of we see there exists a

sequence {Xn} in (M’w)’ such that X n  X~* and Xn03BE ~ X~*03BE, which
implies that X e B((A~)~).
By (6.3) and (iv), the condition (M4) in Definition 5.2 is satisfied. Let

us show the following relations.

Indeed it is easy to show from (6.3) that {K E M ’w; K03BE E C

Conversely, let K be an arbitrary element of Then,
for all X,Y E B((A~) n such that Y E L(X), we have
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Hence it follows from (6.1 ) and (iv) that 

On the other hand, (6.4) and (iii) imply n

D ~ ~ ~~ ) s ) ~ ) 2 ) is total in H. Finally we show that = It is clear

that K - C h. is a dense *-subalgebra of the right Hilbert algebra W~,
whose commutant /(7 contains (M’w)’03BE. Conversely, let ~ be an element of

i. e. there exists an element r~~ of H and an element A of B(H) such that
(7~) = (.K’~~~r~~) and for all K E ~(P). Since ~(P) is
a nondegenerate *-subalgebra of 9.n ~ by (iii), it follows that = ~~
for every K E ~ w, which implies that q = A~ ~v)’ ç. Thus we have
1C’ = Hence it follows from (6.4) that = Therefore

a~ is modular. 
~ ~ 

D

6.2. Standard generalized vectors
constructed from Hilbert-Schmidt operators

Let 9K be a fully closed (resp. self-adjoint) partial O*-algebra on D c H.
We denote by H 0 H the Hilbert space of Hilbert-Schmidt operators on
H, and put:

Then it is easily shown [24] that, for any Xl, X 2 E 0 ~- ~ X ~ ) is
well-defined iff X1[]X2 is, and, moreover, that 03C0(M) is fully closed (resp.
self-adjoint) iff 9K is fully closed (resp. self-adjoint). Hence is a

fully closed (resp. self-adjoint) partial O*-algebra on 62 (3K) C ~ ~ ? C.
Furthermore, we can show as in [25, Lemma 2.4] that, if = CI, then
7r(a?~ - 7r’(B(~)) and (7f(9J1)~v)1 _ ~~~(~~~)), where

Let 9J1 be a fully closed partial O*-algebra on D c H such that = CI
and S2 a nonsingular, positive Hilbert-Schmidt operator on H. Suppose that

(i) H? c D, for some dense subspace £ in 7~ contained in D.

Then it follows that ~~’~A~; A E B(H) s.t. QA, E 62(9J1)} is

nondegenerate, so that we can define the generalized vector for 
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as follows:

Concerning the standardness of 03BB03A9, we have the following criterion.
PROPOSITION 6.4. - Suppose
(i) QS c D, for some dense subspace S in H, contained in D;
(ii) Xj E M s.t. X/* E 62(M), i = 1 , 2} is total in 1{01{;
(iii) c D, Vt E R.

Then AQ is quasi-standard. Moreover, if

then is standard.

Proof - From (6.5) and (ii), we see that n is
total in 7~ ~ x, so that, by (6.1 ),

Hence, by (i), we have E n D(~~~~‘~2, for every ç, q E [,.
Since 03A9 is nonsingular, this implies that n D(03BBc03A9)*)2) is total
in 1i 0 H, and therefore, by (6.2),

Then it follows from [14, Lemma 5.2] that n D(Àn)*)
(= ~r"(13(7-L))SZ) is an achieved left Hilbert algebra in H, such that

All our assertions follow from this relation. D
As for the modularity of a~, we may state:

PROPOSITION 6.5 . - Suppose that 0 E Then the following statements
hold:

(1) If the condition in Proposition 6.4 is satisfied, then is modular;
(2) If D contains an orthonormal basis ~~n~ of H such that Çn @ ~.,-,z E 9J1

for all n, then is modular.
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Proof - (1) Since f2 is a nonsingular, positive Hilbert-Schmidt operator
on ~-l such that 52D E H, it may be represented as S2 = fn,
where Wn &#x3E; 0 for every n E N and {} is an orthonormal basis of
H contained in D. Since the linear span 0 is

contained in and is dense in ?-l 0 H, it follows that Dafz is also dense
in ~-l 07~. Thus the conditions (Mi), (M2) and (M3) in Lemma 5.1 are
satisfied, and so one may define the generalized vector for the partial
GW*-algebra [(~(6(~)) Since the set {(in 
A E B(H), n E N) is contained in (~~)5.((B((~S2)~) n 
and is total in 0 7~ the condition (M4) in Definition 5.2 is satisfied.

Moreover, (6.5) implies that E 13(~-l); rr, E N}
is contained in ~(62(9~))~ and is total in ~-l 0 7~. Thus the condition (ii)
in Proposition 6.3 holds and is modular.

(2) Since

and {ÀO(çn 0 (= (çn 0 n, m E N} is total in the dense

subspace generated by (fn ~ fn)03A9; n, it follows that

n is total in H 0 H. Therefore, by (1), ~~ is

modular. D

6.3. Partially modular generalized vectors for O*-algebras

In this subsection we consider generalized vectors for O*-algebras. For
such objects, a notion of modularity has been defined in [17, Definition 5.10]
in the framework of O*-algebras. Roughly speaking, a generalized vector
A for an O*-algebra 9J1 is said to be modular if there exists a suitable

dense domain ? such that (i) c ~, V t E R; and (ii) c E. Now,
since an O*-algebra is a fortiori a partial *-algebra, we can also define
a notion of modularity for the generalized vector A in the framework of

partial *-algebras. In a nutshell, we may omit the condition (ii) above. Let
us state this precisely.

Let 9J1 be a closed O*-algebra on D such that VJ1 ~D c D. A
generalized vector A for 9J1 is said to be partially modular if it is modular
when regarded as a generalized vector for the partial O*-algebra that

is, the following conditions hold:
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- . _ " ...........r .r , ð

If 03BB is a partially modular generalized vector for then, by Theorem 5.3,
A~ is a standard generalized vector for the partial GW*-algebra
~(~ ~,)’ and ~s~ - ~~~. Thus all the results of Propositions 6.1 to 6.5
apply to the partial modularity of generalized vectors for O*-algebras. In
addition, we have:

PROPOSITION 6.6. - Let 9Jl be a closed O*-algebra on D c H such that
9Jl ~, D c D. Then the following statements hold:

( 1 ) Suppose ~ E D satisfies the following two conditions:
(i) is dense in H,
(ii) 9Jl ~,( is dense in H.

Then 03BB03BE is partially modular.
(2) Suppose M’w = CI. If D is a nonsingular, positive Hilbert-Schmidt

operator in 62 such that is dense in ~-C ~ ~, then is partially
modular. D

REMARK 6.7. - Let again A be a generalized vector for the O*-algebra
and suppose that it is modular. Then A is partially modular. Indeed,

one can show, exactly as in the proof of [ 17, Theorem 5.11 ], that {X 
X E D(A) n c B(~s) n and IV,B.) == ~(X), for
every X E D(A) n Thus the condition (PM4 ) above is satisfied.
Moreover, since K E ~~ (~) E C D ( ~s ), the condition 
holds also, which proves the assertion.

7. STANDARD GENERALIZED VECTORS CONSTRUCTED
FROM STANDARD VON NEUMANN ALGEBRAS

In this last section, we pursue the study of generalized vectors on partial
GW*-algebras, reverting to the usual approach of extending a given result
from the dense subset of bounded operators to the full partial GW*-algebra.
More precisely, we address the following question:

Let Mo be a von Neumann algebra on with a standard generalized
vector A~. Can one construct a partial GW*-algebra 9K on a dense subspace
D C H over Mo and a standard generalized vector A for 9K such that
A~ = ~o and ~~~ _ A~?
We will give a positive answer to that question, using arguments similar

to [14, Theorem 4.1 ] . Let Mo be a von Neumann algebra on H with a
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standard generalized vector 03BBo and L(03BBo) a *-subalgebra of Mo such that
~o ( ~ ( ~o ) ) is a maximal Tomita algebra equivalent to the achieved left

Hilbert algebra ~o(D(~o) n D(~o)’~), with involution #. Let and Jao
be, respectively, the modular operator and the modular conjugation operator
for the achieved left Hilbert algebra ao (D ( ~o ) n D ( ~o )’~ ) .
THEOREM 7.1. - Let T be a locally convex topology on ~o ( ~( ~o ) ) such that:
(i) ~o ( ~’ ( ~10 ) ) [7] is a locally convex ~‘-algebra with the involution #,
(ii) T is finer than the norm topology of H.

Then there exist a dense domain Dr, a partial GW*-algebra M on Dr
over Mo and a strongly cyclic full modular generalized vector 03BB for 9J1r
such that aT = ao. Moreover, if

(iii) is a continuous operator on ~o(~(ao))~T~ for every t E (~,
then ~T is standard.

Proo,f. - We denote by Z3T the completion ~~o(~(~o))~T of Ào(’I(Ào))[7J.
For every ~ E Br we put

where is a net in ~(~o ) such that ~ç. Since ~o (~(~o ) ) ~T~
is a locally convex *-algebra, Lç is a well-defined linear operator from

to Br. First we have L~# C L~ . Indeed, by (i) and (ii), we may
write, for any B1, B2 

which implies the statement. The crucial property of ~~ is that

~~ is affiliated with (7. I)
To show this, take any ç E B and B, B 1, B2 E L(03BBo). Then we have:
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so that

Since E ~~~o ~ ~" _ it follows that

C Lç C for all C E that is, Lç is affiliated with Define

now the domain

By (7.1 ) we have

We put

Then it follows from (7.1 ) and (7.2) that M is a partial GW*-algebra on
Dr over which contains {L03BE|D;03BE ~ B}.
We proceed to define a strongly cyclic generalized vector A for 

which extends Ào. First let us show that

It follows from the definition of ~3T that E ,~T and C

for every B and ç E and this implies

for every q E 1)T and ( E D(L~). Thus Br~ E and 

Hence Br~ E so that indeed ~~~o ) f’DT C 
We put now

Then A is a generalized vector for 9JtT and A((B(A) n 13(~)t)2) is total

in M. We show that
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On one hand, since Ào C A, we have (Ào ~(A.))~ D A~. Conversely,
suppose that K E (03BBo |L(03BBo))c, that is, K E M’o and ~ 03BEK E DT s.t.

= d B E ~~~o).. For every X E B E ~(~o), we have

and so K E D(A’). Thus we get (~~ r~(~~))‘ _ ~°. Since

and ~~o(B); B E ~(~o)~ is dense in the Hilbert space it follows

that (A~)- E= (A~)" = ~o. Hence A- - Ào. 
Moreover it is easily shown that C A~(i5(A~)), for all

t E R, and that ~o (~(ao ) ) is dense in D[ This implies that A is a

strongly cyclic modular generalized vector for Then it follows from

Theorem 4.3 that ÀT = a is a strongly cyclic full modular generalized
vector for Suppose, in addition, that is T-continuous for every

t E R. Then it is easily shown that

for every ~ E Br and t e R, which implies that C DT for every
t E R. Finally, it is easily shown that E R.

Therefore, A is standard. This completes the proof. D

It remains to discuss the choice of the topologies T. Denote by T(resp.
To) the set of all locally convex topologies on satisfying the
conditions (i) and (ii) (resp. (i), (ii) and (iii)) of Theorem 7.1. The latter

implies

(i) D1 C D2 and is a *-subalgebra of M1 (in [12], this

situation was denoted (M1, D1)) D D2);

Let us give some examples of suitable topologies.

EXAMPLES 7.3. - (1) Norm topology T ~o ~! 2 ~ :
This topology is defined by the norm
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It is easily shown that is the weakest topology in ~ and that
the [03941/203BBo]-completion of is simply D(03941/203BBo). In particular,
if A, is tracial, that is, = (A.(B~~~(~~)),V~~ e

D(A~)~, then the usual Hilbert norm topology belongs to 7~ .
(2) Strong* topology r~~]:
This is the l.c. topology on A~(T(A~)) defined by the family of norms

{~!~; B ~ T(A.)}, where

It is easy to see that T[~]e7o.

(3) ~-topology 
This is the l.c. topology on ~o { ~{ ~o ) ~ defined by the family of norms

{ 11.116 ~ 0; a E C} , where

It is easily shown that and that ~(~~(~(~~))~T~°~ = D(~~ ).

8. OUTCOME: PHYSICAL APPLICATIONS

The aim of the theory developed throughout this paper, as already in [ 19],
is to generalize the Tomita-Takesaki to partial O*-algebras, as a tool for
constructing KMS states or appropriate substitutes thereof. It turns out that
standard generalized vectors are an efficient answer to this quest. Can one
hope to find physically relevant applications of the results presented here?
As described in the introduction, there are several instances where the

set of observables of a physical system could (or even should) be taken
as a partial *-algebra. One of them is the possible occurrence of non-
self-adjoint observables [10]. In that case, the natural candidate is the

partial GW*-algebra associated to a complete set S = {5~..., of

compatible observables, constructed as follows. Each observable 5j is
a maximal symmetric operator, which, if not self-adjoint, generates a

semigroup of isometries {V~), ~ &#x3E; 0~. Let S)1 be the von Neumann

algebra generated by the isometry = 1, ... , n ~ . Then
the partial GW*-algebra of observables associated to S is taken as the
bicommutant 9t ~ of S)1.

An even simpler case is that of a particle on an interval [26], where
the observables are the elements of the quasi*-algebra ,C~D; D’), where
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D = VOO (H), H = P~ is the hamiltonian and D c H c D’ is the

corresponding rigged Hilbert space.
Another example yet is quantum field theory. In the situation described by

Horuzhy and Voronin [9], the natural setup would be a partial O*-algebra
of field operators on the Garding domain. Going one step further, one

may consider in a very natural fashion [27], unsmeared field operators
as elements of the quasi*-algebra ,C(D, D’~, where again D = 
and H is the hamiltonian, that is, the infinitesimal generator of time
translations. More precisely, these field operators may be taken as operators
in the Hilbert scale generated by H, which constitute a CQ~-algebra [28].
Since both quasi*-algebras and CQ*-algebras are simple types of partial
*-algebras, this case suggests the extension of the notion of generalized
vector to other types of partial *-algebras than partial O*-algebras.

In all these instances, vectors in the Hilbert space, and in particular vectors
ç E where D is the relevant domain, describe states of the system.
So one may conjecture that the corresponding generalized vectors Àç (when
properly defined for a general partial *-algebra) would play a significant
role in the definition of appropriate KMS states of the system. Also, in a
Wightman field theory, if 0l is the von Neumann algebra associated to

a given wedge region, it might be interesting to study the corresponding
partial GW*-algebra N "w03C3 and its modular group.
At this stage, of course, this is only a list of questions, but in our opinion,

these problems are worth studying and could yield some physically relevant
results.
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